
Toward Revealing Kernel Malware Behavior in
Virtual Execution Environments

Chaoting Xuan1, John Copeland1, and Raheem Beyah12

1 Georgia Institute of Technology, 2 Georgia State University

Abstract. Using a sandbox for malware analysis has proven effective in helping
people quickly understand the behavior of unknown malware. This technique
is also complementary to other malware analysis techniques such as static code
analysis and debugger-based code analysis. This paper presents Rkprofiler, a
sandbox-based malware tracking system that dynamically monitors and ana-
lyzes the behavior of Windows kernel malware. Kernel malware samples run
inside a virtual machine (VM) that is supported and managed by a PC emula-
tor. By building its monitoring component into the PC emulator, Rkprofiler is
able to inspect each instruction executed by the kernel malware and therefore
possesses a powerful weapon against the malware. Rkprofiler provides several
capabilities that other malware tracking systems do not. First, it can detect the
execution of malicious kernel code regardless of how the monitored kernel mal-
ware is loaded into the kernel and whether it is packed or not. Second, it captures
all function calls made by the kernel malware and constructs call graphs from
the trace files. Third, a technique called aggressive memory tagging (AMT) is
proposed to track the dynamic data objects that the kernel malware visit. Last,
Rkprofiler records and reports the hardware access events of kernel malware
(e.g., MSR register reads and writes). Our evaluation results show that Rkpro-
filer can quickly expose the security-sensitive activities of kernel malware and
thus reduces the effort exerted in conducting tedious manual malware analysis.

Key words: Dynamic Analysis, Rootkit, Emulator.

1 Introduction

When a attacker breaks into a machine and acquires administrator privileges, kernel
malware could be installed to serve various attacking purposes (e.g., process hiding,
keystroke logging). The complexity of attackers’ activity on machines has significantly
increased. Rootkits now cooperate with other malware to accomplish complicated tasks.
For example, the rootkit Rustock.B has an encrypted spam component attached to its
code image in memory. The initialization routine of this rootkit registers a notification
routine to the Windows kernel by calling the kernel function PsCreateProcessNoti-
fyRoutine. This notification routine is then invoked each time that a new process is
created. When detecting the creation of Windows system process Service.exe, Rus-
tock.B decrypts the spam components and injects two threads into the Service.exe
process to execute the spam components [7]. Without understanding the behavior of
the Rustock.B rootkit, it would be difficult to determine how the spam threads are
injected into the Service.exe process. To fully comprehend malicious activitiy on a

compromised machine, it is necessary to catch and dissect key malware that attack-
ers have loaded onto the machine. Thus, analyzing rootkits is an inevitable task for
security professionals.

Most of the early rootkits were rudimentary in nature and tended to be single-
mission, small and did not employ anti-reverse engineering techniques (e.g., obfusca-
tion). These rootkits could be manually analyzed using disassemblers and debuggers.
Since rootkit technology is much more mature today, the situation has changed. Rootk-
its have more capabilities and their code has become larger and more complex. In addi-
tion, attackers apply anti-reverse engineering techniques to rootkits in order to prevent
people from determining their behavior. Rustock.C is one such example. The security
company, Dr. Web, who claimed to be one of the pioneers that provided defense against
Rustock.C, took several weeks to unpack and analyze the rootkit [8]. The botnet using
Rustock.C was the third largest spam distributor at that time, sending about 30 million
spam messages each day. This example illustrates how the cost incurred by the delay
of analyzing kernel malware can be huge. As another example, the conficker worm that
has infected millions of machines connected to the Internet was reported by several
Internet sources [6][10] (on April 8th 2009) that a heavily encrypted rootkit, probably
a keylogger, was downloaded to the victim machines. At the time of the initial sub-
mission of this paper for publication, which was three days later, no one had published
the details of the rootkit. It is still unclear how severe the damage (e.g., economic,
physical) will be as a result of this un-dissected rootkit. Accordingly, developing new
approaches for quickly analyzing rootkits is urgent and also critical to defeating most
rootkit-involved attacks.

Several approaches have been proposed to address the rootkits analysis problem to
some extent. For examples, HookFinder [30] and HookMap [27] are two rootkit hooking
detection systems. The former uses dynamic data tainting to detect the execution of
hooked malicious code; and the latter applies backward data slicing to locate all po-
tential memory addresses that can be exploited by rootkits to implant hooks. K-tracer
[14] is another rootkit analysis system that uses data slicing and chopping to explore
the sensitive kernel data manipulation by rootkits. Unfortunately, these systems cannot
meet the goal of comprehensively revealing rootkit behavior in a compromised system.
Meeting this goal requires answering two fundamental questions: 1) what kernel func-
tions have been called by rootkits?; and 2) what kernel data objects have been visited
by rootkits? In the paper, we present a proof-of-concept system, Rkprofiler, in attempt
to address these two questions. Rkprofiler is built based on the PC emulator QEMU [5]
and analyzes Windows rootkits. The binary translation of QEMU allows Rkprofiler to
sandbox rootkits and inspect each executed malicious instruction. Further, Rkprofiler
develops the memory tagging technique to perform just-in-time symbol resolving for
memory addresses visited by rootkits. Combining deep inspection capability with the
memory tagging capability, Rkprofiler is able to track all function calls and most kernel
object accesses made by rootkits.

The rest of paper is structured as follows. We point out the technical challenges
for completely revealing rootkit behavior in Section 2. Section 3 gives the overview of
the Rkprofiler system, including its major components and malware analysis process.
Section 4 presents the technical details of tracking rootkits. Then, we present several
case studies in Section 5 and discuss the limitations of Rkprofiler in Section 6. Section
7 surveys related work and Section 8 gives the conclusion of the paper.

2 Challenges

Modern operating systems (OSs) like Windows and Linux utilize two ring levels (ring
0 and 3) provided by X86 hardware to establish the security boundary between the
OS and applications. Kernel instructions and application instructions run at ring level
0 and 3 respectively (also called kernel mode and user mode). The execution of spe-
cial system instructions (INT, SYSENTER and SYSEXIT) allows the CPU to switch
between kernel mode and user mode. This isolation mechanism guarantees that appli-
cations can only communicate with the kernel through well-defined interfaces (system
calls) that are provided by the OS. Many sandbox-based program analysis systems take
advantage of this isolation boundary and monitor the system calls made by malware
[1][3]. While this approach is effective to address user-space malware, it fails to address
kernel malware. This is because there is no well-defined boundary between benign ker-
nel code and malicious kernel code. Kernel malware possess the highest privileges and
can directly read and write any kernel objects and system resource. Moreover, ker-
nel malware may have no constant ”identity” - that is, some kernel malware could be
drivers and others could be patches to benign kernel software. So the first challenge is
how to create a ”virtual” boundary between kernel malware and benign kernel soft-
ware. Rkprofiler overcomes this challenge by using the timing characteristic of malware
analysis. Before loading kernel malware, all kernel code is treated as benign code; after
loading kernel malware, newly loaded kernel code is considered malicious. Note this
”virtual” boundary only isolates code, but not data. This is because the data created
by malicious code can also be accessed by benign code, and Rkprofiler does not monitor
the operations of benign kernel code for the purpose of design simplicity and better
performance.

When monitoring a VM at the hypervisor layer, only hardware-level activities
(e.g., memory reads and writes) are observed. To make these observations useful, it
is necessary to translate the hardware-level activities to software-level activities. Here,
software-level activities refer to using software terms to describe program activities. For
example, ”local variable X is modified.” This translation requirement is also known as
the semantic gap problem [9]. This problem can be expressed as the following: given
a memory address, what is its symbol? Automatically finding the symbols for static
kernel objects (global variables and functions) is straightforward, but automatically
finding the symbols for dynamic kernel objects (data on stack and heap) is challeng-
ing. This challenge is not well addressed by previous work. In this paper, we propose a
method called aggressive memory tagging (AMT) to overcome this challenge. The basic
idea of AMT is to perform the symbol resolution at run time and derive the symbols of
dynamic kernel objects from other kernel objects whose symbols have been identified.
It should be pointed out that Microsoft does not publish all kernel symbols and we can
only gather the kernel symbols that are publically available (Microsoft symbol server,
DDK documents and some unofficial Internet sources). So the current implementation
of Rkprofiler is not able to resolve many unpublished symbols. Nevertheless, we find
that it identifies most sensitive available symbols in our evaluation.

3 System Description

Rkprofiler is composed of four software components: generator, controller, monitor and
reporter. These software components operate in three phases temporally: pre-analysis,

analysis and post-analysis. In the pre-analysis phase, the generator collects symbols of
native Windows kernel modules (e.g., ntoskrnl.exe, ndis.sys) from the program database
(PDB) files available on the Microsoft symbol server [15] and header files in Microsoft’s
Driver Development Kit (DDK). Two databases are produced by the generator at the
end of this stage: type graph and system map. The type graph database contains the
data type definitions of native Windows kernel modules. There are six classes of data
types: basic type, enum, structure, function, union, and pointer. The data types in the
last four classes are considered as composite data types, indicating that a data type
includes at least one sub data type. For example, the sub data types of a structure are
data types of its data members. In the type graph database, Rkprofiler assigns a unique
type ID to each data type. A data type is represented by its type ID, type name, size,
class ID and class specific data (e.g., the number of sub data types and their type IDs).
The system map database keeps the names, relative virtual addresses and type IDs of
global variables and functions used by native Windows kernel modules. In addition, the
names and type ID of parameters and the return value for each function are also stored
in system map. The generator is comprised of several executables and Perl scripts.

Fig. 1. Rkprofiler architecture and rootkit analysis process

Executing malware and monitoring its behavior are carried out in the analysis phase.
Two components of Rkprofiler, controller and monitor, are involved in this phase. The
monitor is built into QEMU. The controller is a standalone shell script that sends com-
mands to the monitor via the Linux signal mechanism. Four commands are defined in
their communication messages: RKP_INIT, RKP_RUN, RKP_STOP and RKP_REPORT, (which
are explained shortly). First, a test VM is started and goes into a clean state in which
no malware is installed and executed. Then, the controller sends a RKP_INIT command
to the monitor. After receiving the command, the monitor queries the kernel mem-
ory image of the guest OS and creates a hash table of trusted kernel code. Next, the
controller instructs the monitor to start monitoring through a RKP_START command.

At that point, Rkprofiler is ready for the monitoring task. For example, a user starts
executing malware in the VM. Depending on the attack objectives of the malware, the
user may run other applications to trigger more behaviors from the malware. For exam-
ple, if the malware is intended to hide processes, the user may open the Windows task
manager to induce the hiding behavior. Since the malware can be tested repeatedly, the
attack objectives of the malware can be inferred from the analysis results of previous
tests. To obtain the monitoring result or end the test, the user can have the controller
issue RKP_REPORT or RKP_STOP commands to the monitor. The first command informs
the monitor to write the monitoring result to local audit files; the second command
prompts the monitor to stop monitoring and clear its internal data structures. Four
audit files in CSV format are generated in the analysis phase: trace, tag trace, tag
access trace, and system resource access trace. These files contain the functions called
by the malware, their parameters and return values, kernel data objects visited by the
malware and their values. In the post-analysis phase, the reporter is executed to create
user-friendly reports. Using the audit files generated in the analysis phase, the reporter
performs three tasks. First it builds a call graph from the call trace and saves the graph
to another file; second, it visualizes the call graph and tag trace with open-source soft-
ware GraphViz [11]; third it generates the HTML-formatted reports for call traces and
tag traces (CSV format). The entire analysis process is illustrated in Figure 1.

The monitor component of Rkprofiler was built based on the open-source PC emu-
lator QEMU. To support multiple CPU architectures, QEMU defines an intermediate
instruction set. When QEMU is running, each instruction of a VM is translated to the
intermediate instructions. Rkprofiler performs code inspection and analysis at the code
translation stage. To improve the performance, QEMU caches the translated Transla-
tion Block (TB) so that it can be re-executed on the host CPU over time. However, this
optimization approach is not desirable to Rkprofiler because an instruction can behave
differently in varied machine states. For example, the instruction CALL, whose operand
is a general-purpose register, may jump to diverse instructions depending on the value
of that register. For each malicious TB that has been cached, Rkprofiler forces QEMU
to always perform the code translation. But, the newly generated code is not stored
in the cache and the existing cached code is actually executed. Another problem arises
when a TB contains multiple instructions. In QEMU, VM states (register and memory
contents) are not updated during the TB translation. Except for the first instruction,
the translation of all other instructions in a TB could be accompanied by incorrect
VM states, possibly resulting in analysis errors. Rkprofiler addresses this problem by
making each malicious TB include only one instruction and disabling the direct block
chaining for all malicious TBs.

4 Design and Implementation

Kernel malware could take the form of drivers and be legitimately loaded into the
kernel. They can also be injected into the kernel by exploiting vulnerabilities of benign
kernel software. Rkprofiler is designed to detect kernel malware that enter the kernel in
both ways. Roughly speaking, before any malware is executed, Rkprofiler looks up the
kernel memory image and identifies all benign kernel code in the VM. Then it groups
them into a Trust Code Zone (TCZ) and a hash table is created to store the code
addresses of the TCZ. When malware is started, any kernel code that does not belong
to the TCZ is regarded as malicious and therefore is tracked by Rkprofiler.

Identification of the trusted kernel code is straightforward if the non-execute (NX)
bit of the page table is supported by the (virtual) Memory Management Unit (MMU) of
a (virtual) processor. In this case, the kernel code and data do not co-exist in any page
of memory. Rkprofiler just needs to traverse the page table of a process to find out all
the executable kernel pages. QEMU can provide a NX-bit enabled virtual processor (by
enabling the PAE paging mechanism), but this system configuration is not common.
Doing so may influence the malware behavior in an undesired manner. For example, the
malware could stop running when it detects that the (virtual) CPU is NX enabled. So,
the current implementation of Rkprofiler does not require enabling the NX-bit of the
virtual CPU. Instead, it interprets all images of benign kernel modules and obtains the
Relative Virtual Addresses (RVA) of the code sections. Then it computes their actual
virtual addresses by adding the RVAs to the module base addresses, which is acquired
by scanning the kernel memory of the VM. After that, Rkprofiler stores the TCZ
addresses in a hash table. However, one common type of kernel malware attack is to
patch the benign kernel code. To accommodate this type of attack, Rkprofiler excludes
the patched code from the TCZ and revises the TCZ hash table at run time. Rkprofiler
identifies the patched code by examining memory write operations and memory copy
functions that the malware performs. Note, malware could escape this detection by
indirectly modifying the TCZ code (e.g., tampering with kernel memory from user
space). A more reliable method is to monitor the integrity of the TCZ as [20] does.
Last, Rkprofiler determines whether a kernel TB is malicious or not right before it is
translated. If the address of a TB is not within the TCZ, it is deemed as a malicious
TB. The hash table implementation of the TCZ ensures that malicious code detection
has a small performance hit on the entire system.

4.1 Malicious Code Detection

Kernel malware could take the form of drivers and be legitimately loaded into the
kernel. They can also be injected into the kernel by exploiting vulnerabilities of benign
kernel software. Rkprofiler is designed to detect kernel malware that enter the kernel in
both ways. Roughly speaking, before any malware is executed, Rkprofiler looks up the
kernel memory image and identifies all benign kernel code in the VM. Then it groups
them into a Trust Code Zone (TCZ) and a hash table is created to store the code
addresses of the TCZ. When malware is started, any kernel code that does not belong
to the TCZ is regarded as malicious and therefore is tracked by Rkprofiler.

Identification of the trusted kernel code is straightforward if the non-execute (NX)
bit of the page table is supported by the (virtual) Memory Management Unit (MMU) of
a (virtual) processor. In this case, the kernel code and data do not co-exist in any page
of memory. Rkprofiler just needs to traverse the page table of a process to find out all
the executable kernel pages. QEMU can provide a NX-bit enabled virtual processor (by
enabling the PAE paging mechanism), but this system configuration is not common.
Doing so may influence the malware behavior in an undesired manner. For example, the
malware could stop running when it detects that the (virtual) CPU is NX enabled. So,
the current implementation of Rkprofiler does not require enabling the NX-bit of the
virtual CPU. Instead, it interprets all images of benign kernel modules and obtains the
Relative Virtual Addresses (RVA) of the code sections. Then it computes their actual
virtual addresses by adding the RVAs to the module base addresses, which is acquired
by scanning the kernel memory of the VM. After that, Rkprofiler stores the TCZ

addresses in a hash table. However, one common type of kernel malware attack is to
patch the benign kernel code. To accommodate this type of attack, Rkprofiler excludes
the patched code from the TCZ and revises the TCZ hash table at run time. Rkprofiler
identifies the patched code by examining memory write operations and memory copy
functions that the malware performs. Note, malware could escape this detection by
indirectly modifying the TCZ code (e.g., tampering with kernel memory from user
space). A more reliable method is to monitor the integrity of the TCZ as [17] does.
Last, Rkprofiler determines whether a kernel TB is malicious or not right before it is
translated. If the address of a TB is not within the TCZ, it is deemed as a malicious
TB. The hash table implementation of the TCZ ensures that malicious code detection
has a small performance hit on the entire system.

4.2 Function Call Tracking

Kernel malware often interacts with the rest of the kernel by calling functions exported
by other kernel modules. In Rkprofiler, we use the terms I2E (Internal-to-External)
and E2I (External-to-Internal) to describe the function-level control flow transferring
between malicious code and benign code. Here, internal and external functions refer
to the malicious function code and benign function code respectively. Function calls
and returns are two types of events that Rkprofiler monitors. For example, I2E call
indicates the event that an internal function invokes an external function; I2E return
refers to the event that an internal function returns to its caller that is an external
function. Capturing these function events is important for Rkprofiler to reveal the
activity of the malware. Further, in an instance, the kernel malware may directly call
the registry functions exported by ntoskrnl.exe like zwSetKeyValue to manipulate local
registry entries. Rkprofiler is also designed to capture the I2I (Internal-to-Internal) call
and return events. By doing so, Rkprofiler is able to construct (partial) call graphs of
the kernel malware, which helps a security professional understand the code structure
of the malware. This capability is important, especially when the malware is obfuscated
to resist static code analysis. Note, E2E (External-to-External) function events are not
monitored here because Rkprofiler does not inspect benign kernel code.

To completely monitor the function-level activity of malware, a data structure called
function descriptor is defined to represent a stack frame (activation record) of a kernel
call stack, allowing Rkprofiler to track the call stacks of the kernel malware. When
a function that is called by malware is detected, Rkprofiler creates a new function
descriptor object and pushes it to the stack. Conversely, when the function is returned,
its function descriptor object is popped from the stack and is deleted. One function
descriptor has a pointer that points to the function descriptor of the caller. This pointer
is used by Rkprofiler to construct the caller-callee relationships in the post-analysis
phase.

The method of detecting a function call event depends on the calling directions. For
I2I and I2E calls, Rkprofiler monitors the CALL instructions executed by the malware.
Further, it can obtain the function address from the operand of a CALL instruction
and the return address that is next to the CALL instruction. For E2I calls, a CALL
instruction belongs to TCZ and is not monitored by Rkprofiler. So, the detection point
is moved to the first instruction of the callee function. To capture E2I calls, Rkprofiler
adds extra data members to the TB descriptor TranslationBlock. The first data member
indicates what the last instruction of this TB is: CALL, JMP, RET or others. If it is

a CALL instruction, the second data member records the return address of the call.
Rkprofiler fills in the two data members of a TB when it is being translated. In addition,
Rkprofiler creates a global pointer that points to the last TB descriptor whose code
was just executed by the virtual CPU. Before translating a malicious TB, Rkprofiler
queries the last TB descriptor to decide if it is an E2I call event. The decision is based
on three criteria: 1) if the last TB is benign; 2) if the last instruction of the last TB
is CALL; and 3) if the return address stored in the kernel stack is equal to the one
stored in the last TB descriptor. The reason for criterion 3 is that the return address
is always constant for both direct and indirect calls. On the other hand, Rkprofiler
processes the function return events in a similar way to the call events: for I2I and E2I
returns, Rkprofiler captures these events by directly monitoring the RET instructions
executed by the malware; for I2E returns, Rkprofiler detects them at the instructions
directly following the RET instructions and the criteria of the decision are similar to
that for the E2I calls.

Two problems complicate the call event detection methods described above. The
first one is a pseudo function call, which is caused by JMP instructions. When a kernel
module attempts to invoke one function exported by another kernel module, it first
executes the CALL instruction to invoke an internal stub function and the stub func-
tion then jumps to the external function by running the JMP instruction. Normally,
the internal stub function is automatically generated by a compiler and the operand
of the JMP function is an IAT entry of this module, whose value is determined and
inserted by the system loader. Without recognition of these JMP instructions, Rkpro-
filer incorrectly treats an I2E call as an I2I call: labeling the new function descriptor
with the internal stub function address. One example of such functions is DbgPrint. To
address a pseudo function call, Rkprofiler first creates an I2I function descriptor and
labels it with the internal stub function address. When detecting if an internal JMP
instruction is executed in order to jump to an external address, Rkprofiler locates the
I2I function descriptor from the top of the function tracking stack, and replaces the
internal address with the external address. The second problem is an interrupt gap.
This is where an interrupt is sent to the (virtual) CPU while it is executing an E2I
CALL (or I2E RET) instruction. Consequently, some interrupt handling instructions
are executed between the E2I CALL (or I2E RET) instruction and the subsequent
internal instruction that Rkprofiler monitors. In this situation, the last TB descriptor
does not record the expected CALL (or RET) instruction, so Rkprofiler is unable to
track the E2I call (or I2E return) event and observes an unpaired return-call event.
The solution to this problem is part of our future work. Fortunately, we did not see
interrupt gaps in the experiments.

4.3 Memory Access Tracking

Rkprofiler observes the hardware-level activity of kernel malware, however it should
be translated to software-level activity to be understandable to users. Thus, given a
virtual address that the malware visits, Rkprofiler is required to find its symbols (e.g.,
variable name and type). In this paper, we name the process of finding symbols for
kernel objects as memory tagging. A memory tag is composed of tag id, virtual address,
type ID, variable name (optional) and parent tag id (optional). If a kernel object is
owned by the malware, it is an internal kernel object; otherwise, it is an external kernel
object. If a kernel object is located in the dynamic memory area (stack and heap), it

is a dynamic kernel object; otherwise, it is a static kernel object. Rkprofiler tags four
types of kernel objects: static internal, dynamic internal, static external and dynamic
external. Static external kernel objects include global variables and Windows kernel
functions. Their symbols are stored in a system map. Tagging a static kernel object
is straightforward. Rkprofiler searches the system map by its virtual address and the
hit entry contains the target symbols. However, tagging a dynamic kernel object is
challenging because its memory is dynamically allocated at run time and the memory
address cannot be predicted. Attackers often strip off the symbols of their malware in
order to delay reverse engineering, so Rkprofiler assumes that malware samples do not
contain valid symbols.

Previous Linux rootkit detection systems [19][4] present one approach of tracking
dynamic kernel objects. A rootkit detector first generates a kernel type graph and
identifies a group of global kernel variables. At run time, it periodically retrieves the
dynamic objects from the global variables based on the graph type. For example, if a
global variable is a linked list head, the detector traverses the list under the direction of
the data structure type of list elements. Unfortunately, this approach cannot be applied
to the task of profiling kernel malware. First, it covers a limited number of kernel
objects, and many other kernel objects such as functions and local variables are not
included. Second, since the creation and deletion of dynamic kernel objects could occur
at any time, the time gap between every two searches in this approach will produce
inaccurate monitoring results. Last, this approach may track many kernel objects that
the malware never visits. In this paper, we propose a new symbol exploration approach,
Aggressive Memory Tagging (AMT), that can precisely find symbols for all kinds of
static and dynamic kernel objects at a low computation cost.

AMT Description We define a kernel object as contagious if another kernel object
can be derived from it. Tag inferring is a process where a kernel object (child object)
is derived from another (parent object). Two types of kernel objects are considered
contagious: pointers and functions. A pointer kernel object could be a pointer variable
or a structure variable containing a pointer member. The child object of a pointer is
the pointee object. For a function, its child objects are the parameters and return value
of this function. AMT follows the principle of the object tracking approach described
above: tracing the dynamic objects from the static objects. Specifically, Rkprofiler first
tags all static kernel objects that the malware accesses (memory reads/writes and
function calls) by querying the system map. Then, the child objects of the existing
contagious tags are tagged via tag inferring. This process is repeated until the malware
stops execution or the user terminates monitoring. Note, a tag could become invalid in
two scenarios: 1) if when a function returns, the tags of its local variables are invali-
dated; and 2) if a memory buffer is released, the associated tag becomes out of date as
well. Only valid tags can generate valid child tags.

Rkprofiler performs tag inferring through a pointer object at the time that the
malware reads or writes the pointer object. The reason is as follows: when reading a
pointer, the malware is likely to visit the pointee object through the pointer; when
writing a pointer, the malware will possibly modify the pointer to point to another
object if the new value is a valid memory address. Because the executions of benign
kernel code are not monitored by Rkprofiler, both read and write operations over a
pointer have to be tracked here. If only read operations are monitored, Rkprofiler
cannot identify the kernel objects whose pointers are written by malicious code and

read by benign code. Many hooks implanted by rootkits fall into this scenario. Similarly,
if only write operations are monitored, Rkprofiler can miss the reorganization of kernel
objects whose pointers are written by benign code and read by malicious code. Many
external kernel objects that are visited by rootkits fall into this scenario. The procedure
of tag inferring through a pointer object is as follows: 1) Rkprofiler detects a memory
read or write operation and searches the tag queue to check if the target memory
corresponds to a contagious tag; 2) if yes, Rkprofiler obtains the up-to-date pointer
value and verifies that it is a valid memory address; 3) Rkprofiler searches the tag
queue to check if the pointee object is tagged; 4) if not, Rkprofiler obtains the symbols
of the pointee object from the type graph and creates a new tag. On the other hand,
when a recognizable function is called, tag inferring through the function object is
carried out by identifying the function parameters. Input parameters are tagged when
the function is called; output parameters are tagged when the function returns.

Implementation Rkprofiler creates a data structure called tag descriptor to represent
memory tags. A tag descriptor includes the virtual address of the tag, type ID, a boolean
variable, a num variable for memory type, one pointer to the parent tag and one
pointer to the function descriptor. The Boolean variable indicates if a tag is contagious
or not. The memory type member tells if the tagged object is on the stack, heap or
another memory object. Rkprofiler monitors the kernel memory management functions
called by malware and records it to a heap list (the memory buffers allocated to the
malware). When a buffer is released, Rkprofiler removes it from the heap list. The
function descriptor member of a tag helps identify which function is running when this
tag is generated. Finally, Rkprofiler maintains a tag queue that contains all the tags
that have been created. When a tag is created, its tag descriptor is inserted into the
tag queue. The tag is removed from the tag queue after it becomes invalid. Because
malware’s memory accesses are frequent events, Rkprofiler needs to search the tag
queue frequently as well. The tag queue describes a group of various-sized memory
segments. If it is organized as a list structure like a linked list, its linear searching
time is expensive. To address the problem, Rkprofiler applies the approach presented
in [29] that converts a group of various-sized memory segments to a hash table. The
basic idea is to break a memory segment into a number of fix-sized memory segments
(buckets). A list structure is stored in one bucket to handle the case that some portions
of the bucket should not be counted. In this way, the time for searching the tag queue
becomes constant.

The Windows kernel provides built-in supports for linked lists via two data struc-
tures: SINGLE_LIST_ENTRY (for single linked list) and LIST_ENTRY (for double linked
list). Several kernel APIs are available to simplify driver developers’ tasks when man-
aging linked lists (e.g., adding or removing elements). However, this support causes
problems to the memory tagging process of Rkprofiler. For example, in a double linked
list, each element contains a data member whose data type is LIST_ENTRY. Two pointers
of this data member point to the LIST_ENTRY data members of two neighbor elements.
When one list element is tagged and malware tries to visit the next list element from
this one, Rkprofiler just tags the LIST_ENTRY data member of the next list element
with the type LIST_ENTRY. This is not acceptable because what Rkprofiler wants to
tag is the next list element with its type. In the pre-analysis stage, we annotated the
SINGLE_LIST_ENTRY and LIST_ENTRY data members with the type names of list el-
ements and their offsets. When parsing the type header file, the generator replaces

the SINGLE_LIST_ENTRY and LIST_ENTRY data members with pointers to list elements.
The offset values are also stored in the type graph, allowing the monitor to find the
actual addresses of neighbor elements. Another problem is relative pointers. The Win-
dows kernel sometimes uses relative pointers to traverse a list in the following way: the
address of the next element is computed by adding the relative pointer and the address
of the current element. One example is the data buffer that contains the disk file query
result by kernel function NtQueryDirectoryFile. Because these relative pointers are de-
fined as unsigned integer, we also need to label the relative pointers in the kernel type
header file such that Rkprofiler can recognize them and properly compute the element
addresses.

Rkprofiler has to handle two ambiguous data types that the Windows kernel source
uses. The first one is union. Union is a data type that contains only one of several
alternative members at any given time, and the memory storage required for a union
is decided by its largest data member. Unfortunately, guessing which data member of
a union should be used at a given time depends on code context, which is hard to
automate in Rkprofiler. The second one is generic pointer pvoid. Pvoid can be caste
to another data type by developers. The actual data type that pvoid points to at a
given time is context dependent too. Automatically predicting the pointee data type
for pvoid is another challenge. The current default solution is to replace a union with
one of its largest members and leave pvoid alone. While performing the analysis, a user
can modify the kernel data type header file and change the definition of union or pvoid
in terms of his understanding of their running contexts. An automated solution to this
problem is part of our future work.

4.4 Hardware Access Monitoring

In comparison to user-space malware, kernel malware is able to bypass the media-
tion of the OS and directly access low-level hardware resources. In X86 architectures,
in addition to the memory and general-purpose registers that kernel malware access
through instructions like MOV and LEA, other types of system storage resources could
also be visited and manipulated by kernel malware. CPU caches (e.g., TLB) dedicate
registers and buffers of I/O controllers. Attackers have developed techniques that take
advantage of these hardware resources to devise new attacks. For example, upon a sys-
tem service (system call) invocation made by a user-space process, Windows XP uses
instruction SYSENTER (for Intel processor) to perform the fast transition from user
space to kernel space. The entry point of kernel code (a stub function) is stored in a
dedicated register called IA32_SYSENTER_EIP, which is one of Model-Specific Registers
(MSRs). When executing SYSENTER, the CPU sets the EIP register with the value
of IA32_SYSENTER_EIP. Then, the kernel stub function is called and it transfers the
control to the target system service. To compromise Windows system services, a rootkit
could alter the system control-flow path by resetting the IA32_SYSENTER_EIP to the
starting address of a malicious stub function, and this function can invoke a malicious
system service. So, capturing the malware’s accesses to these sensitive hardware re-
sources could be essential to comprehend its attacking behavior. Currently, Rkprofiler
monitors twenty system instructions that malware might execute. They are not meant
to be complete at this point and can be expanded in the future if necessary.

5 Case Studies

5.1 FUTo

FUTo is an enhanced version of the Windows kernel rootkit FU, which uses the tech-
nique called Direct Kernel Object Manipulation (DKOM) to hide processes and drivers
and change the process privileges. DKOM allows rootkits to directly manipulate kernel
objects, avoiding the use of kernel hooks to intercept events that access these kernel
objects. For example, a rootkit can delete an item from the MODULE_ENTRY list to hide
a device driver without affecting the execution of the system. This technique has been
applied to many rootkit attacks, such as hiding processes, drivers and communication
ports, elevating privilege levels of threads or processes and skewing forensics [12]. In this
experiment, FUTo was downloaded from [21] and it included one driver (msdirectx.sys)
and one executable (fu.exe). The fu.exe was a command-line application that installed
the driver and sent commands to the driver according to the user’s instructions. Dur-
ing the test, we executed the fu.exe to accomplish the following tasks: querying the
command options, hiding the driver (msdirect.sys) and hiding the process (cmd.exe).
After that, we used Windows native system utilities (task manager and driverquery)
to verify that the target driver and process did not show up in their reports. The test
took less than 3 minutes.

We compared the call graph created by Rkprofiler with the call graph created by
IDA-Pro (which uses the static code analysis technique). It was found that the former
was the sub-graph of the latter, which is as expected. The tag trace graph of this
test is shown in Table 1. The driver msdirectx was executed in four process contexts
in the graph. Process 4 (System) is the Windows native process that was responsible
for loading the driver misdirectx. The driver initialization routine (with tag_id 0)
was executed in this process context. The other three processes were associated with
FUTo.exe and they communicated with the misdirectx driver to perform the tasks of
hiding the driver and process. One important observation is that the major attacking
activities have been recorded by Rkprofiler and can be easily identified in the tag trace
table by users. To hide itself, the driver msdirectx first reads the address of its module
descriptor (with tag_id 9) from its driver object (with tag_id 1). Then it removes this
module descriptor from the kernel MODULE_ENTRY list by modifying the Flink and Blink
pointers in two neighbor module descriptors (tag_id 15 and 16). Similarly, to conceal
process cmd.exe, msdirectx first obtains the process descriptor (with tag_id 2) of
the current process by calling kernel function IoGetCurrentProcess. Starting from this
process descriptor, msdirectx traverses the kernel EPROCESS list to find the process
descriptor (with tag_id 4) of process csrss.exe. These two steps take place in the System
process context. After receiving the command for hiding the cmd.exe process sent by
one of the fu.exe processes, msdiretx searches the kernel EPROCESS list, beginning
with the process descriptor of csrss.exe. When the process descriptor (with tag_id 32)
of cmd.exe is found, msdirectx removes it from the kernel EPROCESS list by altering
Flink and Blink pointers in two neighbor process descriptors (with tag_id 31 and
33). Furthermore, Flink and Blink pointers in the process descriptor of cmd.exe are
also modified to prevent the random Blue Screen of Death (BSOD) when exiting the
hidden process. To evade the detection of rootkit detectors, FUTo deletes the hidden
process from the other three kernel structures: kernel handle table list, handle table of
the process csrss.exe and PspCidTable. The first one is a linked list, and the DKOM
behavior of FUTo over this kernel structure was captured and displayed in the tag trace

Table 1. FUTO tag trace table

Tag ID Address Type Parent Category Size(bytes) Process ID Process Name

0 0xf6b7e7e6 FUNCT 0049 0953 DriverInit n/a function n/a 4 System

1 0x825c3978 DRIVER OBJECT n/a struct 168 4 System

2 0x827cba00 EPROCESS n/a struct 608 4 System

3 0x825991c8 EPROCESS 2 struct 608 4 System

4 0x825ce020 EPROCESS 3 struct 608 4 System

5 0xf7b0ec58 PVOID n/a pointer 4 4 System

6 0xf6b8b92 PDEVICE OBJECT n/a pointer 4 4 System

7 0xf6b7e722 FUNCT 0049 095B MajorFunction 1 function n/a 4 System

8 0xf6b7d43a FUNCT 00BC 0957 DriverUnload 1 function n/a 4 System

9 0x8264600 MODULE ENTRY 1 struct 52 4 System

10 0x82609f18 DEVICE OBJECT n/a struct 184 1920 fu.exe

11 0x8266fc28 IRP n/a struct 112 1920 fu.exe

12 0x8266fc03 IRP n/a struct 112 1920 fu.exe

13 0x826bc118 IRP n/a struct 112 1952 fu.exe

14 0x826bc103 IRP n/a struct 112 1952 fu.exe

15 0x826d8288 MODULE ENTRY 9 struct 52 1952 fu.exe

16 0x8055ab20 MODULE ENTRY 9 struct 52 1952 fu.exe

17 0x826bc210 IRP n/a struct 112 1952 fu.exe

18 0x825d1020 EPROCESS 4 struct 608 1880 fu.exe

19 0x8273a7c8 EPROCESS 18 struct 608 1880 fu.exe

20 0x826eb408 EPROCESS 19 struct 608 1880 fu.exe

21 0x825d5a80 EPROCESS 20 struct 608 1880 fu.exe

22 x825e4da0 EPROCESS 21 struct 608 1880 fu.exe

23 0x825a9668 EPROCESS 22 struct 608 1880 fu.exe

24 0x82695180 EPROCESS 23 struct 608 1880 fu.exe

25 0x825a0da0 EPROCESS 24 struct 608 1880 fu.exe

26 0x82722980 EPROCESS 25 struct 608 1880 fu.exe

27 0x825c27e0 EPROCESS 26 struct 608 1880 fu.exe

28 0x82624bb8 EPROCESS 27 struct 608 1880 fu.exe

29 0x825de980 EPROCESS 28 struct 608 1880 fu.exe

30 0x8248bda0 EPROCESS 29 struct 608 1880 fu.exe

31 0x8264a928 EPROCESS 30 struct 608 1880 fu.exe

32 0x8263a5a8 EPROCESS 31 struct 608 1880 fu.exe

33 0x825d9020 EPROCESS 32 struct 608 1880 fu.exe

34 0xe13ed7b0 HANDLE TABLE 4 struct 68 1880 fu.exe

35 0x82607d48 ETHREAD 32 struct 600 1880 fu.exe

36 0xe15ca640 HANDLE TABLE 32 struct 68 1880 fu.exe

37 0xe10a8a08 HANDLE TABLE 36 struct 68 1880 fu.exe

38 0xe1747cd0 HANDLE TABLE 36 struct 68 1880 fu.exe

graph too (see tag_id 36, 37 and 38). The last two kernel structures are implemented as
three-dimensional arrays, which is not supported by the current version of Rkprofiler.
So, the tag trace graph does not include the modification of these two kernel structures.

Combining Rkprofiler’s output with other reports, we discovered other interest-
ing behavior of FUTo. First, FUTo employed an IOCTL mechanism to pass control
commands from user space to kernel space. During the driver initialization, a device
\\Device\\msdirectx was created by calling the kernel function IoCreateDevice. Then
a dispatch function (data type FUNCT_0049_095B_Majorfunction and tag_id 7) was
registered to the driver object (with tag_id 1) that was assigned to msdirectx by the
Windows kernel. This dispatch function was invoked by the kernel I/O manager to
process I/O requests issued by the fu.exe processes. By checking the parameters of
this dispatch function, we found that the I/O control codes for process and driver
concealment tasks are 0x2a7b2008 and 0x2a7b2020. Second, the kernel string function
strncmp was called 373 times by one msdirectx function, implying a brute-force search-
ing operation. The first parameter of this function was constant string ”System” and
the second parameter was 6 bytes of data within the process descriptor of the process
System (with tag_id 2). Beginning with the address of the process descriptor, the ad-
dress of the second parameter was increased by one byte each time this string function
was called. The purpose of the search was to find the offset of the process name in
the EPROCESS structure. This was confirmed by manually checking the FUTo source.
It seems that the definition of EPROCESS structure has changed over the Windows
versions and the brute-force searching allows FUTo to work with different Windows
versions.

5.2 TCPIRPHOOK

Inserting hooks into the kernel to tamper with the kernel control-flow path is one major
technique that attackers apply to rootkit attacks. A hooked function can intercept and
manipulate kernel data to serve its malicious aims. TCPIRPHOOK is one such rootkit
and it intends to hide the TCP connections from local users. Specifically, this rookit
exploits the dispatch function table of the TCP/IP driver object (associated with driver
TCPIP.sys) and substitutes a dispatch function with its hook. The hooked function
registers another hook to the I/O request packets (IRP) such that the second hook can
intercept and modify the query results for network connections. We downloaded the
rootkit package from [21] which also included one driver file, irphook.sys. The rootkit
was implemented to conceal all http connections (with destination port 80). Before
installing the rootkit, we opened Internet Explorer to visit a few websites, and then
ran the netstat utility to display the corresponding http connections. We loaded the
irphook.sys to the kernel and used netstat to verify that all https connections were
gone. In the end, we unloaded the irphook.sys. The test took less than 3 minutes.

The call graph of TCPIRPHOOK is shown in Figure 2. Function 0xf7ab8132 (ir-
phook.sys) was the first hook that was inserted into the 14th entry (IRP MJ DEVICE CONTROL,)
of the dispatch function table in the driver TCPIP.sys. The replaced dispatch function
was TCPDispatch (address 0xf726fddf) owned by driver TCPIP.sys. The first hook
invoked TCPDispatch 15 times in the call graph. In fact, it is common for rootkits to
call the original function in a hook, which reduces the coding complexity of the hook.
Function 0xfa7b8000 (irphook.sys) was the second hook that was responsible for mod-
ifying the query results for network connections. Although the second hook seems to

Fig. 2. TCPIRPHOOK call graph

be called by TCPDispatch in the call graph, the actual direct caller of the second hook
was IopfCompleteRequest (ntoskrnl.exe). This is because Rkprofiler did not track the
benign kernel code and had no knowledge of their call stacks. On the other hand, even
the indirect caller-callee relation between TCPDisptch and the second hook can imply
that the network connection query caused synchronous IRP processing and completion
in the kernel, which is comparable to asynchronous IRP processing and completion.
But this information cannot be inferred by simply looking at the IDA-pro’s call graph,
because IDA-pro cannot statically determine the symbol of function TCPDispatch and
the calling path from the first hook to the second hook in Figure 3 is not presented in
the IDA-pro’s call graph.

Figure 3 is the tag trace graph of TCPIRPHOOK. Two hooking activities are il-
lustrated in this graph. The first hook was installed at the driver loading stage. To
hook the dispatch function table of the driver TCPIP.sys, TCPIRPHOOK first calls
the kernel function IoGetDeviceObjectPointer with the device name \\Device\\Tcp to
get the pointer (with tag_id 7) to the device object (with tag_id 8) owned by driver
TCPIP.sys. Then, the device object was visited to get the address of the driver object
(with tag_id 9) owned by driver TCPIP.sys. Last, TCPIRPHOOK carried out the
hooking by accessing the 14th entry of the dispatch function table in the driver object:
reading the address of the original dispatch function (with tag_id 10) and storing it to
a global variable; writing the address of the second hook (with tag_id 11) to the table
entry. The second hook was dynamically installed in the context of process netstat.exe.
When netstat.exe was executed to query TCP connection status, the Windows kernel
I/O manager created an IRP (with tag_id 12) for the netstat.exe process. This IRP
was passed to the first hook (function_id 5 and tag_id 11) of TCPIRPHOOK. The
first hook obtained the IO_STACK_LOCATION object (with tag_id 13) from this IRP
and wrote the address of the second hook (with tag_id 14) to the data member Com-
pletionRoutine of the IO_STACK_LOCATION object. Thus, being one IRP completion
function, the second hook would be called by the Windows kernel to process the I/O
return data for this IRP. Last, the tag trace graph also captures the manipulation of the
I/O return data. The buffer of the I/O return data was pointed to by the data member

Fig. 3. TCPIRPHOOK tag trace graph

UserBuffer of IRP and it was an array of structure CONNINF101 (with tag_id 15).
The size of the buffer was stored in the data member IoStatus.Information of the IRP.
Clearly, the tag_id 15 was modified in the tag trace graph. By examining the tag trace
table, we found that the status of all http connections in the buffer were changed from
5 to 0.

5.3 Rustock.B

Rustock.B is a notorious backdoor rootkit that hides malicious activities on a compro-
mised machine. The distinguished feature of this rootkit is the usage of multi-layered
code packing, which makes static analysis cumbersome [7]. Unlike the other two rookits
described above, we did not have access to the source code of this rootkit. However,
several analysis results on this rootkit published on the Internet helped us understand
some behaviors of this rootkit. We downloaded Rustock.B from [20] as one executable.
During the test, we just double-clicked the binary and waited until the size of the
Rkprofiler log stop being populated. The test lasted about five minutes.

A malicious driver named system32:lzx32:sys was detected by Rkprofiler. 90857 calls
and 2936 tags were captured in the test. The driver contained self-modifiying code and
we found many RET instructions that did not have corresponding CALL instructions at
code unpacking stages. This is because unpacking routines executed JMP instructions
to transfer the controls to the intermediate or unpacked code. In addition, the driver
modified the dedicated register IA32_SYSENTER_EIP through WRMSR and RDMSR
instructions to hijack the Windows System Service Descriptor Table (SSDT). One
hook was added to the dispatch function table of driver Ntfs.sys to replace the original
IRP_MJ_CREATE dispatch function. This is similar to what TCPIRPHOOK does. We

compared the report generated by Rkprofiler with others on the Internet and they
matched each other well. Table 2 lists the external functions and registry keys that
were called and created by Rustock.B. Unfortunately, the full report of this test cannot
be presented due to the space constraint.

Table 2. External functions and registry keys manipulated by Rustock.B

External Functions

ExAllocatePoolWithTag, ExFreePoolWithTag, ExInitializeN-
PagedLookasideList, IoAllocateMdl, IoGetCurrentProcess, IoGet-
DeviceObjectPointer, IoGetRelatedDeviceObject, KeClearEvent,
KeDelayExecutionThread, KeEnterCriticalRegion, KeInitial-
izeApc, KeInitializeEvent, KeInitializeMutex, KeInitializeSpin-
Lock, KeInsertQueueApc, KeLeaveCriticalRegion, KeWaitForS-
ingleObject, MmBuildMdlForNonPagedPool, MmMapLocked-
Pages, MmProbeAndLockPages, NtSetInformationProcess,
ObfDereferenceObject, ObReferenceObjectByHandle, Probe-
ForRead, PsCreateSystemThread, PsLookupProcessByProcessId,
PsLookupThreadByThreadId, RtlInitUnicodeString, _stricmp,
_strnicmp, swprintf, wcschr, wcscpy, _wcsicmp, _wcslwr, wcsncpy,
_wcsnicmp, wcstombs, ZwClose, ZwCreateEvent, ZwCreateFile,
ZwDeleteKey, ZwEnumerateKey, ZwOpenKey, ZwQueryInforma-
tionFile, ZwQueryInformationProcess, ZwQuerySystemInforma-
tion, ZwReadFile

Registry Keys

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\pe386

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Enum\Root\LEGACY_pe386

6 Discussion

In addition to the incomplete kernel symbols provided by Microsoft, the current im-
plementation of Rkprofiler suffers several other limitations that could be exploited by
attackers to evade the inspection. First, attackers may compromise the kernel with-
out running any malicious kernel code, e.g., directly modifying kernel data objects
from user space or launching return-to-lib attacks without the use of any function
calls [24]. Rkprofiler is not able to detect and profile such attacks. Instead, other de-
fense approaches like control flow integrity enforcement [2] could be adopted to address
them. Second, the instruction pair CALL/RET is used as the sole indicator of function
call and return events. attackers can obfuscate these function activities to escape the
monitoring. For example, JMP/JMP, CALL/JMP and JMP/RET can be employed to
implement the function call and return events. Moreover, instead of jumping to a target
instruction (either the first instruction of a callee function or the returned instruction
of a caller function), a attacker could craft the code to jump to one of its neighbor
instructions, while preserving the software logic intact. Defending against such attacks
is part of our future work. Third, a attacker may deter the AMT method by accessing

dynamic objects in unconventional ways. For example, a rootkit can scan the stack of
a benign kernel function to get the pointer to a desired kernel object. These attacks
are very challenging, because building an accurate and up-to-date symbol table for all
kernel objects is impractical. Last, malware may have the capability of detecting vir-
tual machine environments and change their behavior accordingly. Exploring multiple
execution paths [16] and static analysis could mitigate this problem to some extent.

7 Related Work

Many previous works have focused on run time rootkit detection [19][4][17][18][28] and
prevention [29][22][25]. The main purpose of these mechanisms is to protect data and
code integrity of the guest OS at run time. On the other hand, researchers have also
applied program analysis techniques to create offline rootkit defense mechanisms with
goals such as rootkit identification, hook detection and so on. Several works that fall
into this category are discussed below.

Rootkit Identification: Kruegel [13] proposed a system that performs static anal-
ysis of rootkits using symbolic execution, a technique that simulates program execu-
tion with symbols. This system can only detect known rootkits. Moreover, anti-static-
analysis techniques like code obfuscation can be used to defeat this system. Limbo [26]
is another rootkit analysis system that loads a suspicious driver into a PC emulator
and uses flood emulation to explore multiple running paths of the driver. Limbo has
a low false positive rate, but it performs poorly when detecting unknown rootkits.
Also, flood emulation makes rootkits behave abnormally in the emulator, possibly re-
sulting in inaccurate detection. Panorama [31] uses dynamic taint analysis to detect
privacy-breaching rootkits. Sensitive system data like keys and packets are tainted and
system-wide taint propagation is tracked. A taint graph is generated to tell whether a
target rootkit accesses the tainted data or not. Although this system is good at captur-
ing data-theft rootkits, it cannot provide necessary behavior information (e.g., kernel
hooking) associated with other types of rootkits.

Hook Detection: HookFinder [30] and HookMap [27] aim to identify the hooking
behavior of rootkits. HookFinder performs dynamic taint analysis and allows users to
observe if one of the impacts (tainted data) is used to redirect the system execution into
the malicious code. On the other hand, HookMap is intended to identify all potential
hooks on the kernel-side execution paths of testing programs such as ls and netstat.
Dynamic slicing is employed to identify all memory locations that can be altered to
diverted kernel control flow. Unfortunately, hooking is only one aspect of rootkit be-
havior and both systems cannot provide comprehensive a view of rootkit activities in
a compromised system.

Discovery of Sensitive Kernel Data Manipulation: K-tracer [14] is a rootkit
analysis system that automatically discovers the kernel data manipulation behaviors of
rootkits including sensitive data access, modification and triggers. K-tracer performs
data slicing and chopping on sensitive data in the rootkit trace and identifies the data
manipulation behaviors. K-tracer cannot detect hooking behaviors of rootkits and is
unable to deal with DKOM and hardware-based rootkits. In comparison, Rkprofiler
can handle a broad range of rootkits, including DKOM and hardware-based rootkits,
and provide a complete picture of rootkit activities in a compromised system.

Rootkit Profiling: PoKeR [23] is a QEMU-based analysis system that shares the
same design goal as Rkprofiler: comprehensively revealing rootkit behavior. PoKeR is

capable of producing rootkit traces in four aspects: hooking behavior, target kernel
objects, user-level impact and injected code. Similar to Rkprofier, PoKeR infers the
dynamic kernel object starting from the static kernel objects. However, PoKeR only
tracks the pointer-based object propagation, while Rkprofiler tracks both pointer-based
and function-based object propagation. So Rkprofiler can identify more kernel objects
than PoKeR. In addition, the function call and hardware access monitoring features of
Rkprofiler are not offered by PoKeR.

8 Conclusion

In this paper, we present a sandbox-based rootkit analysis system that monitors and
reports rootkit behavior in a guest OS. The evaluation results demonstrate the effec-
tiveness of this system in revealing rootkit behavior. However, to strengthen the current
implementation of Rkprofiler, we need OS vendors to provide the unpublished symbols,
some of which may have been reversely engineered by attackers.

References

1. Anubis Project. http://anubis.iseclab.org/?action=home, 2009.
2. M. Abadi, M. Budiu, U. Erlingsson, and j. Ligatti. Control-flow integiryt: Principles, im-

plementations, and applications. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2005.

3. BitBlaze Project. http://bitblaze.cs.berkeley.edu/, 2009.
4. A. Baliga, V. Ganapathy and L. Iftode. Automatic Inference and Enforcement of Ker-

nel Data Structure Invariants. . In Proceedings of the 24th Annual Computer Security
Applications Conference (ACSAC), 2008.

5. F. Bellard. QEMU and Kqemu. http://fabrice.bellard.free.fr/qemu/, 2009.
6. CBS News. Conficker Wakes Up.

http://www.cbsnews.com/stories/2009/04/09/tech/cnettechnews/main4931360.shtml,
2009.

7. K. Chiang and L. Lloyd. A case Study of the Rustock Rootkit and Spam Bot. In First
workshop on hot topics in understanding botnets, 2007.

8. Dr.Web Company. Win32.Ntldrbot (aka Rustock.C) no longer a myth, no longer a threat.
New Dr.Web scanner detects and cures it for real. http://info.drweb.com/show/3342/en,
2009.

9. T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection Based Architecture for
Intrusion Detection. In Proceedings of the Symposium on Network and Distributed System
Security (NDSS), 2003.

10. Geeg Blog. The Conficker Worm Awakens. http://geeg.info/blog4.php/2009/04/the-
conficker-worm-awakens, 2009.

11. GraphViz Project. http://www.graphviz.org/, 2009.
12. G. Hoglund, J. Butler. Rootkits: Subverting the Windows Kernel. Addison-Wesley Pro-

fessional, August 2005.
13. B. C. Kruegel, W. Robertson and G. Vigna. Detecting Kernel-Level Rootkits through

Binary Analysis. In Proceedings of the 20th Annual Computer Security Applications Con-
ference (ACSAC), 2004.

14. A. Lanzi, M. Sharif, W. Lee. K-Tracer: A System for Extracting Kernel Malware Behavior.
In Proceeding of the Annual Network and distributed System Security Symposium (NDSS),
2009.

15. Microsoft Symbol Server. http://msdl.microsoft.com/download/symbols, 2009.

16. A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for malware
analysis. In proceedings of the IEEE Symposium on Security and Privacy, 2007.

17. N. L. Petroni, T. Fraser, J. Molinz, and W. A. Arbaugh. Copilot - a Coprocessor-based
Kernel Runtime Integrity Monitor. In Proceedings of the USENIX Security Symposium,
2004.

18. N. L. Petroni, T. Fraser, A. Walters, and W. A. Arbaugh. An Architecture for
Specification-Based Detection of Semantic Integrity Violations in Kernel Dynamic Data.
In Proceedings of the USENIX Security Symposium, 2006.

19. N. L. Petroni, M. Hicks. Automated Detection of Persistent Kernel Control-Flow Attacks.
In Proceedings of the ACM Conference on Computer and Communications Security (CCS),
2007.

20. Offensivecomputing Website. http://www.offensivecomputing.net/, 2009.
21. Rootkit website. http://www.rootkit.com, 2009.
22. R. Riley, X. Jiang and D. Xu. Guest-Transparent Prevention of Kernel Rootkits with

VMM-based Memory Shadowing. In Proceedings of International Symposium on Recent
Advances in Intrusion Detection (RAID), 2008.

23. R. Riley, X. Jiang, D. Xu. Multi-Aspect Profiling of Kernel Rootkit Behavior. In Pro-
ceedings of the ACM SIGOPS European Conferecne on Computer Systems (EuroSys),
2009.

24. H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc without
Function Calls. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS), 2007.

25. A. Seshadri, M. Luk, N. Qu and A. Perrig. SecVisor: A Tiny Hypervisor to Guarantee Life-
time Kernel Code Integrity for Commodity OSes. In Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), 2007.

26. J. Wilhelm and T. Chiueh. A Forced Sampled Execution Approach to Kernel Rootkit
Identification. In Proceedings of International Symposium on Recent Advances in Intrusion
Detection (RAID), 2007.

27. Z. Wang, X. Jiang, W. Cui, X. Wang. Countering Persistent Kernel Rootkits Through sys-
tematic Hook Discovery. In Proceedings of International Symposium on Recent Advances
in Intrusion Detection (RAID), 2008.

28. X. Jiang, X. Wang, D. Xu. Stealthy Malware Detection through VMM-Based ”Out-of-the-
Box” Semantic View Recontruction. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2007.

29. C. Xuan, J. Copeland and R. Beyah. Shepherding Loadable Kernel Modules through
On-demand Emulation. In Proceedings of the conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA), 2009.

30. H. Yin, Z. Liang, and D.Song. Hookfinder: Identifying and understanding malware hooking
behaviors. In Proceeding of the Annual Network and distributed System Security Sympo-
sium (NDSS), 2008.

31. H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: Captureing System-
wide Information Flow for Malware Detection and Analysis. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2007.

