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Abstract. Attacks on wireless networks can be classified into two categories: 

external wireless and internal wired. In external wireless attacks, an attacker 

uses a wireless device to target the access point (AP), other wireless nodes or 

the communications on the network. In internal wired attacks, an attacker or 

authorized insider inserts an unauthorized (or rogue) AP into the wired 

backbone for malicious activity or misfeasance. This paper addresses detecting 

the internal wired attack of inserting rogue APs (RAPs) in a network by 

monitoring on the wired-side for characteristics of wireless traffic. We focus on 

two 802.11 medium access control (MAC) layer features as a means of 

fingerprinting wireless traffic in a wired network. In particular, we study the 

effect of the Distributed Coordination Function (DCF) and rate adaptation 

specifications on wireless traffic by observing their influence on arrival delays. 

By focusing on fundamental traits of wireless communications, unlike existing 

techniques, we demonstrate that it is possible to extract wireless components 

from a flow without having to train our system with network-specific wired and 

wireless traces. Unlike some existing anomaly based detection schemes, our 

approach is generic as it does not assume that the wired network is inherently 

faster than the wireless network, is effective for networks that do not have 

sample wireless traffic, and is independent of network speed/type/protocol. We 

evaluate our approach using experiments and simulations. Using a Bayesian 

classifier we show that we can correctly identify wireless traffic on a wired link 

with 86-90% accuracy. This coupled with an appropriate switch port policy 

allows the identification of RAPs. 

Keywords: Rogue Access Point Detection, 802.11 MAC Protocol, Rate 

Adaptation, Distributed Coordination Function 

1   Introduction 

A dangerous insider attack is one where cheaply available APs are illicitly plugged 

into the network with the motivation of extending connectivity. Like other insider 

attacks, the AP stays invisible to a firewall as it is actually behind it, thus making it 

difficult to detect. Hence, the AP creates a back door for attackers, obviating the need 

to go through the firewall. This paper presents a practical solution for this attack 

which can happen in one of two scenarios - wired networks with or without existing 

legitimate APs. 



The core of our detection scheme is an agent sitting atop a switch, or a separate 

monitoring device that is connected to the mirror port of a switch, that passively sniffs 

passing traffic streams on the wired-side. Using inherent differences in wireless 

characteristics as compared to wired traffic, this agent is able to deem the originating 

link as being wired or wireless. This inference is then followed up with a switch port 

AP authorization policy to differentiate between rogue and legitimate APs. 

Though some of the existing methods work with proven efficacy, they do not try to 

exploit the underlying facets of the wireless MAC protocol to detect RAPs, but 

instead attempt to classify wireless traffic based on the greater delay observed in 

network statistics (e.g., round-trip-time (RTT), inter-packet arrival time (IAT)). This 

is based on an assumption that the wireless link capacity will never reach that of 

wired. A more general solution is needed as this may not always be the case. Also, 

since many of the previous algorithms need to be trained on both wired and wireless 

traffic for a given network, they cannot be used in networks without existing APs as 

there would be no prior wireless trace available. 

As in other wired-side detection approaches from academia1, in our method we 

study the arrival pattern of upstream traffic towards the gateway router (and possibly 

the Internet) for traces of the 802.11 MAC protocol. Though downstream TCP flows 

are likely to occupy a significant portion of traffic on the link, our approach is not 

limited in scope. This is because, as will be shown in Section 4.3, our classifier can 

work with a minimal input trace. It works with an accuracy ranging from 87% to 91% 

for upstream data inputs of size ranging from 250 packets to 1000 packets 

respectively2. At any given time, there may be various activities that the RAP is used 

for in a corporate network, such as, web browsing, email, document uploads to file 

servers, etc. Web browsing contributes varying levels of upstream data - mostly in the 

form of HTTP requests - depending on the content and the load of requests. When a 

web site is crawled by visiting, say five URLs recursively, the amount of upstream 

data generated varies from 75 data packets (for primarily text based web pages like 

www.craigslist.com) up to 400 packets (for relatively graphic intensive web pages like 

www.facebook.com). Further, it takes about 500 packets to deliver an email of size 

750Kb and about 1000 packets to upload a file of 1.5Mb (e.g., saving a file to the 

company file server). Thus, upstream monitoring is a viable option. 

Our first approach exploits the collision avoidance process of the DCF in the 

802.11 MAC. To avoid collisions while transmitting, a wireless node has to sense the 

channel prior to an attempt at sending. Once the channel is clear, the node will wait 

for a random time period (chosen from 0 time units to a fixed upper bound) before 

attempting to transmit. If the node senses that the channel is occupied, or in case of a 

collision, the node has to back-off exponentially before retransmitting (i.e., the fixed 

upper bound increases exponentially, increasing the probability of choosing a higher 

back-off value). This procedure, carrier sense multiple access with collision 

avoidance (CSMA/CA), of the DCF has both fixed components and bounded random 

components that can be artificially produced and used as a signature for wireless 

traffic. 

                                                           

1 The wired-side approaches will be discussed in Section 2. 

2 Refer to Figure 8, the details of which will be discussed in Section 4.4. 

 



The second approach exploits the process of rate adaptation in the 802.11 MAC. 

Rate adaptation algorithms allow wireless hosts to alter their encoding scheme 

(transmission rate) to account for channel interference during transmission. When 

interference is detected, the node adapts its rate and transmits at a slower rate in an 

attempt at reducing packet loss. As the rate adjusts (lower or higher), there are 

noticeable and unique ‘jumps’ in the packet IAT. These ‘jumps’ can be artificially 

produced and used as a signature for wireless traffic. 

For both of the above techniques, we show that the signature created stays intact 

and can be detected on the wired-side allowing us to deem specific traffic as 

originating from a wireless node. 

Each of the two approaches work best in specific cases. The first approach works 

best when there is little interference and the transmission rate essentially stays 

constant. Intuitively, the second approach works best when the network is more 

volatile as more ‘jumps’ are produced during that period. Since network stability is 

unpredictable, we combine the two schemes and present a solution that accounts for 

realistic, unpredictable network conditions. 

The remainder of this paper is organized as follows. Section 2 outlines previous 

work in RAP detection. In Section 3 we briefly illustrate why magnitude-based 

approaches are not optimal. An introduction to the 802.11 MAC protocol collision 

avoidance mechanism and a breakdown of the delay induced by it on wireless traffic 

is presented in Section 4. A mathematical representation is derived from its inherent 

mechanism following which we validate the model using a Bayesian classifier. A 

similar pattern of presentation is taken in Section 5 as in Section 4, where we perform 

an analysis of the manner in which rate adaptation occurs, followed by accuracy 

measures of our model. In Section 6, we perform a comparative study of the two 

techniques in an attempt to come up with a bridged solution. We present the 

scalability of our techniques in Section 7 and conclude in Section 8. 

2   Related Work 

Current work on RAP detection can be classified into three categories. The first two 

categories contain techniques that use the magnitude of statistics (mean, median, 

entropy, etc.) of IATs and RTTs as the primary metrics for classification respectively. 

The third category contains industry work that primarily make use of radio frequency 

scanning to discover wireless activity within a network. 

References [1-6] fall in the first category. Beyah R., et al., [1] were among the 

earliest to suggest the possibility of using temporal characteristics, such as IATs, for 

RAP detection. They used the IATs of data packets and TCP ACK packets to identify 

the type of traffic flow. The authors in [2] take a similar approach as that taken in [1] 

but extend the work by creating an automated classifier. Wei W., et al., in [3-4] 

present two similar proposals that examine IATs of TCP ACK pairs to identify the 

type of traffic flow. However, the use of ACK pairs limits this technique to TCP 

traffic. A noteworthy effort in the area of traffic classification is [5] which attempts to 

categorize different types of access links using median and entropy of packet IATs. 

The approach is however not applicable to detecting RAPs because it is active 



(requires probing) and requires cooperation (probe responses) from malicious nodes. 

In [6], the authors create a spectral profile for WLANs based on the entropy of IATs. 

They assume link quality and unpredictability of the wireless medium as the cause for 

greater wireless 'uncertainty' and do not study the effect of the DCF. 

In the second category, [7-9] make use of RTT as a metric for classification. Since 

these methods rely on RTT, they cannot accommodate traffic streams other than TCP. 

Though [7] briefly mentions the effect of the DCF, it does not go into detail to study 

its mechanics. Reference [8] uses a distinctive approach for segregating network 

types, complete with traffic conditioning to eliminate noise. However, it demarcates 

wired and wireless traffic with the help of mean and deviation of the RTT dataset 

which is not advisable as these parameters differ with varying types, speeds, and 

congestion levels of networks. Their approach is claimed to be non-intrusive. 

However, since it involves conditioning of traffic it is still, at minimum, pseudo-

active. In [9], although for a disparate motive and in a dissimilar context, Cheng L., et 

al., were among the first to work on identifying wireless traffic for the purpose of 

access link type recognition. However, their model employs a probing process to gain 

information about nodes in the network and thus not likely to be of assistance in the 

RAP problem space for the same reason that [5], as mentioned above, falls short. 

The third category includes several industry solutions [10-17], many of which 

exhibit non-scalability and limited effectiveness because of the use of either radio 

frequency (RF) scanning and/or MAC address based authentication. The use of RF 

scanning is not practical as the malicious user can use directional antennas, can adjust 

the power of the AP as to not be detected, and in large networks it becomes analogous 

to finding a needle in a haystack. The use of the MAC address as a parameter for 

authentication is not appropriate because of the ease of spoofing. 

Outside of the three categories, [18-20] propose hybrid frameworks consolidating 

the above mentioned wired and wireless-side detection models and inherit the flaws 

from each type. 

As previous schemes primarily compare the relative behavior of traffic on each 

link, they require traces of each class of network traffic for their scheme to be 

effective. This approach is limiting, as a network without existing legitimate APs 

(e.g., government labs) would not be able to easily provide a wireless trace. Further, 

because many use threshold-based separation metrics, another limiting assumption 

made is that wireless networks will always be slower than their wired counterparts. 

As will be shown in subsequent sections, our method is free of each of the 

aforementioned assumptions. 

3   Problem with Magnitude-Based Classification 

As mentioned in the previous section, many of the existing works focus on the 

difference, in some form, of the magnitude of the IAT or RTT to differentiate wireless 

from wired traffic. In this section, we illustrate, via simulation, the challenge with 

these approaches as wireless speeds begin to approach that of wired traffic. 

Simulations were performed using ns2 [24]. The cumulative distribution functions 

(CDFs) of the IAT and RTT values are shown in Figures (1a, 1b) and (2a, 2b) 



respectively. Figures 1a and 2a illustrate why the magnitude-based approaches work 

when the assumption is that WLANs are slower than LANs ( {IATwl, RTTwl} > {IATwd, 

RTTwd} ). However, as shown in Figures 1b and 2b, these schemes will breakdown if 

the WLAN speed reaches that of the LAN ( {IATwl, RTTwl} � {IATwd, RTTwd} ). 

The results shown in Figures 1 and 2 were obtained from within single trials each 

of 1000 packets of upstream data for various network type/speeds (LAN - 10Mbps, 

100Mbps; WLAN - 11Mbps, 24Mbps). Ethernet and wireless senders were made to 

send FTP data to a server one hop away on the wired-side. Simulations were 

performed on a setup similar to the experimental setup that will be described in 

Section 4.3. 

Partially motivated by this argument against threshold based detection, we propose 

an adaptable solution that makes no assumption about the link speed. In the next 

section, we introduce our first scheme beginning with an introductory analysis. 

4   Scheme I - DCF Based Detection 

A wireless node’s packet transmission mechanism is regulated by the specifications of 

the 802.11 MAC layer protocol, the Distributed Coordination Function (DCF). The 

DCF employs a CSMA/CA distributed algorithm for collision avoidance. In this 

method, a node that wants to transmit data on a wireless link has to wait for a fixed 

duration, namely Distributed Inter Frame Space (DIFS) and a bounded random 

amount of time, called back-off (σ), before using the channel. Upon receiving the 

data, the node at the other end waits for a fixed period, called the Short Inter Frame 

Space (SIFS), before answering with a MAC-level acknowledgment (MAC-ACK), 
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Fig. 1. IAT distribution for (a) slower WLAN, (b) faster WLAN.  

Fig. 2. RTT distribution for (a) slower WLAN, (b) faster WLAN.  



and the cycle follows thereon. Further, if the channel is sensed busy or if a collision is 

detected the originating node backs-off before trying again. The bounded random 

delay - Contention window (CW) has an exponentially increasing upper bound to 

reduce the chances of collisions.  

Accordingly, the DCF has both fixed components and bounded random 

components that can be artificially produced and used as a signature for wireless 

traffic. The process employed for transmission in a wireless medium and the delay 

between packet arrivals (IATwl) as observed at the receiver are shown in Figure 3. 

Drawing from the DCF’s basic mode of operation, we deduce a pattern unique to 

wireless streams that allows one to anticipate packet arrivals at known intervals. This 

property enables us to artificially construct packet arrival time series that represent 

wireless traffic. 

4.1   Analysis 

First, in order to demonstrate the effect of the DCF on the delay, we arrive at 

representations for the IATs of wired and wireless networks (IATwd and IATwl). 

In Equations 1 and 2, dtrans, dprop and dqueue are the transmission, propagation 

and queuing delays for a network respectively. Since dtrans >> dprop, the 

propagation delay is neglected in our analysis. The queuing delay dqueue plays an 

important part in determining the efficacy of wired-side detection. This will be 

discussed with experimental results in Section 4.3. 

  

wdwdwdwd dqueue +dprop +dtrans = IAT  (1) 

wlwlwlwl dqueue +dprop +dtrans = IAT  (2) 

wd
overhead

dtrans +framedtrans = wddtrans  (3) 

randomconstant

wl
overheadframewl

DCF +DCF +

dtrans +dtrans =dtrans
 

 

 

(4) 

 

In Equations 3 and 4, dtransframe is the transmission time per frame; dtransoverhead is 

the overhead incurred in transmitting the packet header in the wired case, and 

transmitting the packet header and MAC-ACK in the wireless case. 

Fig. 3. Illustration of the DCF in 802.11 networks. 



ACK-MAC
overhead +

pkt
overhead =

wl
overhead

dtrans   (5) 

Note that dtranswl additionally comprises of the waiting time incurred because of 

the DCF, the constituents of which are shown in Equations 6 and 7. 

 SIFS+ DIFS =
constant

DCF   (6) 

σ=
random

DCF   (7) 

The fixed delay element within the DCF contributed delay is a combination of the 

DIFS and SIFS periods. 

The back-off (σ) is the random period for which the sender has to wait in addition 

to the DIFS. This is repeated for each unsuccessful transmission attempt. The back-

off for the ith
 retransmission (σi) is randomly chosen from within the CWi which is an 

increasing function of the number of retransmission attempts and the number of times 

the channel was sensed as busy by the sender. The DCF uses an exponential 

algorithm, where for each retry, the CW size is doubled starting at a lower bound 

(CWmin) until a maximum value (CWmax) is reached. 

 

( )
i

CW
i
σ 0,∈   (8) 

[ ] [ ]maxmin
i

maxii CW,CWmin=CW,min=CW 22CW 1−   (9) 

minii CWCWσ ∝∝   (10) 

Hence, arrival times can be predicted as a function of CWmin in the form of a finite 

random variable. This is an important result which shows that the DCF provides us 

with an increasing trend for wireless links, one whose base frequency (θ) is given in 

Equation 11. 

[ ]






min
CW+

constant
DCF +

frame
dtrans=θ 0,/1  (11) 

Equation 11 forms the basis for our scheme. Specifically, we seek to discover a 

wireless segment by extracting a basic recurring pattern that exists in all wireless 

streams. Further, a wireless series can be generated synthetically which spares us 

from having to train a classifier with real traces. 

Since the RAP environment would likely involve a single client node (the 

Fig. 4. Packet arrival pattern - UDP. 

Fig. 5. Packet arrival pattern - TCP. 



malicious intruder), our primary focus is the case where there are minimal collisions 

as a result of competing traffic in the network, and thus assume that σ varies between 

0 and CWmin. We plan to address the scenario where multiple users access the RAP in 

the future. 

This wireless time series is not uniform for different traffic types. In light of 

Equation 4, it is important to consider two transport protocols - TCP and UDP. 

Figures 4 and 5 show how the IAT distribution would look for the two different 

classes. 

The frame transmission time for each case would differ as shown in Hypothesis 

4.1. 

 

Hypothesis 4.1 

1:  if trafficUDP then 

2:     dtransframe = dtransdata 

3:  else if trafficTCP then 

4:     dtransframe = dtransdata + dtranstcpACK 

5:  end if 

 

Because of the difference in characteristics, considering an 802.11b network as an 

example, the transmission delay for the two classes would follow from the 

information in Table 1 (taken from [21]) as shown in Equations 12 and 13. 

This difference must be factored in when modeling the traffic behavior. 
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(13) 

Note that TCP does not always have to wait for an ACK before transmitting the 

next packet. In fact, when a node is transmitting TCP traffic with a congestion 

window size W greater than one (that is, W>1), it is likely to exhibit UDP-like 

behavior (in the form of multiple sequential packets) except for the time when it is 



waiting for ACKs. In fact, in the case of upstream TCP traffic to the Internet, a node 

is highly likely to transmit in bursts. Thus, TCP’s IAT distribution would resemble 

that of UDP for the most part. Hence, having taken into account the frequency of 

packet arrivals for both UDP in Equation 12 and the extreme-case TCP (that is, W = 

1) in Equation 13, our model is scalable for all traffic types. 

As part of our groundwork, we used the expression from Equation 4 - which 

repeats with the frequency shown in Equation 11, combined with the expected values 

for each type of WLAN (for example, the data from Table 1 was imported for a 

802.11b WLAN) to artificially build a profile set. We used values for DCFconstant from 

the 802.11 standard. Also, we used a pseudo random number generator to emulate 

DCFrandom, where random values were generated from within a range equivalent to the 

initial CW, that is, (0,CWmin). 

 
Table 1.  802.11b MAC Transmission Overhead.  

 

Variable Parameter 
Time                                                                                                                   

(µs) 
Formula 

DCFconstant 

DIFS 

SIFS 

50 

10 

2 * slot time + SIFS = 50 

SIFS 

DCFrandom Average σ 310 
 (# of slots * slot time)/2 = (31 * 20)/2 = 

310 

dtransframe 

dtransdata 

dtransTCP-ACK 

1018 

30 

Packet size/data rate = (1400 * 8)/11 = 

1018 

TCP-ACK/data rate = (40 * 8)/11 = 30 

dtransoverhead 

overheadpkt 

overheadMAC-ACK 

215 

10 

(Preamble + PLCP hdr.)/data rate + MAC 

hdr./data rate + MAC CRC bits/data rate 

= (144 + 48)/1 + (30 * 8)/11 + (4 * 8)/11 

= 192 + 21 + 2 = 215 

MAC-ACK/data rate = (14 * 8)/11 = 10 

 

Figures 6a and 6b display the CDF of the IAT of TCP and UDP flows generated 

via experimentation and simulation, as well as those constructed artificially using 

Equations 12 and 13. The figures illustrate how closely the experimental and 

simulated delay distributions follow the ones artificially created. 

Also from Figure 6b, while more than 90% of the sample set follows a uniform 

random dispersal over the window size, a fraction of the flow tends to deviate out of 

bounds. We attribute this to the overhead in the network caused by dpropwl, possible 

link-layer retransmissions and packet collisions during transmission 

Fig. 6. (a) CDF of IAT for UDP. (b) CDF of IAT for TCP. 
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To arrive at the results in Figure 6, separate TCP and UDP experiments and 

simulations were performed individually for the 802.11b and 802.11g configurations. 

For each transport protocol and each WLAN speed setting, 1000 data packets were 

sent from the wireless client using a socket program to the wired-side server and the 

IATs were recorded on the wired-side. Correspondingly, the artificial profiles each 

comprise of 1000 IAT values. 

The experiments that produced part of the results in Figure 6 were performed in a 

lab testbed that will be discussed in Section 4.3. The simulations associated with 

Figure 6 were performed in a similar setup as the lab testbed using ns2. 

In this sub-section, we showed that it is possible to independently conjecture how a 

wireless stream would behave in different types of networks. To demonstrate the 

accuracy of the technique, a Bayesian classifier is used to compare incoming streams' 

IAT distributions with the training IAT profile set. The foundation for this 

classification is presented in the next sub-section. 

4.2   Classification Scheme 

We use a Naïve Bayes classifier which bins the IAT datasets (the artificial profiles 

and experimental/simulation traces used for the purpose of testing the system), 

calculates for each dataset the number of occurrences in each bin, compares the bin 

frequencies of each profile with those of the trace and predicts the trace as being akin 

to the profile whose frequency distribution closest resembles that of the trace. The 

Chi-square Goodness of Fit test is employed to determine the fit between each profile 

and the unknown trace.  

The inputs are binned into ‘b’ number of bins, where b depends on the bin width 

and input data size. For both the bin width and input data size, different values are 

tried with the goal of optimizing 'b' to furnish maximum accuracy. Details about these 

experiments will be discussed in Section 4.4. 

Profiles fi are compared with an unknown sample fx based on the frequency of 

occurrences in each bin. The Bayes theorem is based on the conditional probability 

model, where the posterior probability is a function of the prior probability and the 

likelihood. 

Because the nature of incoming traffic cannot be predicted, prior probability is 

unknown and is assumed equally distributed over the n profiles. 

( ) n=
i

fPbilityPriorProba /1   (14) 

Likelihood (measure of how similar the unknown trace is to a given profile) is 

calculated for each profile using a two-sample Chi-square test which is run 

independently on all sample-profile bin frequency pairs. 

i
f

x
fPLikelihood  (15) 

Posterior probability (measure of how likely a profile is the closest match for the 

unknown) is calculated as follows: 
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Since fx is a random variable {x1,x2,…xd}, 
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(18) 

Since the prior probability is constant, the posterior probability essentially depends 

on the likelihood measures. It is derived by aggregating the Likelihood measures, 

each of which is calculated using the Pearson's Chi-square test. This test estimates the 

probability that an unknown distribution fits a Chi-square distribution given a null 

hypothesis. This null hypothesis is rejected (or accepted) based on the probability of 

the unknown trace's fit to the Chi-square distribution. This probability is determined 

as a function of the Chi-square statistic which is obtained as follows: 

( )∑ 




 −

k

=i
i

P
i

P
i

X=

1

/22χ   
 

(19) 

Xi and Pi are the bin frequencies of bin i of the two samples to be compared - the 

unknown and a profile. Note that the profile P is the null hypothesis. In our case, P is 

the synthetically created wireless profile. The Chi-square statistic is calculated over 

the bin frequencies of k bins. 

4.3   Experimental Setup & Validation of Wired-side Approach 

In this sub-section, we discuss: (i) preliminary experiments that were performed to 

validate the general idea behind our wired-side approach and (ii) the outline of the 

experimental test plan we used to evaluate the system's 

accuracy.

 
An experimental testbed was built using three Lenovo laptops, three Dell desktops, 

a Netgear 10/100 Mbps Fast Ethernet switch and a Linksys 2.4Ghz 802.11b-g AP. 

The laptops were made to connect to a server on the wired-side through the AP and 

switch. A desktop was set up as a sink server to receive data from both LAN and 

WLAN senders. The classifier resides on a desktop connected to the switch 
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Fig. 7. Packet arrival times on wired and wireless sides. 



immediately linking the AP to the LAN. 

To ensure that our technique for wired-side detection is viable, we first determined 

whether the temporal characteristics of the IAT observed on the wireless link were 

intact on the wired-side. It is important to check if the DCF induced delay is carried 

over to the Ethernet backbone with minimal additional overhead delay added to it. In 

a single hop scenario, the overhead is primarily a function of the router queuing delay 

and processing delay. 

The results shown in Figure 7 are a representative sample of the arrival times of 

about 200 packets extracted from a trace of a total of 10,000 packets of upstream TCP 

data sent from a wireless-side sender using a socket program to the wired-side server. 

The arrival times on the wired-side were recorded at the receiver node. On the 

wireless side, a laptop acting as a sniffer was used in promiscuous mode to capture 

traffic from the wireless sender. We observed that the arrival rates were retained 

albeit with a uniformly witnessed lag (as a result of router queuing) as shown in 

Figure 7. 

Given the simple one-hop path from the WLAN to the classifier on the wired-side, 

a switch with minimal traffic load exhibits a nearly constant queuing delay (dqueue)3 

which is illustrated by the nearly fixed distance between the lines in Figure 7. In 

Section 7, we discuss how the model scales to networks where the classifier is placed 

several hops away from the AP. 

4.4   Accuracy Measures 

Having visually shown why it is likely that the packet IAT from the wireless side is 

carried over to the wired-side, we evaluate the scheme's accuracy in extracting the 

DCF imposed delay to determine the packet's originating link. 

First, we tuned the bin width and input data size to find the optimal pair - one that 

maximizes True Positive Rate (TPR) and minimizes False Positive Rate (FPR). This 

is followed by additional testing with the chosen optimal parameters to obtain the 

system accuracy. 

The classifier was tested on traces from both wired and wireless TCP/UDP data 

transfers. Sample trials on the LAN were used to measure the FPR and trials on the 

WLAN to measure the TPR. Trials were performed on the WLAN for both 802.11b 

and 802.11g specifications by configuring the AP to operate in the required mode. For 

each network type (WLAN/LAN) and protocol (TCP/UDP), 50 sets of data were fed 

into the classifier. The detections from the 50 trials were used in determining 

TPR/FPR measures for the classifier. This process was repeated for different bin 

width and input data size combinations. The results shown in Figure 8 are an average 

of the results from the TCP and UDP trials. 

An optimal bin width of 500µs and input size of 1000 packets were chosen, as the 

pair gives the minimum FPR of 2% and maximum TPR of 91%. On testing the 

system with the chosen parameters (Bin width = 500us, Input size = 1000 packets, 

and FPR = 2%) for a total of 10 additional trials, it was observed that the technique is 

                                                           

3 Refer to Equations 1and 2 for the definition and Section IV.A for a discussion on dqueue. 

 



accurate in detection approximately 92% of the time for UDP and 89% of the time for 

TCP traffic, as can be seen from Figure 9. 

In the RAP attack scenario, the attacker would likely often hop on the connection 

for short bursts of time to avoid detection. Given the attacker's short-lived stay online, 

it is important that the classifier be able to work on a minimum amount of data. Also, 

considering the relatively negligible portion of WLAN traffic occupied by upstream 

data (in comparison with TCP downstream data), the classifier might not have much 

to work with and hence, must be trained accordingly. 

Each input data size may correspond to different application data on the RAP 

because each application (e.g., web browsing, email, file upload) contributes different 

amounts of upstream traffic to the classifier. Accordingly, the results shown in Figure 

8 provide a sample of the system's accuracy for different classes of applications - each 

pertaining to a different input size. For a bin width of 500us, the system exhibits 

maximum accuracy that ranges from 87% to 91% for input sizes varying from 250 

packets to 1000 packets. As a result, the attacker is slightly more likely to be detected 

if he were uploading a file of 1Mb than if he were reading the news at say, 

www.cnn.com, because the former would contribute the sufficient amount of data 

faster than the latter. 

In this section, we discussed our first scheme of detection. In this method, our 

classifier is trained artificially on IAT signatures individually for different network 

speeds and different transport protocols for both the LAN and WLAN. We also 

showed the accuracy measures from lab experiments. This scheme is optimal when 

there is no interference on the channel and the link is stable. As will be shown in 

Section 6, its performance degrades as rate adaptation occurs in response to poor link 

quality. Therefore, in the next section we present a scheme that thrives during rate 

adaptation. 

5   Scheme II - Rate Adaptation Based Detection 

The 802.11 MAC protocol provides wireless entities with the ability to change their 

encoding scheme (data transmission rate) when the need arises. Using automatic rate 

fallback (ARF), when a node reaches a threshold of not receiving MAC-layer ACKs, 

it reduces its rate to one that corresponds to a stronger encoding algorithm in order to 

ensure more robust transmission. 
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As shown in [21], rate adaptation occurs regularly in WLANs because signal and 

link-layer interference are common phenomena. Given that rate adaptation occurs 

regularly, we seek to exploit this property that is specific to wireless streams to 

distinguish them from their wired counterparts. Particularly, the switching of the 

physical-layer data rate creates a variation in throughput and packet delay in a 

wireless transmission that is rarely found in wired traffic. We exploit the unique 

behavioral characteristics at the time of rate switching to identify wireless traffic. 

In this section, we first examine the behavior of the IAT during switches in data 

rate. Based on this, we derive an artificial profile for the IATs during such shifts in 

data rate. The artificial profiles are incorporated into a classifier, which is then 

evaluated for accuracy. 

5.1   Analysis 

In this sub-section, we illustrate the effect of rate adaptation on a series of packets. 

Specifically, we show that there exists an IAT pattern that is exhibited only during 

rate adaptation and not when a pair of successively transmitted packets is sent at a 

constant physical layer data rate. 

First, we visually illustrate how rate adaptation alters the arrival periods of packets 

transmitted at different data rates. Figure 10 is an example representation of the 

expected packet arrival sequence for a sample wireless transfer. In Figure 10, note 

that the IATs vary for each rate Ri because slower rates trigger greater packet delays. 

The probability Pi of the event Ri occurring depends on what we call the channel 

interference index (Ω) which has a range {0↔1}. 
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In other words, the probability of occurrence of a lower transmission rate (in 

Equation 21, rate i is lower than rate k) is inversely proportional to signal interference 

and collisions. Our model safely assumes that the measure of interference Ω is not 

known prior and hence Pi is unknown. 

This being the case, unlike Scheme I which assumes minimal to no rate adaptation, 

we choose to focus not on sets of IATi (that is, the IAT of two packets transferred at 

same rate) but instead on IATj (that is, the IAT of two packets transferred at different 

rates). 

Fig. 10. Packet arrivals during rate adaptation. 



Having abstractly shown the influence of rate adaptation on the IATs and having 

settled on the idea that the inference model should be based on the IAT behavior 

during the transition in data rate (IATj), we proceed to study IATj.  

As shown in Figure 11, IATj is the delay during the ‘jump’ from one rate to the 

next. Note that in Figure 11, IATj is of a different magnitude than IATi, where IATi is 

the IAT during rate Ri and i = {1,2}. Accordingly, in our classifier, we associate IATwl 

with IATj. To determine which link type the test data (that exhibits IATx) belongs to, 

we use the basic premise given in Hypothesis 5.1. 

To illustrate the behavior of the jumps, an initial set of experiments were 

performed on an 802.11b WLAN; IATs for packet pairs transmitted at the same rate 

as well as different rates were extracted. In the absence of notable real channel 

interference, to stimulate rate adaptation in a simple lab testbed, the experiments were 

performed in the presence of a running microwave. A laptop was used as a sniffer on 

the wireless-side to collect the data rates corresponding to the packets within a 

transmission. 

 

 
 

  

 

 

 

 

A sample of the IATs from a two minute upstream data transfer is shown in Figure 

12. Although the interference resulting from the microwave usage was strong enough 

to invoke rate switches down to 2Mbps and sometimes 1Mbps, for the purpose of the 

current argument, the aggregated IATs of packets transmitted at 11Mbps, 5Mbps and 

packets transmitted immediately after changes in data rate both ways are the only 

IATs shown in Figure 12. 

It can be seen in Figure 12 that the IAT distributions of the jumps fall in between 

Hypothesis 5.2 

1: if Ri < Ri+1 then 

2: IATi > IATj > IATi+1 

3: else  

4: IATi < IATj < IATi+1 

5: end if 

Hypothesis 5.1 

1: if IATx ≈ IATj then 

2: Report Wireless 

3: else  

4: Report Wired 

5: end if 

Fig. 11. IAT pattern during a rate switch. 

Fig. 12. IAT behavior during a rate switch –

TCP. 

Fig. 13. TCP Analytical vs. Experimental 

Signatures – 802.11g WLAN. 
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those of the stable rate phases before and after. This leaves us with Hypothesis 5.2. 

The rationale behind this (as shown in Figure 14) is that during the transition from 

R1 to R2, the MAC-level ACK is transmitted at R1 and the subsequent data frame at R2. 

That is, a node which decides to reduce its data rate transmits the next data packet at 

the new rate but the MAC ACK for the previous data packet would still be sent from 

the AP at the old rate. Also, as can be seen from Figure 12, because of the difference 

in frame and MAC ACK sizes, the IAT distribution during the jump (IATj) is biased 

towards that corresponding to the rate following the jump. That is, since the frame 

size >> MAC ACK size and because the data frame is sent at the new rate, IATj is 

closer to the IAT associated with the new rate. 

This difference in behavior during a rate switch can be exploited by studying how 

it reflects on individual delay components of the corresponding IATs, as shown 

below: 
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Using Equation 23 as the base for our synthetic profiles, substituting jump-specific 

dtransframe and dtransoverhead values, our classifier can be trained as shown in Figure 13. 

Similar to the synthetic IAT profiles shown for the (36Mbps, 54Mbps) pair in Figure 

13, multiple such jump signatures were constructed for different data rate pairs as 

training sets for the classifier. Additionally, the training sets included IAT signatures 

for 10Mbps and 100Mbps LANs. 

5.2   Classification Scheme 

The classifier used for this method is similar to the one explained in Section 4.2, with 

appropriate changes made to incorporate the fact that only the IAT values during 

jumps in rates are considered for training and testing as opposed to the values during a 

stable rate period. In the Bayesian classifier, instead of comparing the entire trace of 

IAT readings with the profiles, individual values are inspected for possible jumps. 

That is, a comparison of two datasets (training and testing sets) is not required; 

instead, it is sufficient to check individual incoming IAT values to see which IAT 

jump signatures they are closest to. 

Fig. 14. DCF behavior during a rate switch. 



5.3   Experimental Setup & Validation of Wired-side Approach 

The experimental setup used to validate the scheme is similar to that used for Scheme 

I discussed in Section 4.3. As in [21], we use a synthetic means (microwave 

interference) to force rate switching to investigate Scheme II. One of the laptops is 

used as a sniffer on the wireless side, while another laptop is used to transfer data to 

the wired-side desktop sink server. 

To determine whether a node is switching rates when capturing packets on the 

wireless side is simple, as its physical layer header contains the actual transmission 

rate. However, the rate in the wireless frame is not carried over to the wired-side. 

Accordingly, on the wired-side, we have to infer the rate by observing the packets’ 

IAT pattern. We verified that this approach is viable by capturing traffic both on the 

wireless-side and the wired-side, and comparing the data rate observations made on 

the wireless-side with the data rate predictions made by the classifier on the wired-

side. We observed packets that switch rates on the wireless side with a laptop acting 

as a sniffer capturing promiscuously (by looking at the radiotap header in the wireless 

frame) and concurrently on the wired-side by feeding captured IATs of the same 

packets into the classifier. From this, we were able to determine that specific IAT 

values on the wired-side correlated to confirmed rate adaptations on the wireless side. 

Figure 15 gives a representative sample of the rates of the packets extracted on the 

wireless side and the rates inferred by the classifier on the wired-side, illustrating the 

correlation of rates of the same packets observed at both points. A total of 6000 

upstream TCP data packets were transmitted with 81% of the rates predicted 

correctly. It is important to note that though the accuracy of classification of the data 

rates on the wired-side was 81%, the classifier is accurate in access link type 

classification up to an average TPR of 97% for UDP and 91% for TCP (refer to 

Figure 18). This is because even the IATs corresponding to the incorrectly inferred 

rates are closer to the synthetic jump IAT profiles that the classifier was trained on as 

opposed to the Ethernet IAT signatures. 

The accuracy measures of the classifier used to test Scheme II are shown in the 

next sub-section. 

5.4   Accuracy Measures 

As in Scheme I, to validate the system, the bin width used in the Bayesian binning 

approach was first tuned to determine an optimum value for the classifier. Note that 
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Scheme II operates independent of the input size as it does not compare the dataset as 

a whole with the profiles and instead studies the input trace a packet at a time. 

For each bin width, ten trials were performed, in each of which the classifier was 

tested on TCP/UDP data packet pairs of upstream Ethernet and WLAN traffic. 

TPR/FPR were generated as a function of the fraction of the input trace accurately 

classified each time (Figure 16). 

In order to optimize the effectiveness of this technique, we calculate what we call 

the Effective Accuracy and find the optimum value that maximizes this difference 

between TPR and FPR in an attempt to make a balanced trade-off between the two 

metrics. For the chosen parameters (Bin width = 20µs and FPR = 14%), 12 additional 

trials are run to observe the TPR distribution (Figure 17). 

Note that the accuracy measures shown in Figure 17 hold for WLANs with 

considerable rate adaptation. As will be shown in the next section, the accuracy of this 

scheme increases as a function of the amount of interference on the network and thus 

the method is not suitable for networks with minimal rate adaptation. In the next 

section, we propose a technique that bridges the strengths of the two schemes 

discussed so far in an effort to arrive at a comprehensive solution for normal networks 

(i.e., networks with varying levels of interference). 

6   Consolidated Model 

While Scheme I compares input sample traces as a whole with each of the profiles, 

Scheme II checks individual packet pairs within a trace for a switch in data rate. This 

implies that since the input sample trace to be compared may encompass several rates, 

Scheme I’s accuracy is likely to subside with increased rate adaptation. Conversely, 

Scheme II will not accurately classify wireless traffic in the absence of a minimum 

degree of rate adaptation. 

6.1   Analysis 

In an effort to present a general solution that works both when the link is stable as 

Fig. 16. Bin width tuning. Fig. 17. TPR for chosen bin width and FPR. 
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well as when rate adaptation occurs, we revisit the channel interference index (Ω)4 

defining it as follows: 

SchemeI
Accuracy

SchemeII
Accuracy

Ω ∝   
 

(24) 

Equation 24 essentially captures the inverse relationship between Schemes I and II. 

Scheme I works better when there is little to no interference, while Scheme II works 

better during interference. Thus, it is important to consolidate the pros of the two 

approaches in a way that the resulting system is effective regardless of the link 

stability. 

6.2   Classification Scheme 

To combine the two schemes, we partition the input data set into blocks of a constant 

size with the expectation that each block will be comprised of data at a specific rate. 

Of course this need not be the case. So, in addition to this, we exploit the fact that 

Scheme I detects the access link types of stable rate periods well and Scheme II 

detects the jumps well. For the combined solution, the input trace is fed into the 

classifier one block at a time. Scheme I contributes the network type/speed 

observation for each of the partitions and Scheme II points out where two stable rate 

periods intersect (that is, the jumps in data rate), the aggregation of which gives us the 

temporal distribution of rates for a series of packet pairs. This technique is illustrated 

in Figure 18, where x and y are the inferred data rates. Based on the inferred rates, the 

combined scheme determines the access link type of the individual partitions. The 

final access link type classification decision for the whole block of data is made as a 

function of the WLAN-to-Ethernet classification ratio of individual partitions. That is, 

the classifier decides between WLAN and Ethernet based on which link type is 

classified in majority of the partitions. The general idea behind this unified model is 

that if one of the two schemes fail, a healthy net effect is maintained as the other 

scheme chips in.  

6.3   Experimental Setup 

The experimental setup used to test the first two schemes is employed to validate the 

combined scheme. A block size of 250 packets is chosen. Accordingly, in our 

experiments, each input trace of 1000 packets is partitioned into four blocks of 250 

packets each. 

                                                           

4 Note that this metric was previously introduced in Section V.A. 

 

Fig. 18. Depiction of combined scheme. 



In the next section, we evaluate the accuracy of the combined scheme (in 

comparison with that of the first two schemes) as a function of Ω by testing against 

data sets that differ in the number of times rate adaptation is invoked. 

6.4   Accuracy Measures 

The accuracy measures of the consolidated system (in comparison with those of the 

other two schemes) are shown in Figures 19. 

 

 

 
 

 

 

 

 

A total of 14 trials were performed to assess how the TPR varies with an increase 

in the degree of rate adaptation. This testing set comprised of 2 trials each for the 7 

different degrees of rate adaptation. The degree of rate adaptation is devised as a 

function of the number of switches in data rate invoked within the 1000 packet input 

data set. Figure 19 shows the results of such experiments performed individually for 

each of the three schemes. Results shown in Figure 19 are an average of the outcomes 

from separate TCP and UDP trials. Note that the combined scheme's accuracy is not 

as high as that of Scheme I. However, this technique is nonetheless effective and 

unlike the initial two schemes, the combined technique is realistic as it makes no 

assumption about the link quality. 

7   Measure of Robustness and Scalability 

In this section, we discuss how the system's performance scales to larger, more 

realistic networks. We evaluate the system's scalability in two scenarios - (i) a 

network where the classifier is placed multiple hops away from the AP via simulation, 

and (ii) a real network (as opposed to a lab testbed). 

First, to test the combined scheme’s scalability as a function of the classifier's 

distance from the AP, simulations were performed where detection takes place several 

hops upstream instead of the switch immediately connecting the AP to the LAN. This 

is important because the AP to be detected may not always be one hop away from the 

classifier node. We consider the effect of different fixed access-link and bottleneck 

delays at each hop, including the best-case (1ms, 10ms, and 50ms) as well the worst-

case (300ms and 500ms) delays. The measurements observed indicate that despite a 

decrease in accuracy with an increase in the distance, the system averages a worst-

case accuracy of above 60%, average-case accuracy of above 75% and best-case 

accuracy of above 85% (Figure 20a). The results shown in Figure 20a were obtained 

Fig. 19. Scheme accuracy comparison. 
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from simulations done using ns2 and varying the number of hops between the AP and 

the classifier node. The TPR measurements shown in the figure are an average of 

results from 10 trials - each of 10,000 upstream data packets - performed separately 

for each delay value and tested individually for a given number of hops. The 10 trials 

comprised of 5 TCP and 5 UDP trials. The trace of 10,000 packets in each trial was 

fed into the classifier 1000 packets at a time. 

Next, we conducted experiments on a real network to arrive at the accuracy 

measures of the classifier when tested with traces from a real environment. Trials 

were performed on a multi-hop fiber-optic university backbone. A wireless node was 

made to connect via an AP from a classroom building to the wired-side server three 

blocks away in the Computer Science Department. The accuracy of the combined 

scheme was measured over a total of 20 trials performed individually for TCP/UDP 

data transfers and for 802.11b/g network configurations. In each trial, the classifier 

was tested on a 10 minute long trace for TPR measures. As shown in Figure 20b, the 

classifier is accurate up to approximately 90% of the time for UDP and 85% of the 

time for TCP. 

8   Conclusion and Future Work 

The proposed method detects RAPs by extracting characteristics unique to a wireless 

stream from network traffic. It makes use of two 802.11 MAC specifications to 

fingerprint wireless attributes from the wired-side making the process simple and 

scalable. 

In this paper, we have studied the working and validated the accuracy of our 

detection techniques in several environments. This method is immediately deployable 

and is shown to scale well to realistic scenarios outside of a lab testbed. In the future, 

we will continue in this direction and further test the system for robustness to other 

use cases. 

We plan to extend this work by scaling it to networks of greater traffic density by 

taking into consideration the effect of collisions in the network as a result of multiple 

users on the RAP. To this end we will study various error models and incorporate the 

traffic behavior during each of these into our design. Further, we intend to study the 

effect of link delay on the accuracy of the system in an attempt to derive a metric that 

the classifier shall be tuned for when placed multiple hops away from the AP. Also, 

we will test the system's robustness using different real network traces from publicly 

available archived sources (e.g., CRAWDAD). 

Further, looking ahead in RAP detection, we must assume that the misfeasor could 

be tech savvy and aware of RAP defenses. To this end, we will analyze possible 

Fig. 20. Multi-hop accuracy: (a) Simulation, (b) Experiment. 
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options that an attacker has to evade detection by cleverly altering his transmission 

pattern. Threat strategies that an attacker may employ include reducing or increasing 

his packet delay and interleaving his wireless transmissions with other types of traffic 

to bypass the classifier's signatures. Note that the DCF parameters can be manipulated 

in open source 802.11 drivers. 
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