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Abstract—The future electrical grid, i.e., smart grid, will utilize
appliance-level control to provide sustainable power usage and
flexible energy utilization. However, load trace monitoring for
appliance-level control poses privacy concerns with inferring
private information. In this paper, we introduce a privacy-
preserving and fine-grained power load data analysis mechanism
for appliance-level peak-time load balance control in the smart
grid. The proposed technique provides rigorous provable privacy
and an accuracy guarantee based on distributed differential
privacy. We simulate the scheme as privacy modules in the smart
meter and the concentrator, and evaluate its performance under
a real-world power usage dataset, which validates the efficiency
and accuracy of the proposed scheme.

I. INTRODUCTION

The future electrical grid, i.e., smart grid, introduces in-

formation and communication technology (e.g., Advanced

Metering Infrastructure (AMI)) to the traditional electrical grid

to improve the efficiency and reliability of the system. Its

development has been actively driven by governments in the

United States and Europe. Given the mandatory transition to

the new generation smart grid, which has been signed into

law, 80% of consumers should be equipped with smart meters

by year 2020 in the United States [1]. Neighborhood area

network (NAN) based smart grids, as an initial smart grid

instance, plays an important role in this transition because of

the quick and lightweight communication deployment of the

NAN. The NAN, as a bi-directional online communication

infrastructure between smart meters and the concentrator,

consists of data management systems and monitoring systems

to collect metering data and to distribute control information.

It realizes the neighborhood-level meter reading collection

and control information distribution flow between the utility

company and the residents.

Towards sustainable power usage and flexible energy u-

tilization, many different load control policies have been

introduced for the smart grid. Among them, appliance-level
load control policy in NAN based smart grids has begun to

receive attention. Appliance-level control policy is supported

by Non-intrusive Load Monitoring (NILM) technology in

smart meters [2], where the load profile is analyzed to deduce

the individual energy consumption of appliances. It allows

fine-grained power consumption to be profiled in real time,

and enables remote diagnostics and controls to increase the

performance of the grid infrastructure. When executing the

appliance-level control policy, to respond to a rapid power

consumption increase in peak time among neighborhoods, the

purpose of peak-time load balancing control for the smart grid

is to temporarily (to allow time to start up a larger generator)

or continuously (in the case of limited resources) shut down

the appliances which are not in use but connected to the circuit.

However, the usage of fine-grained energy data for

appliance-level load control poses privacy concerns. As recent

research indicated [3], personal information can be derived

from energy consumption data, such as the individuals’ be-

haviors and locations in their houses. For instance, burglars,

who eavesdrop on the communication on the wireless link

in the NAN, could identify the time to break into the house

based on the fact that power consumption drops when the

house is vacant. Also, one who colludes with the controller

could infer the location of the residents by monitoring the

appliances being used. This kind of behavioral inference is

known as an NILM attack [2]. In addition to privacy, quality-

of-service (QoS) is also a key issue of the smart grid. Perfor-

mance degradation like response delay or output inaccuracy,

which can be introduced by the data manipulation to achieve

privacy, must be rigidly quantified for the system reliability

and stability.

In this paper, we propose a privacy-preserving fine-grained

power usage data analysis mechanism for the appliance-level

peak-time load balance control in the smart grid based on

distributed differential privacy. The main contributions of the

paper are summarized as follows:

• We explore the distributed top-k differential privacy

problem to propose a privacy-preserving load analysis

mechanism for appliance-level peak-time load balance

control.

• We prove that the proposed scheme achieves a rigorous

privacy guarantee called 3ε-differential privacy. Also, we

show the provable upper bound of the error rate for our

scheme.

• We demonstrate an evaluation for our scheme using a

real-world dataset. Our results indicate the efficiency and

validity of our scheme.

This paper proceeds as follows. We discuss the related

work in Section II. In Section III, we describe the necessary

background concepts of this work. In Section IV, we show the

problem formulation. In Section V, our approach is described



in detail. In Section VI, the security and accuracy analyses are

discussed theoretically. In Section VII, our scheme’s perfor-

mance is evaluated using a real-world dataset. In Section VIII,

the conclusion and the future work are presented.

II. RELATED WORK

Data disclosure in the smart grid is attracting increasing

attention from researchers. In particular, secure and privacy-

preserving communication and data management in the AMI

have been extensively studied. In [3], security and privacy

analyses of the Automatic Meter Reading (AMR) technology

were presented. As the authors indicated, AMR is susceptible

to a neighborhood-level NILM attack because of its lack of

basic security mechanisms, such as insecure wireless trans-

missions and the continuous broadcast of energy traces.

In order to protect the data privacy while guaranteeing

the ability to manage the data, two types of complemen-

tary privacy-preserving approaches have been proposed: non-
cryptographic approaches and cryptographic approaches. One

promising non-cryptographic approach is Battery-based Load

hiding (BLH), which utilizes a battery to partially supply the

demand load so as to alter the meter reading. Rajagopalan

et al. [4] proposed a best effort privacy protection algorithm,

which quantified the loss of benefit resulting from the privacy-

preserving approach. McLaughlin et al. [5] proposed a non-

intrusive load leveling method for BLH and performed a

rigorous physical simulation under substantial real-world data.

However, these schemes face the vulnerabilities of load peak

leakage as revealed in [6]. Accordingly, a stepping-based

framework for BLH was proposed by Yang et al. [6], which

maximized error between the demand load and external load

in load peaks. But, BLH approaches limit the ability of the

smart grid to provide appliance-level load control. In the

cryptographic approaches category, Deng et al. [7] proposed

a secure communication scheme for AMI. Li et al. [8] pro-

posed a secure information aggregation scheme for the smart

grid. Rottondi et al. [9] proposed a privacy-preserving load

scheduling scheme to prevent the NILM attack. However, these

schemes [7]–[9] require the use of homomorphic encryption

(HE) [10]–[12] such as Paillier’s cryptosystem [12], which is

computationally expensive and far from practical. Yan et al.

[13] proposed a symmetric encryption (SE) based secure com-

munication scheme for AMI to protect from eavesdropping.

However, the approach described in [13] is not provable secu-

rity and does not support privacy-preserving data management.

As illustrated by Table I, our scheme based on differential

privacy (DP) is the most full-featured.

III. BACKGROUND

A. Differential privacy

Differential privacy has become a popular privacy method

due to its lightweight implementation and rigorous provable

security. Differential privacy was proposed by Dwork et al.

[14] in 2006, which makes no trust assumption about the

adversary.

Definition 1: (ε-differential privacy [14]) A randomized al-

gorithm A gives ε-differential privacy if for all datasets D1 and

D2 differing on at most one row, and for all S ⊆ Range(A),

Pr{A(D1) ⊆ S} ≤ eε × Pr{A(D2) ⊆ S},
where ε is the privacy budget of the randomized algorithm A.

In the definition of differential privacy, the data sets D1

and D2, which the randomized algorithm targets, differ on at

most one row. In other words, if the removal or addition of a

single user’s data does not substantially affect the result, there

is no risk for users to join and answer the query. The privacy

budget ε is the parameter to measure the privacy level of the

randomized algorithm. The choice of ε is a tradeoff between

the privacy and the accuracy of the output.

Definition 2: (Sensitivity [14]) For a function f : D → Rk,

the sensitivity of f is

Δf = max
D1,D2

‖f(D1)− f(D2)‖1,
where D1 and D2 differ on at most one row, and D1, D2 ∈ D.

Sensitivity measures the outputs’ change in the function f(),
when the targeted data set changes.

A significant ε-differential privacy mechanism, which was

introduced by Dwork et al., is Laplace noise on counting

query [14], i.e., A(X) = f(X) + Lap(Δf
ε ). In Laplace

noise on counting query, f() is a counting query on the data

set X , and Lap() is the Laplace distribution with standard

deviation
√
2Δf
ε to scale the counting query result. Laplace

noise on counting query is claimed to be ε-differential pri-

vacy, because for all D1 and D2 differing on at most one

row,
Pr{A(D1)⊆R}
Pr{A(D2)⊆R} = e

−|f(D1)−f(D2)|ε
Δf . As the sensitivity of

counting query |f(D1)−f(D2)| ≤ Δf ,
Pr{A(D1)⊆R}
Pr{A(D2)⊆R} ≤ e−ε.

Hence, Laplace noise on counting query f(X) +Lap(Δf
ε ) is

ε-differential privacy.

B. Non-intrusive Load Monitoring (NILM)

NILM, which was initially described by Hart et al. [2],

is a process to determine each appliance’s individual energy

TABLE I
A COMPARISON OF RELATED WORKS WITH OUR SCHEME.

Cryptographic Approach Non-cryptographic Approach
Our work DY [7] LLL [8] RV [9] YQS [13] RSM [4] MMA [5] YLQ [6]

Category DP HE HE HE SE BLH BLH BLH

High-Efficiency � � � � � � � �

Provable Security � � � � � � � �

Fine-grained control � � � � � � � �
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Fig. 1. A one-day load profile for two houses from UMASS Smart*
dataset [15].
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Fig. 2. Overview of the NAN based smart grid system.

consumption by analyzing changes of the load profile from the

interface of the smart meter. NILM is considered a lightweight

alternative to attaching individual monitors on each appliance.

It detects an appliance’s activities such as ON/OFF events

for appliance-level load control and appliance management.

However, NILM technology can also be used by the adversary

to deduce the residents’ behavior in the house.

A one-day load profile for two houses is shown in Figure 1.

Even though two houses have distinguishable diurnal patterns,

it is easy for an adversary to deduce whether the house is

vacant by observing the load profiles. Moreover, consumption

trace analysis can be mapped directly to ON/OFF events of

identifiable appliances so as to determine the location of the

resident in the house [2]. Thus, a privacy-preserving load

analysis scheme is needed for the smart grid.

IV. PROBLEM FORMULATION

In this section, the system model and assumptions are given.

Then, we outline the adversary model and design goals.

A. System Model and Assumptions

We consider an instance of a NAN based smart grid system

as shown in Figure 2, which is composed of four components

including smart meters, a concentrator, a data collector and a

control center. In the NAN based smart grid system, the smart
meter of each house in the neighborhood transmits its data to

the concentrator through the NAN, which has a star topology.

Then, the concentrator forwards the data to the data collector.

The purpose of the concentrator is to efficiently forward the

data from the smart meters to the data collector. The data
collector collects and stores the data from the smart meter,

and also distributes the query from the control center to the

smart meters of each house. The control center generates

control policy based on the query answers returned from

the data collector. Our scheme introduces privacy modules

in both the smart meters and the concentrator as a blackbox

to provide privacy without modifying existing programs. We

further assume that the public key pairs are shared between the

smart meters and the control center. The smart meters utilize

the control center’s public key Kp for secure communication.

The control policy that we utilize in this work is appliance-
level peak-time load balance control, i.e., the policy is to

generate an appliance-level control to respond to a rapid

power consumption increase among neighborhoods during

peak time. In a NAN based smart grid system, the control

center balances the load in peak time by shutting down the

appliances temporarily (to allow time to start up a larger

generator) or continuously (in the case of limited resources),

where the appliances are not in use but connected to the circuit.

Hence, the corresponding meter reading analysis is a real-time

query Qt =< ID, t, q >, where ID is the query ID, t is the

query timestamp and q is the SQL-style query request, such

as ‘SELECT k appliances WHERE they are not in use but

connected to the circuit AND t = tp IN ORDER of power

consumption’, where tp is the peak-time timestamp.

For the above smart grid architecture and control policy,

without loss of generality, we assume that the NAN (with a star

topology) has N smart meters distributed in the neighborhood.

Each smart meter in a house samples the power consumption

of appliances with the sample rate rs. Also, each smart meter

has similar storage capacity and computation power. Each

concentrator and data collector are powerful and resourceful

enough to store data and process query requests. Also, the

controller has full access to the data collector.

B. Adversary Model and Design Goals

As recent works in [4]–[6], [9], [13], we consider a similar

adversary model as follows: (1) Honest-but-curious controller
where the controller follows the designated protocol speci-

fication honestly while it is curious to analyze data in the

data collector or the concentrator so as to learn additional

information besides those obtained for control policy gen-

eration. (2) Honest-but-curious user where the user acts in

an ‘honest’ fashion to answer the query for load scheduling,

but in a ‘curious’ fashion to obtain other users’ load profiles

by eavesdropping the communications or colluding with the

untrusted controller. (3) Malicious eavesdropper where the

eavesdropper tries to obtain the load profile on the smart grid.

To address the adversary models above, a privacy-preserving

and fine-grained data analysis scheme for the smart grid

is proposed. Our scheme achieves security and performance

guarantees as follows:
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• Provable Privacy: The untrusted controller does not learn

additional information of the residents’ load profiles

from data collector except for those for control policy.

Moreover, other components of the smart grid or the

channel eavesdropper are unable to learn the residents’

load.

• Accuracy Guarantee: The accuracy of the query results is

quantified and bounded. In other words, the performance

degradation, which is introduced by the data manipulation

to achieve privacy, is limited.

• Performance: The above goals for privacy and accuracy

guarantees should be power efficient with low response

time on the smart grid system.

V. SYSTEM FOR PEAK-TIME LOAD BALANCE

Our proposed scheme has three steps. First, when the

concentrator obtains the query request Qt from the control

center, the concentrator fuzzes the parameters of the query

request, and then distributes the new query request Q′
t to the

smart meters of each house. Second, the smart meter of each

house i answers the query Q′
t, and then encrypts the query

answer with the controller’s public key Kp. With the encrypted

query answers from each smart meter through a secure channel

such as TLS, the concentrator adds noise into the set of the

encrypted query answers, then returns k answers among them

by uniformly sampling. Finally, the controller decrypts the

query answers with its private key Ks. The challenge of the

scheme is to add the noise blindly in the concentrator while

guaranteeing the accuracy of the query answer. The details of

the scheme are as follows:

Query Initialization. A controller formulates a SQL-style

query Qt =< ID, t, q > for peak-time load balancing, where

ID is the query ID, t is the query timestamp and q is the

SQL-style query request, i.e., q = ‘SELECT k appliances

IN ORDER FROM history log WHERE p > PK and t ∈
[tpl, tph]

′. In query request q, p is the power consumption of an

appliance in idle mode, PK is the estimated threshold power

consumption to select the top-k appliances with the largest

consumption, and tpl and tph indicate the timestamp range of

peak times. Then the controller transmits the query to the data

collector, which forwards the query to the concentrator.

Query Transformation. Once the concentrator receives

the query request Qt from the controller. Its privacy mod-

ule transforms the parameters of the query request to add

noise, i.e., the transformed query Q′
t =< ID, t, q′ >, where

q′ =‘SELECT appliances FROM history log WHERE p > PK

and t ∈ [tpl − m, tph]’, where m is the noise added by

the concentrator, and m > rs ln(e+ε2kOPTe)
ε , where rs is the

sample rate of the data collector, k is the number of the

returned query answers, ε is the privacy budget and OPTe

is the estimated sum of top-k appliances power usage based

on historical information. Then, the transformed query request

Q′
t is forwarded to each of the smart meters in the NAN.

Query Response. After receiving the query request, each

smart meter of a house searches the history log based on the

Algorithm Keygen(l)
1. return (Kp,Ks)← RSA.Keygen(l)

Algorithm InitQuery(q)
1. Relax the original query q’s time range from [tpl, tph] to
[tpl −m, tph].
2. return q′

Algorithm ProctEnc(q′)
1. search the history log to obtain the answers QA of the query
q′, QA = {< ai, ti, pai >}
2. add the noise ni in the power consumption to generate a
fuzzy query answer QA′, i.e., pai + ni.
3. return RSA.Enc(Kp, QA′)

Algorithm InitAnswer(CQA)
1. add ci noise query answers based on the frequency fi of
each appliance appearing (i.e., HKp(i||ai))
2. uniformly sample k distinct items R from the set of the
query responses including the noise query answers.
3. return R

Algorithm Dec(R)
1. return RSA.Dec(Ks, R)

Fig. 3. The sequential scheme of algorithms.

query request. When the smart meter of house i obtains the set

of the query answers QA = {< ai, ti, pai
>}, where ai, pai

, ti
are the UID of the appliance, the power consumption and the

timestamp respectively, it adds noise then encrypts the set of

answers before sending them back to the concentrator. The

format of the data message sent from the smart meter, S, to

the concentrator, P , is as follows:

S → P : HKp
(i||ai)||EKp

(pai
+ ni)||EKp

(ti) (1)

where Ekp
is an asymmetric encryption scheme (such as

RSA), Hkp
is a hash function (such as SHA-2), and ni is

the power consumption noise, ni = LAP (Δfs
ε ), Δfs < 1.

Response Process. To guarantee the differential privacy,

the concentrator processes the query responses from the smart

meters of each house under the following two policies:

• adding ci noise query answers based on the frequency

fi of each appliance ai appearing, and ci = neεfi −
fi, where n is the size of query answers set, ci is the

number of noise query answers, ε is the privacy budget

for differential privacy and fi is the frequency of the

appliance ai appearing in the set of the query answers,

i.e., fi =
# of the pattern ‘HKp (i||ai)

′

n .

• uniformly sampling k distinct items from the set of the

query responses including the noise query answers.

Answer Response. The concentrator returns the k distinct

encrypted items to the controller through the data collector.

Then, the controller decrypts the message using its private key

Ks, and obtains the appliances under idle mode which have

the top-k largest power consumptions in peak time. Then, the

controller generates the peak-time load balance control policy,

which shuts down the appliances that are in idle mode.
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VI. SECURITY ANALYSIS AND PERFORMANCE

In this section, we present the syntax of our scheme, and

describe the provable privacy and the upper bound of the error

rate theoretically.

A. Syntax

Definition 3: A privacy-preserving and fine-grained pow-

er load data analysis mechanism for the appliance-

level peak-time load balance control consists of a tuple

(Keygen, InitQuery, ProctEnc, InitAnswer, Dec) as

follows:

• Key generation: (Kp,Ks) ← Keygen(l). Keygen runs

at the controller side, which generates the public-secret

key pair (Kp,Ks) for encryption.

• Initialize query: q′ ← InitQuery(q). InitQuery runs on

the concentrator side, which transforms the query request

q from the controller to a new query request q′.
• Response: CQA ← ProctEnc(q′). ProctEnc runs on the

smart meter of each house, which answers the query q′

then encrypts the query answers.

• Initialize answer: R← InitAnswer(CQA). InitAnswer

runs at the concentrator side to output k encrypted query

answers R.

• Decryption: M ← Dec(R). Dec runs at the controller

side to decrypt then obtain the query answer M .

The algorithms are shown in Figure 3.

B. Privacy Analysis

Theorem 1: (compositionality [14]) The sequential scheme

of randomized algorithms {Ai}, each giving {εi}-differential

privacy respectively, gives (
∑

i εi)-differential privacy.

Theorem 2: The scheme we proposed gives 3ε-differential

privacy.

Proof: In ProctEnc(), as the power consumption noise

ni is added as the Laplace noise, i.e., ni = LAP (Δfs
ε ), the

algorithm ProctEnc() is ε-differential privacy.

In InitAnswer() (a.k.a., IA()), considering fc(ai) < 1 ,

where fc(ai) is the chosen frequency of the appliance ai ,

hence the sensitivity of the chosen frequency Δfc(ai) < 1.

With the noises c(ai) = neεfc(ai) − fc(ai) added for the

appliance ai and uniformly sample, the sampled probability

of the appliance ai is eεfc(ai). For two data sets D1 and D2

differing on at most one row,

Pr(IA(D1))

Pr(IA(D2))
=

eε(fc(D1,ai)−fc(D2,ai))

e−ε(fc(D1,ai)−fc(D2,ai))
(2)

=
eεΔfc(ai)

e−εΔfc(ai)
(3)

= e2εΔfc(ai) ≤ e2ε (4)

∴ Pr(IA(D1)) ≤ e2εPr(IA(D2)) (5)

Hence, the algorithm InitAnswer() is 2ε-differential privacy.

By the use of Theorem 1, the scheme we proposed gives

3ε-differential privacy.

C. Accuracy Analysis

Definition 4: The error rate of the query results in our

appliance-level control scheme is defined as follows:

d =
OPT −∑k

i=1 p(ai)

OPT
(6)

where p(ai) is the power consumption of the appliance ai in

the top-k query results, and OPT is the real sum of top-k
appliances’ power usage.

Theorem 3: The scheme we proposed has the upper bound

of the error rate as
3 ln(e+ε2kOPT )

εOPT , where OPT is the real

sum of top-k appliances’ power usage.

Proof: Assume S2t : {ai : A(ai) > OPT − 2t}, where
A() is the sequential scheme we proposed.

∴ E[A(ai)] = (OPT − 2t)(1−A(S2t)) (7)

∵ A(S2t) ≤ A(S2t)

A(St)
≤ e−εt

μ(St)
(8)

∵ m >
rs ln(e+ ε2kOPTe)

ε
(9)

>
rs ln

OPT
tμ(St)

ε
(10)

∴ 1−A(S2t) � 1− e−εt

μ(St)
> 1− m

rsOPT
(11)

∴ E[A(ai)] ≥ OPT − 3m

rs
(12)

≥ OPT − 3 ln(e+ ε2kOPT )

ε
(13)

∴ d ≤ 3 ln(e+ ε2kOPT )

εOPT
(14)

Hence, the upper bound of the error rate in our scheme is
3 ln(e+ε2kOPT )

εOPT .

VII. EVALUATION

In this section, we present an evaluation of the accuracy

and efficiency of our scheme, based on a real-world dataset:

UMASS SMART* dataset [15], which included the power

usage of about 30 appliances, and the average sample rate

of appliance usage is 30 seconds/appliance per house. The

simulation is implemented in Python on a PC which had two

3.10 GHz Intel Core i5-2400 processors running the Linux

3.5 kernel. We used pycrypto (a.k.a., Python Cryptography

Toolkit) to implement the RSA-OAEP and SHA-2 as instances

of the public-key encryption and hash function, respectively.

The performance of the scheme is evaluated regarding the

tradeoff between the privacy and the accuracy as well as the

response delay of the scheme. In particular, we answer the

following questions:

• (Accuracy) What is the accuracy of the query results of

the scheme under different privacy budgets? And how do

the error rates under different privacy budgets compare

with the theoretical upper bound?

• (Delay) How does the response time increase when our

scheme is used? That is, how much overhead is incurred

by the use of the privacy modules on the concentrator

and the smart meter in the smart grid?
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A. Accuracy Analysis

To evaluate the accuracy of the scheme, we measure the

error rate of our scheme compared with the upper bound

we proved theoretically. Figure 4 shows the error rate of the

scheme with different privacy budgets ε. Both the theoretical

upper bound of the error rate and the error rate in the

experiment are presented. Overall, the error rate of the scheme

decreases as the number of query results k increases. With

the larger privacy budget ε, i.e., ε = 0.1, both the upper

bound of the error rate and the experimental error rate are

smaller than those with smaller privacy budget, i.e., ε = 0.01.

Compared to the upper bound of the error rate under the same

privacy budget, the experimental error rate is much lower than

the theoretical one. Moreover, when the privacy budget is

small, the difference between the upper bound of the error

rate and the experimental error rate becomes larger. Overall,

the theoretical upper bound of the error rate ranges from 15%

- 40% given the stated privacy budgets. However, the observed

error rates based on the experiments are less than 14% when

ε = 0.01 and less than 7% when ε = 0.1.
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Fig. 4. The error rate of our scheme with different privacy budgets.

B. Delay Analysis

To evaluate the Delay of our scheme, we measured the

response time of our scheme under the real-world dataset

compared with the original scheme without any security and

privacy protection. Figure 5 presents the response time of our

scheme with different privacy budgets (i.e., ε = 0.1 and 0.01).

To indicate the performance degradation, the response time

of our scheme is compared with that without any security

mechanism. As the number of query results k increases, the

response time of the scheme increases. Also, the smaller

privacy budget introduces a larger performance degradation,

i.e., when the privacy budget ε = 0.01, the response time

becomes larger than that with a smaller privacy budget. In our

privacy-preserving scheme with privacy budget ε = 0.1, the

increase in the response time is below 0.4s, which is about

105% of that without any security mechanism.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we present a privacy-preserving fine-grained

power usage data analysis mechanism for appliance-level

peak-time load balance control in a NAN based smart grid. Our

scheme provides provable privacy and accuracy guarantees.
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Fig. 5. The response time with different privacy budgets.

The scheme we proposed is based on distributed differential

privacy to protect residents from the NILM attack. Through

the evaluation based on a real-world dataset, we showed that

our scheme provided privacy and accuracy guarantees while

achieving good performance. In our future work, we will

consider additional metrics for peak-time load balance control,

such as the fairness of the appliances being chosen to shut off

and the total power usage of the household. Also, we will

implement a prototype of the scheme in a testbed to evaluate

its performance.
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