Invisible Trojan: An Architecture, Implementation
and Detection Method

Raheem A. Beyah, *Michael C. Holloway, and John A. Copeland

Communications Systems Center *College of Computing
Georgia Institute Of Technology Georgia Institute Of Technology
Atlanta, Georgia 30339 Atlanta, Georgia 30339

ABSTRACT - In this paper we give an overview of different system-security tools, including
several types of intrusion detection systems (IDSs) and host based detection tools. We also
discuss, in detail, port scanning and the primary algorithm used in current port-scanning
devices. In addition, we discuss the limitations in the current algorithms used in port-
scanning devices and exploit these limitations by implementing an Invisible Trojan that can
elude today’s port scanners. Finally, we discuss defenses against this type of Trojan. This
includes: a proposed method that port-scanning devices can implement, as well as general
system-security recommendations.

I. Introduction

Three major components of “good” security systems are IDSs, host-based detection tools and
some sort of port-scanning device. Each component has its strengths and weaknesses, but used
collectively they can provide a “reasonably secure network”.

Security tools vary in complexity from simple open-source programs, like nmap, to multi-
computer client-server commercial security solutions, like ISS RealSecure. The level of
investment, in terms of both dollars and training, generally increase with the system’s complexity.
Though port scanners exist in a sea of many more sophisticated security tools, their importance in
system administrators’ security arsenals remains high. They provide a good first look into a
system for possible problems.

Port scanners are often the first line of defense (or detection) against break-ins. What happens
when a port scanner cannot be trusted? We respond to such a query with detailed discussion of
port scanning methods and address specific weaknesses. We will illustrate that a Trojan can be
created to listen on a “backdoor” port without revealing itself to any port-scanning devices
currently available.

II. Intrusion Detection Systems

The main purpose of IDSs is to detect attacks against computer systems and networks.
Specifically, IDSs look for malicious attempts in users’ abuses of privileges or the improper
exploitation of security flaws. A block diagram of a basic knowledge-based IDS is shown in
Figure 1.

The IDS receives audit information from the system it is protecting. Several other types of data
are also used in a system with this particular architecture. These inputs include: a database full of
currently known attacks, the current configuration of the system and audit information that
describes the events as they are happening to the system. Once the detector has access to all the
required data, it then must decide which information is important and evaluate the likelihood that
normal user actions can be considered symptoms of intrusions (to reduce false positives) [1].

The most widely used IDSs are signature-based. Signature-based IDSs assemble the packets in a
TCP connection to create a byte stream [2]. This byte steam is examined closely to determine if

certain string patterns (signatures) in the data exist. These signatures are text strings that have
been discovered from known past attacks. The signature database must constantly be updated
with newly discovered attack strings to remain a viable resource. However, the more signatures
the IDS has, the longer it will take to perform pattern matching. This can greatly inhibit network
performance and degrade the effectiveness of the IDS. In addition to the afore-mentioned
drawback, this type of IDS cannot detect new attacks that are not resident in its signature
database.

S —
DATABASE

S
CONFIGURATION

)

¥The arrow thickness represents the amount of information flowing from one componeat to the other

Figure 1. Block diagram of basic intrusion detection system [3]

Anomaly-based IDSs overcome the drawbacks of signature-based IDSs. It identifies unusual
activity associated with attacks as opposed to pattern matching, using known attack strings. One
method used to determine abnormal activity is data flow analysis [4]. Flows represent all the
packets exchanged between the hosts with a “single” service. Certain statistical data is updated in
the Flow data record. This included number of bytes, packets, etc. The Flow is examined to
determine if it has characteristics of a possible attack. When the Flow ends, the statistical data is
examined and recorded. One Flow alone may not be sufficient to detect an attack, so the
recorded statistical data is correlated with other events to potentially discover an attack. By
collecting data on the complete transaction better decisions can be made (less false positives).
Thus, it is able determine the normal and anomalous behavior of a system. This system is not
without flaws. Although it can catch new attacks, it would fail to recognize specific attacks that
can only be detected by signature matching [2] [5].

Other types of IDSs deserving mention here include petri nets (graphical representation of
signatures), state transition analysis (based on attack descriptions as a set of goals and transitions)
and soft computing based [1].

III. Port Scanning

The general concept of scanning has been around for decades. The basic idea is to probe as many
listeners as possible and keep track of the ones who are receptive. This concept is very similar to
the “to current resident” brute-force style of bulk mail that the postal service delivers - put a letter
in each mailbox and wait for the responses to trickle back. This method is readily applicable to
computers and computer networks. Scanning computer ports as a method of discovering
potentially exploitable communication channels is called port scanning.

Port scanning is a technique to determine what ports of a particular host are listening for
connections. Open ports represent potential communication channels. Port scanning can be used
to assist in securing unknowingly vulnerable machines or by hackers to locate potential
vulnerabilities.

Over time, several different techniques have been constructed to see what ports on a machine,
using what protocols, are open and listening for a connection. Two commonly used techniques
for determining if a TCP port is listening are TCP connect() scanning and TCP SYN scanning.
TCP connect() scanning is said to be the most basic form of TCP scanning. The connect() system
call is aimed at each questionable port. If the port is open and listening, the command will
succeed. Otherwise, it will fail because the port is not reachable.

Another approach is the TCP SYN scanning technique. It is often referred to as “half-open”
scanning because one does not open a full TCP connection. This technique is slightly more
involved than TCP connect() scanning. Here, the probing host sends a SYN packet, as if it were
initiating a real connection. If a SYN/ACK is received, the port is listening and you can tear it
down by sending a RST. If a RST is received, the port is not listening. For a more exhaustive list
and detailed description on TCP port-scanning techniques see [6].

Above we discussed several TCP port scanning techniques. UDP scanning also comes in several
variations. UDP write() scanning is a popular method of UDP scanning. With this technique the
write() function is called for desired ports. The kernel will acknowledge the error if the port is
closed. If the write() function is called a second time to the desired port, the user is usually
notified that the call failed.

Another form of UDP port scanning is UDP ICMP port unreachable scanning. In this paper we
exploit this method. The target machine is sent UDP packets to suspected ports. If the port is
open, no response is received at the polling host. If the port is closed, the target host responds
with an ICMP port unreachable packet. There are potential problems with this method. Neither
UDP packets, nor the ICMP errors are guaranteed to arrive. This problem is exacerbated if the
target is flooded with more packets than it can handle and packets discarded. If packets destined
for closed ports are dropped, the port scanner will not get a response from the port, which will
falsely indicate that the port is open. For this reason, UDP scanners of this sort must also
implement retransmission of packets that appear to be lost.

IV. Limitations of Port Scanners

Port scanners that use the UDP ICMP port unreachable technique have an obvious weakness that
can be exploited by hackers. These scanners rely on an ICMP response or on a lack thereof from
the noted ports on the target machine to determine whether the port is listening. The format of
this packet is given in Figure 2.

Ethernet IP header ICMP | IP header of datagram UDP
header header that generated error header
14 bytes 20 bytes 8 bytes 20 bytes 8 bytes

Figure 2. ICMP Response [7]

The weakness of this method is that this packet can be constructed by anyone. There is no
authentication performed on the ICMP response packet. To construct the packet, we first
consider the ICMP packet header (Figure 3).

I} T8 15 16 d
[gbitbype | abitcode | 16-bit checksum

(contents depend on bype and code) =

Figure 3. ICMP packet header [7]

Specifically, the 8-bit type field should have the value 3, and the 8-bit code should contain the
value 3. This labels the packet as a port-unreachable, destination-unreachable packet. The 16-bit
checksum is calculated using the exact same algorithm used to calculate the IP checksum and is
easily accessible [7].

The next field of concern is the payload of the ICMP packet. The first 20 bytes of the payload is
the IP header of the datagram from the port scanner that generated the error. The general format
of the IP header is given in Figure 4.

IP Header
0 15 16 31
i bt r‘\‘;&"e’ il WFT"(;’Sf)S“"‘CG 16-bit total length (in bytes)
16-bit identification z:;;; 13-bit fragment offset
et t(i;}i;o B 8-bit protocol 16-bit header checksum 20 bytes
32-bit source IP address
32-bit destination IP address
/ options (if any) /

f f

Figure 4. IP packet header [7]

The only fields that are obtainable from a regular user are the source and destination IP addresses.
The rest are consumed by the kernel. This causes a problem based on the need for the entire 20-
byte header for the payload of the ICMP packet. Otherwise, the port scanner will discard the
packet. Root privileges are necessary to access the remainder of the header. The final 8 bytes of
the packet is a portion of the IP payload that generated the error, the UDP header (Figure 5).

o 15 16 3
1 6-bit source port 1 E-bit destiration port g

16-bit LIDP length 16-Ei UDP checksurm Eytes

£|7 data (T any) ‘|7

Figure 5. UDP packet header [7]

Similarly, the only data available from the UDP header to a regular user is the source and
destination ports. Root privileges are again needed to obtain the remainder of the packet. Once
the appropriate information is captured from the polling packet, the ICMP packet can be properly
constructed and transmitted to the port-scanning device. The port that is open will be reported as
closed by the port-scanning device.

V. Invisible Trojan Design

A. Scope

An Invisible Trojan is simply a process that can lay dormant and undetected in “stealth mode”.
This intelligent process evades port scanners, but can be awakened on command by the client
process. This is done by examining packets destined to the port and selectively responding. The
focus of this paper is not the method of delivery of the Trojan but rather the ability, once
delivered, to be completely undetected from external system probing (i.e. port scanners). The
delivery issue has been exhaustively examined. Nor is this paper’s focus how root privileges are
obtained. The familiar concept of “root kits” or buffer overflow techniques to obtain a root shell
[8], or other familiar techniques may be used. Thus, the Trojan is assumed to be installed in
conjunction with a “root kit” and the delivery method and root access will not be discussed
further. Also, we do not seek to address host-based tools (netstat, etc.) that can by evaded by
established techniques, like modifying log files [8] once root privileges are acquired.

B. Architecture Description
The architecture is given below (Figure 6). Hosts A and B are running Red Hat Linux 7.1. Host
C is running Windows NT 4.0. To verify the integrity of our proposed technique, two different
port scanners are used. The widely known port scanner nmap was installed on Host A. Internet
Scanner from ISS was installed on Host C. To observe the traffic on the network, Ethereal [9]
(network sniffer) was loaded on Host B. Host B was also considered the target host, and thus, the
Trojan server process was installed there.

e

Hos

Figure 6. Architecture

The software needed to implement the Invisible Trojan is broken into two separate programs - a
client and server. The client generates command-UDP packets. The server program contains a
kernel-level filter that intercepts packets destined for the port where the Trojan is listening. The
second function of the server program is to examine filtered packets to determine if the packets
come from its master, the client program, or from another source, possibly a port scanner. If the
UDP packet is deemed “familiar” (i.e. the payload of the UDP packet contains the “magic”
string), we know the remote program is our Trojan client, so we communicate with the Trojan. In

our example, we simply send a reply of “WHO’S THERE” to the client program. If the packet is
deemed “unfamiliar”, an ICMP port unreachable message is returned.

VI. Invisible Trojan Implementation

A. Software Details
Having an overview of the architecture, it is now appropriate to consider the details of
implementation. The client program is fairly trivial and can be implemented in several different
ways. We choose to open a datagram socket on the client machine. The code populates the UDP
payload with random garbage as well as the “magic” string and generates the UDP wake-up
packet when invoked.

The server program opens a UDP datagram socket (SOCK_DGRAM) and listens on port 5000 for
incoming UDP packets. The idea is to capture packets destined for port 5000. The problem that
arises with this approach is the need to selectively send a message back to the client machine or
ICMP port unreachable packet to all others. To properly construct the port unreachable packet,
access to the entire incoming UDP packet is needed. This allows retransmittal of the IP and UDP
headers of this packet in the payload of the newly constructed ICMP port unreachable packet.
When listening using a datagram socket, the kernel strips the header information from incoming
packets and only passes up the payload and a small portion of the header (the source and
destination ports and addresses).

To overcome shortcomings of using the datagram socket, we attempted to open a raw socket
(SOCK_RAW). The problem with this approach is that only IP datagrams with a protocol field
that the kernel does not understand are passed to a raw socket [10]. This is obviously not the case
with probing UDP packets. Consequently, to read the entire IP datagram containing UDP or TCP
packets, the packets must be captured at the datalink layer [10].

B. Accessing the Datalink Layer

There are several different methods for providing access to the datalink layer. Some include the
Data Link Provider Interface (DLPI), the SOCK _PACKET method in Linux, using libcap and
BPF:BSD Packet Filter method. These methods are discussed in detail in [10]. We choose the
BPF:BSD Packet Filter technique. BPF is a kernel-level filter, which limits the amount of data
copied to the application. Using this method, each datalink driver calls BPF right before a packet
is transmitted and right after a packet is received. The packets are passed to the BPF engine and
then to the filter. The remaining filtered packets are passed to the buffer, and finally to the
application. The BPF filter program can be written as either ASCII strings (i.e. tcp and port and
tep[13:1] & 0x7 — [10]) or in a virtual machine language. The virtual machine-language code we
implemented to filter packets to port 5000 is shown below (Figure 7).

struct sock_filter BPF_code[]= {

{ 0x28, 0, 0, 0x0000000c },

{ 0x15, 0, 8, 0x00000800 },

{ 0x30, 0, 0, 0x00000017 },

{ 0x15, 0, 6, 0x00000011 },

{ 0x28, 0, 0, 0x00000014 },

{ 0x45, 4, 0, 0x00001ftf },

{ 0xbl, 0, 0, 0x0000000e },

{ 0x48, 0, 0, 0x00000010 },

{ 0x15, 0, 1, LISTEN_PORT },

{ 0x6, 0, 0, 0x0000ffft },

{ 0x6, 0, 0, 0x00000000 },

I8

Figure 7. BPF filter virtual machine-language
code used to filter on port 5000

C. The “Magic” String

At this point, the only visible packets (to our Trojan server) are the packets with destination port
5000. Each packet is closely examined to see if the “magic” string of “KNOCK KNOCK” is
present. If the packet has this value in the 21% — 31* byte in the payload (the first 20 bytes are
superfluous and ignored and modified at each transmission) a message of “WHO’S THERE” is
sent back to the client program. If the “magic” string is not present, we construct the appropriate
ICMP port unreachable packet and respond accordingly. This is accomplished by opening a UDP
raw socket and byte-wise constructing the ICMP packet.

When attempting to communicate with the Trojan we use the client program. It opens a UDP
datagram socket and transmits a UDP packet with the “magic” string in the payload to the target
host. It then opens another socket to listen on, where it perpetually listens for a response from the
Trojan.

D. Illustration of Stealth Trojan

First, we start the server process without “stealth mode” to see if the port scanners detect the
listening ports correctly. We start nmap first, and it sends several UDP probes to each port and
awaits responses. After the nmap scan has completed, we start the scan with Internet Scanner,
which takes the same approach, send several UDP packets and wait for a response. The packets
sent by Internet Scanner are shown below (Figure 8) in the Ethereal traffic capture. The basic
packet structure for both scanners is the same, a standard UDP datagram. However, Internet
Scanner appends 20 bytes of data in the payload. This is the string “UDP Scan by ISS (11)”.
Since no ICMP destination unreachable packet is returned for port 5000 (Figure 8), both nmap
(Figure 9) and Internet Scanner (Figure 10) show port 5000 as open.

<capture> - Ethere:

File Edit Capture Display Tools Help
Mo | Time Source Destination]F'rotocol 1Im’0 A
356 224.830000 132.163.1.203 132.168.1.204 uop Source port: 1119 Destination port: 4336

357 224,830000 132,168,1,203 1592,168,1,204 Lnp Source port; 1119 Destination port; 4337

3h8 224820000 182,168,1,202 182,168,1,204 Lnp Source portt 1119 Destination port: 4392

3h9 224 8320000 182,168.1,203 182,168.1,204 Unp Source Dlestination port: 49399

Tl ol

361 224,830000 152,168,1,203 192,168,1,204 Lnp Source port; 1113 Destination port: 5001
367 229,830000 192,168,1,203 182,168,1,204 Lnp Source porty 1119 Destination port: 4996
368 229,830000 192,168.1.204 1582,168,1, 203 ICHP Destination unreachable
369 229,830000 192,168,.1,203 192,168,1, 204 unp Source port: 1119 Destination port; 4397
370 229,830000 192,168,1,204 1582,168,1,203 ICHP Destination unreachable
371 229,830000 192,168,1,203 182,168,1,204 Unp Source porty 1119 Destination port: 4992
372 229.830000 132.163.1.204 132.168.1.203 ICHP Destination unreachable |
373 229,830000 152,168,1,203 192,168.1,204 Unp Source port; 1113 Destination port: 4333 _J
374 229,830000 192,168,1,204 182,168,1,202 ICHP Destination unreachable
370 229,830000 192,168,1,203 182,168.1,204 np Source port: 1119 Destination port: GO0
TFE P99 LFINAN_ 197 AR 1 N 197 168 1 204 e Cenwra nart s 1118 Tastination naske GO0 /£
= I o
zah
Frame 360 (62 on wire, 62 captured)
thernet 11
Internet Protocol
User Datagram Protocol
Data (20 bytes)
D000 00 CO SF 04 54 Fa 00 c0 9F 04 Ba aa 0B 00 45 00 LA..T0.A L. J2..E, &
010 00 30 Be 0e 00 00 80 11 47 o7 o0 a8 0L cb o0 a8 ,On.,... GCA"LEA
020 01 cc 04 5f 13 83 00 1c 79 60 55 44 50 20 53 63 ,i,_.... 4 UDP Sc
0030 Bl Be 20 B2 79 20 49 53 53 20 28 31 21 29 an by IS 5 (11)
7

Finer.]jip.addr == 192.168.1.203
:

_d Reset“FiIe:<capture> Drops: 0

Figure 8. UDP polling packets from port scanner

File Sessions Settings Help

[root@localhost ipwd]l# nmap -sU localhost

Ftarting nmap ¥, 2,3BETA10 by Fyodor {(fuyodorBdhp.com. www,insecure,orgnnapd)
[nteresting ports on localhost, locsldomain (127 ,0,0,10:

Fort State Protocol Serwvice
111 open udp EUNTRC
[Faa open udp unknown
FO00 open udlp comnmp lex-nain
map run completed -- 1 IF address {1 host up? scanned in 4 seconds

[root@localhost ipwd]l#

D, B

Figure 9. nmap’s open port list — “stealth mode” off

EISS Intemnet Scanner - [Session8[17]] H=] B3
== x|

gfi\e Edit “iew Policy Scan Beports Took ‘Window Help

0

[FaN-=21 = PR = TR
W _-H_ost | Port # I Service Mame I Protocol I
) 1921667.204 [Unresalve | | 2 1921681.204
N % 5000 commplex-main upr

= Properties] E Status] '@Vulnerabi\iiies

#p serices

Scanning 1 Hasts]...
Scanning Host: 192.168.1.204
Finithed Scanning Host 1921681204 [1 Scanned, 0 Remaining)

Finizhed scanning [Elapzed Time = 0:03:38)

A F ¥ Fond0] A SessionS[11] A Session8[12] A SessionS[13] A SessionS[14] A Sessiong[15] } SessionS[16] A Sessiong17] }@

[udp4530_5000

lisskey

11 Hostis) [G

Figure 10. Internet Scanner’s open port list — “stealth mode” off

Next, we place the Trojan in stealth mode and begin the same process. As expected, both nmap
(Figure 12) and Internet Scanner (Figure 13) were unable to detect the Invisible Trojan. This was
accomplished by constructing the appropriate ICMP response packet using the above-mentioned

method. The packet is shown captured in Ethereal (Figure 11).

<capture= - Ethel

File Edit Capture Display Tools Help

No.]Time iSource Destination]Protocol 1Im’0 A
0 173, 0000 T2, TR, T, 20 192, TeE, 1,204 TP Source port: 1114 Destination port: 4999

331 173.540000 152.165.1.204 1592.168.1.203 ICHP Testination unreachable

352 173,540000 192,168,1,203 192,168.1,204 unp Source port: 1114 Destination port: 43396

333 173,540000 192,168,1,203 1582,168,1,204 unp Source port: 1114 Destination port: 4997

334 173,540000 192,168,1,203 182,168,1,204 unp Source port: 1114 Destination port: 4998

335 173,540000 192,168,1,203 182,168.1,204 unp Source port: 1114 Destination port: 4999

336 173.540000 132,163.1.203 1592.168.1.204 uop Source port: 1114 Destination port: G000

Lo

0

3

1.

UDP Source porty 1114 Destination port; 5001
bl

341 178,540000 182,168,1,202 182,168,1,204 unp Source porty 1114 Destination port: 4996

342 178,540000 192,168.1,204 1592,168.1,202 ICHP Destination unreachable
243 178,540000 192,168,1,203 192,168,1.204 unp Source port: 1114 Destination port: 49397
344 178,540000 192,168,1,204 1592,168,1,203 ICHP Destination unreachable
345 178,540000 132,168,1,203 1592,168,1,204 Lop Source porty 1114 Destination port; 4338
346 178,540000 192,168,1,204 182,168,1,202 ICHP Destination unreachable
347 178540000 192,168,1,203 182,168.1,204 {3 Source port: 1114 Destination port: 4999
| | -

Frame 338 (70 on wire. 70 captured)

Ethernet II

Internet Protocol

Bl Internet Control Message Protocol
Type: 2 (Destination unreachable)
Code: 3 (Port unreachable)

| I g |

0000 00 cO 9F 04 Ba aa 00 o0 9F 04 54 fa 05 00 45 00 L4,.j2,4 ,.T0..E,
0010 00 38 40 48 00 00 FF 01 6 94 o0 a8 01 cc c0 a8 LBEH, .4, 6,47, 147
0020 01 cb 03 03 Bb 33 00 00 00 00 45 00 00 30 ca 0d LE,.k,,, ..E..0E.
0030 00 00 80 11 eb o7 c0 a8 01l cb o0 a8 01 oo 04 Ba L., 808" LEA",1.Z
040 13 83 00 1o 79 65 +eaeldE

Filer:| [ip-addr == 1921651 203 7] Resef[File: <capture> Drops: 0
.

[T

Figure 11. Maliciously constructed ICMP response

[T~ root@localhost.localdomain: Jusrisrclinux—2.Ametipvd - Terminal

File Sessions Settings Help

[rootElocalhost ipwd]# nmap -=sU localhost =

Ftarting nmap ¥, 2,3BETA10 by Fyodor {(fuyodorBdhp.com. www,insecure,orgnnapd)
Interesting ports on localhost.localdomain (127 ,0,0,102

Fort State Protocol Serwice
111 open Ldp SUNTRC
st open Udlp unknown
map run completed -- 1 IP address (1 host up) scanned in 5 seconds

[rootElocalhiost ipwd]# B

D, B

Figure 12. nmap’s open port list — “stealth mode” on

[i% 1SS Internet Scanner - [Session8[17]] |_ (O] x]

g File Edt “iew Policy Scan Reports Toolz Window Help =181
% e [

D@ d| > ~daalwe S

Host

= 192.168.1.204

| Port # I Service Name I Protocal I

=

':-J Huosts to be scanned
| 192.168.1.204 [[Unresolve

[——
NERCELEE)

Scanning 1 Host(z]..

Scanning Host: 192.168.1.204

Finished Scanning Host 192.168.1.204 [1 Scanned, 0 Remaining)
Firished scanning [Elapsed Time = 0:03:38).

= praperties | & Status | @ vulnerabilities

4 servcos

AT 5 [F Fsion3[3] A SessionS[10] A SessionS[11] A Session812] } Session8[13]) SessionB[14] A Session8[15] A Sessiord[1E])Ls_f
|udp4330_5000 11 Hasts] [4

iss.key

Figure 13. Internet Scanner’s open port list — “stealth mode” on

Above, we saw the Trojan can effectively hide from port scanning devices when placed in
“stealth mode”. Now, we illustrate how the Trojan can be “awakened” selectively by the client
process. We send a packet with the “magic” string contained in the payload. This packet is seen
captured using Ethereal in Figure 14.

K ' <capture> - Ethereal
File Edit Capture Display Toals Help
No|Time [source Destination | Pratocar [inro -
1 0.000000 00:0bidci04: 73144 OL:B0:c2:00:00:00 STP Conf. Root = 327EE/00:00:dci04:70:00 Cost = 0 Por
2 2.030000 5 O0L:B0:c2:00:00:00 sTP Conf. Root = 32768/00:05:dc:04:70:00 Cost = 0 Por
3 4,0B0000 01 100300 5TP Conf, Root = 32768/00:105:dci04:70:00 Cost = 0 Por
4 4,730000 3 01: coico LLC U, func = UIr SNAF, OUI 0x00000C {Cisco), PID 0x20C
5 4,730000 00:05:de04:73:44 01:0030c ccicoice LLC U, func = UIr SNAF, OUI 0x00000C {Cisca), PID Ox20C
B 6.090000 00:053dei04:73:44 013801c2:00:00100 sTP Conf, Root = 3276B/00:05:dci04:70:00 Cost = 0 Por
T 7910000 Quanta_04:761F2 FRIFFLFFLFFLffIff ARP Who has 192,168,1,2047 Tell 192,168,1,202
8 7.920000 Quanta_04:54:fa Uuanta_04:761F2 ARP 192,168.1.204 is at 00:cO:9f:04:04:fa
E]]
10 7.,920000 192,168, 192,168,1,202 unP Source port: 5000 Jlestination port: 32763
11 8,110000 000G 01:801c2:00:00100 STP Conf, Root = 32768/00:05:dci04:70:00 Cost = 0 Por
12 10,140000 00:05:de04:73:44 01:803c2:00:00700 STP Conf, Root = 3276B/00:05:dcy04:70:00 Cost = O Por
13 12,170000 00:05idei04:73344 013801c2:00:00100 sTP Conf, Root = 3276E/00:05:dci04:70:00 Cost = 0 Por |
14 12,320000 Ouanta_04:541fa Quanta_D43761F2 ARP Who has 192,168,1,2027 Tell 192,168,1.204
15 12.920000 Quanta_04:7E:F2 luanta_04:h4:fa ARP 192,168.1.202 is at 00:cO:9f:04:7ELF2
AR 14 200000 (NG +dr«Nd+ 7T+ 44 1 AN+ =D N0 10 STR Canf Bant = T07RAMNAGA~+Nd+ N+ Cast = 01 Par |f
| I =
I
Frame 9 (72 on wire. 72 captured)
Ethernet. 11
Internet Protocol
Uzer Datagram Protocol
Data (30 bytes)
000 00 cO 9F 04 54 Fa 00 cO 9 04 7B F2 05 00 45 00 A&, Ta.A v, E, A
010 00 3a 00 00 40 00 40 11 b5 cc o0 a8 01 ca o0 a8 ,3,.R.B, WIATLEAT
0020 01 cc 80 01 13 88 00 26 75 le 67 o6 B9 73 51 ff ,I,.... & u.ghi=0h
0030 d4a ec 29 od ba sb f2 Fb o3 46 7o c2 54 8 4b de Ji)i%«ad &F1AToKN
0040 4f 43 4b 4b 42 4f 43 4b OCKEMOCE /
Filter:|| j Reset|| File: <capture= Drops: 0
T I

Figure 14. “KNOCK KNOCK?” message from client to Trojan server on host

The packet is filtered appropriately by our BSD filter and examined to see if the “magic” string of
“KNOCK KNOCK” is present in the 21% —32™ byte of the UDP payload. If present we send back

a string to the client of “WHO’S THERE” to let the client program know that the Trojan is in
place and still undetected. This return packet is seen below in Figure 15.

K — <capture> - Ethereal i (=]l [x]
File Edit Capture Display Tools Help
Mo |T|me Source Destination Protocal | Info =
1 0,000000 00:05:dci04:73:44 01:80:c2:00:00:00 STP Conf, Root = 32768/00:05:dci04:70:00 Cost = 0 Por
2 2,030000 00:05:dci04:735:44 0180320020000 5TP Conf, Root = 32768/00:05:dci04:70:00 Cost = 0 Por
2 4,080000 007051dcrod:7Er44 01180727 00700700 5TP Conf, Root = 32768/00;067dcy04:70:00 Cost = O Por
4 4. 720000 007051dcr04:73:44 oliodzdcrcorocioe LLC U, func = UIr SNAP, OUT 0x00000C (Cisca), PID 0x200C
5 4. 720000 007051dcr0d:73:44 oliodzdcrcorocioe LLC U, func = UIr SNAP, OUT 0x00000C (Cisca), PID 0x200C
E E.0890000 007051dcrod:73:44 01180727 00700700 5TP Conf, Root = 32768/00;067dcy04:70:00 Cost = O Por
77910000 Quanta_04:7E:f2 FROFFIFFLFFLFFIFF ARF Wlho has 192.168.1.2047 Tell 192.168.1.202
8 7.920000 (Quanta_04:D4:fa Quanta_04:76:F2 ARF 192.168.1.204 iz at 00:cO:3F:04:541Fa
3 7 192.168.1.204 (U inati £.r G000
10) 9; 1
=0 Por
12 10,140000 00:05:dc:04:73:44 01:80:c2:00:00:00 STP Conf, Root = 32768/00:05:dci04:70:00 Cost = 0 Por
13 12,170000 00:05:dc:04:73:44 01:80:c2:00:00:00 STP Conf, Root = 32768/00:05:dci04:70:00 Cost = 0 Por L
14 12,920000 Ouanta_04:54:1fa Quanta_04:76:F2 AR Who has 192,168,1,2027 Tell 192,168,1,204
15 12,920000 Ouanta_04:76:F2 Quanta_0d:543fa AR 192,168,1,202 iz at 00:cO:9F:043761F2
1R A4 200000 A =0F=drefids 72+ dd 111+ 81D (it 1101 oTR Femf Ront = RI7ROANAGrdrefid- 70200 Fost = 0 Pre
= | =
ot

F Frame 10 (60 on wire, 60 captured)
Ethernet 11
[Internet Protocal
[User Datagram Protocal
Data (13 butes)

0000 00 cO 9F 04 TE F2 00 o0 9F 04 B4 fa 02 00 45 00 LA, .wa,A L, To,LE,
0010 00 23 00 00 40 00 40 11 bS dd cf a8 01 co ol a8 L)LLELE. prdtLIAT
0020 01 ca 13 88 80 01 00 15 Oe ea 57 48 4F 27 63 20 L,E,,...,. .EBWHO'S
0020 B4 43 45 G2 45 ZF 00 00 00 00 00 00 THERE?..

Fnter.‘ | J M| File: <captures= Drops: 0
Figure 15. “WHO’S THERE” response from Trojan

VII. Protecting Against Trojan

A. Processing Time Anomaly
The Trojan that we have discussed can cause an immeasurable amount of damage depending on
its specific implementation. We have determined a method to identify if this sort of Invisible
Trojan exists on a system. This method has been proven for a very lightly loaded network, but
requires further research. Also, the case of a congested network is due consideration.

The first arrow (packet #321) identifies a UDP polling packet (to a closed port) from the port
scanner. The second arrow (packet #326) shows the ICMP response packet that was constructed
by the kernel. This illustrates the appropriate maximum delay (approx. 150ms without our
current network topology) between the polling device sending the UDP message and the target
responding with ICMP port unreachable. If the kernel receives the message, it will immediately
send a response. This is a result of very little processing latency due to the packet being quickly
consumed by the kernel. The highlighted packet pair (packet no. 314 and 316) in Figure 15
identifies the UDP polling packet and the ICMP response packet constructed by the Trojan. The
delay (approx. 300ms) is on average, at minimum twice as much as the former case.

This delay is incurred for two reasons. First, the Trojan is a user process. Therefore, the kernel
accepts and then passes the packet to the Trojan. The more variable delay occurs when the
Trojan scans the packet for the “magic” string. The latter delay can increase depending on the
processing complexity of the Trojan. Therefore, on average there will be at least one packet or a
noticeable delay between the UDP polling packet and the maliciously constructed ICMP
response. After careful analysis, the Invisible Trojan can quickly be identified and removed.

(r:aplule) - Ethereal H[=] E3
File Edit Capture Display Tools Help
N | Time Source Destination Protocal |Info &
315 174.155302 DELL203 152,168.1.204 uoP sSource port: 1290 pestination port: 5001
316 174.196253 192.168.1.204 DELLZ03 ICMP Destination unreachahle
317 174.486464 00:05:0dc:04:73:48 0L:80:¢C2:00:00:00 STP conf. RoOT = 32768/00:05:dc:04:70:00 CosT
318 176.403814 192.168.7.11 192.168.255.255 BROWSER Domain/workgroup Announcement T, NT worksta
310 176.517277 00:05:dc:04:73:48 01:80:¢2:00:00:00 STP conf. Root = 32768/00:05:dc:04:70:00 Cost
320 178.548235 00:05:dc:04:73:48 01:80:¢2:00:00:00 STP conf. Root = 32768/00:05:dc:04:70:00 Cost
321 179.193382 DELL203 192.168.1.204 upP Source port: 1290 Destination port: 4998
322 179.1%3418 DELL203 162,168.1.204 upP source port: 1290 Destination port: 4997
323 179.193420 DELL203 192.168.1.204 uop Source port: 1290 Destination port: 4998 -
324 179.1%3465 DELL203 162,168.1.204 upP source port: 1290 Destination port: 4999
32 DELLZ03 15 04 i 5 & port 30 Destination port: 5001
326 179.193541 1592.168.1.204 DELL203 IcMp pestination unreachahle
277 1F0OIGREAG 16T TARR T 04 nCl 1272 Trho nastinatina umrazchakla /

H | -
B Frame 325 (61 on wire, 61 captured) =
Ethernet II L
Internet Protocal /
0000 00 c0 9F 04 54 fa 00 <0 ©F 04 Ga aa 08 00 45 00 oo T i e ey ®
0010 00 2f 9b 64 00 00 B0 11 la 72 <0 a8 0Ll ch c0 a8 - P
0020 01 cc 05 0a 13 89 00 1b 80 db 55 44 50 20 53 63ieee e UDP Sc
0030 61 6e 20 62 79 20 40 53 53 20 28 35 29 an by 15 3 (5)

Filter: | i| Reset |F\Ie <capture> Drops: O

Figure 16. Delay variance in kernel-generated and
Trojan-generated ICMP response packets

B. Other Detection Methods

i. Host Based

We have presented a method for evading port scanners by forging ICMP port not available
messages. The desired goal was to have a Trojan run on some specified port and interact only
with its “master”, the Trojan client. However, our Trojan is still susceptible to some host-based
tools like netstat or Isof, that show lists of opened sockets. The bulk of our discussion has been
on external port scanning, and that is the sole concern of our Trojan design. However, a slightly
savvy sysadmin may use simple host based tools like netstat, or Isof to get a list of open sockets
on any linux machine.

However, host-based tools are not the complete answer. Many hackers will replace these host-
based tools with Trojanized versions that show (or neglect to show) the information they desire.
Also, a slightly modified Trojan (though not more difficult to code), might include its “selective
behavior” as part of another “trusted” program [11]. For example, root kits often include
Trojanized versions of identd. We could embed our simple Trojan code in the (open-source)
identd program that runs on port 113. Basically, we would examine all incoming packets for
“magic”. If the packet is “normal” we would pass the control to the normal identd function.
However, if the packet is our “magic” packet, we could communicate with our Trojan client
appropriately. Because our Trojan is running on a well-known port we decrease the likelihood
that our Trojan shows up on the sysadmin’s “radar”

It has been shown that through Trojanizing any number of host-based tools; the attacker can
essentially “cover his tracks”. The only completely reliable way to detect system compromise is
to bit compare all executables on your system with “known good” ones. A similar solution is to
run checksums on executables. One tool that does this is Tripwire [12].

ii. IDS Detection

Specific implementations of IDSs can also play a key role in detecting the communication
between the Trojan server and client process. However, this method is not without drawbacks.
Our Trojan also attempts to evade current IDS techniques. The vast majority of commercial IDS
tools use a string-matching algorithm to match network traffic against a known database of attack
“signatures”. Also most of these tools simply match characters at the beginning of a packet. We
exploit this weakness by encoding a number of random bytes at the beginning of our “magic”
packet. The client generates 20 bytes of random data, followed by the “magic string” and the
Trojan server ignores the first 20 (garbage) bytes. Because of this simple fact, it would be very
difficult for any existing signature-based IDS to detect our Trojan.

Some signature-based IDSs use partial string matching. This implementation could detect
communication to and from our Invisible Trojan. = However, though improved, the
implementation continues to rely on matching “static” strings that do not change. Even with
partial string matching, we can devise a Trojan to defeat signature based IDSs as follows. The
Trojan client simply needs to construct a packet that can change each time he connects, but still is
detectable to the Trojan server as “magic”. One simple way to accomplish this is to embed some
“changing” information in the packet that the server can verify. For example, the Trojan client
can replicate the source port of its magic up packet in the up payload. This number changes each
time the Trojan connects, but can be implicitly verified at the server. If the source port in the
payload matches the source port in the up header, the server knows this packet is “magic”.

A rule-based IDS might be able to detect our modified Trojan, because it follows some defined
rule (up source port == first 4 bytes of payload). However, with a little more effort, we can evade
just about any rule-based IDS. We simply agree on a password or key that we will use to
encrypt/decrypt traffic between our Trojan client and server. Simply use the agreed upon key,
and concatenate the source port number of the client packet to the key to form a modified
(dynamic) key. Only the Trojan server knows about the agreed upon key, so only the server can
decrypt the packet. Further, the key (and hence encrypted traffic bytes) changes with each
connection, because the key changes with the source port. Although this method is certainly
complex, it should evade any rule or signature-based IDS.

The only IDS that would easily detect the communication between the Trojan client and Trojan
server program are the anomaly-based systems. Once this system has determined the “normal”
behavior of a host, any “irregular” communication would be noticed and placed in a host’s profile
and eventually will trigger an alarm to a sysadmin.

VIII. Conclusion
We have seen that evading port scanners is a fairly simple feat. It would be extremely difficult
for any port scanner to reliably detect our invisible Trojan that simply forges ICMP port not
available messages, except under “ideal” network conditions, which may not be available. It
should be clear that relying exclusively on port scanning for detecting open ports is a bad idea.

We have also discussed several other security measures for detecting Trojans, including host
based tools and several types of Intrusion Detection Systems. We have also presented novel ways
to evade the majority of these tools. Certainly it is difficult to rely on any one method for
detecting attacks.

One of the strongest (and possibly simplest) methods we presented is bit comparison of
executables with “known good” versions. However, this obviously does you no good if the
offending program does not Trojanize any well-known programs (it would not detect our first
proposed Trojan). An effective security solution should combine a variety of methods, including
host-based tools, network probing, and possibly Intrusion Detection Systems.

References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[11]

[12]

R. C. Garcia. “A soft Computing Approach to Anomaly Detection with Real-Time
Applicablility,” Ph.D. Thesis, Georgia Institute Of Technology, April 2001.

LANCcope, “StealthWatch vs. Existing IDS Technology,” 2001;
http://www.lancope.com.

Debar, H., et al, “Towards a Taxonomy of Intrusion-Detection Systems,” IBM Research
Report 93076, 1998.

LANCcope, “The Use of “Flows” to Analyze Data Network Traffic,” 2001;
http://www.lancope.com.

LANCcope, “Data Flow Analysis for Traffic Characterization and Network Security,”
2001;
http://www.lancope.com.

“The Art of Port Scanning,” 2002; http://www.insecure.org/nmap/nmap_doc.html.

W.R. Stevens, TCP/IP Illustrated Volume 1: the protocols. Boston, MA: Addison
Wesley, 1994.

M. Elkins, “ Anatomy of a Breakin,” May 1, 2001. Linux Journal.
http://www?2.linuxjournal.com/cgi-bin/frames.pl/index.html

www.ethereal.com

W.R. Stevens, UNIX Network Programming Volume 1 — Networking APIs: Sockets and
XTI. Upper Saddle River, NJ: Prentice Hall, 1998.

C. P. Pfleeger, Security In Computing. Upper Saddle River, NJ: Prentice Hall, 1997.

K. Fenzi, “Tripping up Intruders with TripWire,” Feb 17, 2001. Linux Journal.
http://www?2.linusjournal.com/lj-issues/issue40/2160.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

