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ABSTRACT
Social networks are important mediums for communication,
information dissemination, and influence spreading. Most of
existing works focus on understanding the characteristics of
social networks or spreading information through the “word
of mouth” effect of social networks. However, motivated by
applications of alleviating social problems, such as drink-
ing, smoking, addicting to gaming, and influence spreading
problems, such as promoting new products, we propose a
new optimization problem named the Minimum-sized Influ-
ential Node Set (MINS) selection problem, which is to iden-
tify the minimum-sized set of influential nodes, such that
every node in the network could be influenced by these se-
lected nodes no less than a threshold τ . Our contributions
are threefold. First, we prove that, under the independent
cascade model, MINS is NP-hard. Subsequently, we present
a greedy approximation algorithm to address the MINS s-
election problem. Moreover, the performance ratio of the
greedy algorithm is analyzed. Finally, to validate the pro-
posed greedy algorithm, extensive experiments and simula-
tions are conducted both on real world coauthor data sets
and random graphs.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory
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1. INTRODUCTION
A social network (e.g., Facebook and MySpace) is a net-

work made up of a set of nodes (such as individuals or or-
ganizations) and the social ties (such as relations and inter-
actions) among these nodes. Ever since social networks ap-
pear, they play a fundamental role as a medium for spread-
ing information, ideas, and influences among individuals.
With the emergence of social applications (such as MSN,
Wikis, Netflix, and Twitter), there have been tremendous
interests in exploring social influences from individual-to-
individual and individual-to-group interactions [1, 2, 3, 4].
This is because that the social influence is becoming a criti-
cal, complex, and subtle force to dominate the dynamics of
a social network. As a result, extensive researches have been
dedicated to select a set of influential users to spread ideas
and information within a group recently. In this paper, mo-
tivated by influence spreading applications and alleviating
social problems, such as drinking, smoking, and addicting
to gaming [5], we aim to find a Minimum-sized Influential
Node Set (MINS), which influences every individual in a so-
cial network no less than a pre-defined threshold τ .

Constructing an MINS is helpful to alleviate the aforemen-
tioned social problems, and it is also helpful for promoting
new products in a social network. Consider the following
scenario as a motivation example. A small company wants
to market a new product in a community. For saving the
budget, but to get the maximum profit, the company would
like to distribute the product samples to a small number
of initial influential users in the community. The company
wishes that these initial users would love the product and
start to influence their friends in the community. The goal is
that every user in the community is influenced by the initial-
ly selected users no less than τ eventually. To sum up, the
specific problem we investigate in this paper is the following:
given a social network, and a threshold τ , how to identify a
minimum-sized subset of the individuals in the network such
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that the subset can result in a influence on every individual
in the social network no less than τ .

The proposed MINS selection problem is different from
the influence maximization problem [6], which tries to find
a subset of individuals M , such that, for a preset threshold
k, |M | = k and M has the maximum expected number of
influenced individuals over other subsets of size k. The prob-
lem investigated in this paper is to find a minimum-sized set
of influential nodes, so that they have the influence on every
node in the network no less than τ . A related work to our
research is [7], which is to find a minimum-sized Positive In-
fluence Dominating Set (PIDS) D, so that every node has at
least half of its neighbors in D. Actually, the authors in [7]
studied the MINS selection problem under the deterministic
linear threshold model, in which the influence from a pair of
nodes is represented by a weight and an individual can be
positively influenced when the sum of the weights exceeds
a pre-determined threshold. To be specific, the authors in
[7] assumed that the influence of each social tie is always
1, and an individual can be positively influenced when at
least half of its neighbor nodes are in D. Nevertheless, the
deterministic linear threshold model cannot fully character-
ize the social influence between each pair of nodes in a real
social network. This is because that, in the physical world,
the strength of the social influence between different pairs of
nodes may be different and is actually a probabilistic value
[1, 2, 3, 4]. Hence, we explore the MINS selection problem
under the independent cascade model [6], where individu-
als can influence their neighbors with certain independent
probabilities. In this paper, we study MINS under the inde-
pendent cascade model. We first analyze the NP-hardness of
MINS, and then propose a greedy approximation algorithm
to solve the problem with performance analysis. Particular-
ly, the main contributions of this paper are summarized as
follows.

1) We introduce a new optimization problem, named the
Minimum-sized Influential Node Set (MINS) selection prob-
lem, which is to identify the minimum-sized set of influential
nodes, that could influence every node in the network no less
than a pre-defined threshold τ . We further prove that it is
a NP-hard problem under the independent cascade model.

2) We define a polymatroid contribution function, which
suggests us a greedy approximation algorithm called MINS-
GREEDY to address the MINS selection problem. Compre-
hensive theoretical analysis about its performance ratio is
also given in the paper.

3) We also conduct extensive experiments and simulations
to validate our proposed algorithm both on real world coau-
thor data sets and random graphs. The experiment and
simulation results show that the proposed greedy algorithm
works well to solve the MINS selection problem. More im-
portantly, the solutions obtained by the greedy algorithm is
very close to the optimal solutions of MINS in small scale
networks.

The rest of this paper is organized as follows: in Section 2,
we review some related literatures. In Section 3, we first in-
troduce the network model and then we formally define the
MINS selection problem and prove its NP-hardness. The
greedy algorithm and the theoretical analysis of the algo-
rithm are presented in Section 4. The experimental results
are presented in Section 5 to validate our proposed algorith-
m. Finally, the paper is concluded in Section 6.

2. RELATED WORK
In this section, we first briefly review the related works

of the influence maximization problem, and the PIDS prob-
lem. Subsequently, we summarize some related literatures
of social influence analysis, followed by some remarks.

2.1 Influence Maximization Problem
Domingos et al. [8, 9] were the first to emphasize the node

selection problem when propagating information through so-
cial networks. They considered the social relations of indi-
viduals and proposed a probabilistic information propaga-
tion model for the problem, as well as several heuristic solu-
tions. Subsequently, Kempe et al. formulated the influence
maximization problem and studied the problem under two
different models i.e., the linear threshold model and the in-
dependent cascade model in [6, 10]. They proposed greedy
algorithms and analyzed their performance ratios, which are
1− 1

e
under both models. To address the scalability problem

of the algorithms in [6, 10], Leskovec et al. [11] presented
a “lazy-forward” optimization scheme in selecting initial n-
odes, which greatly reduces the number of influence spread
evaluations. Laterly, Chen et al. [12, 13, 14] showed that
the problem of computing exact influence in social networks
under both the linear threshold model and the independen-
t cascade model is #P-Hard. They also proposed scalable
algorithms under both models, which are faster than the
greedy algorithms proposed in [6, 10].

On the other hand, Goyal et al. [15] studied the influ-
ence maximization problem from the data-based perspec-
tive. They introduced a new model called credit distribution,
which directly leverages available propagation traces to learn
how influence flows in the network and adopt it to estimate
the expected influence spread. They also showed that the
influence maximization problem under the credit distribu-
tion model is NP-hard, and an approximation algorithm is
designed. Dinh et al. [16] investigated the cost-effective
massive viral marketing problem, taking into the consider-
ation the limited influence propagation. They proposed an
efficient algorithm called VirAds to tackle the viral market-
ing problem on large-scale networks. VirAds guarantees a
relative error bound of O(1) from the optimal solutions in
power-law networks. Zou et al. were the first to add the
latency constraint to the influence maximization problem
under the linear threshold model, called the fast informa-
tion propagation problem in [17]. They further proved that
the fast information propagation problem is NP-hard in [18].
Moreover, two heuristic algorithms are given and their per-
formance ratios are also analyzed. He et al. explored the
influence maximization problem considering both positive
influence and negative influence in [19].

2.2 Positive Influence Dominating Set Prob-
lem

Wang et al. first proposed the Positive Influence Dom-
inating Set (PIDS) problem under the deterministic linear
threshold model in [5], which is to find a set of nodes D
such that every node in the network has at least half of its
neighbor nodes in D. They proposed a selection algorithm
and analyzed its performance on a real online social net-
work data set. Subsequently, Zhu et al. proved that PIDS
is APX-hard and proposed two greedy algorithms with ap-
proximation ratio analysis in [7] and [20], respectively.
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2.3 Social Influence Analysis
Saito et al. predicted the information diffusion proba-

bilities under the independent cascade model in [1]. They
formally defined the likelihood maximization problem and
then applied an Expectation-Maximization (EM) algorithm
to solve it. Subsequently, Tang et al. argued that the effect
of the social influence from different angles (topics) may be
different. Hence, they introduced Topical Affinity Propaga-
tion (TAP) to model topic-related social influence in large
social networks in [2]. Later, Tang et al. [4] proposed a Dy-
namic Factor Graph (DFG) model to incorporate the time
information to analyze dynamic social influences. Similarly,
Goyal et al. [3] studied the problem of learning the influence
probabilities from historical node actions.

2.4 Remarks
All the above mentioned existing works fall into three cat-

egories: one is to understand the properties and character-
istics of social networks. Another is to study the influence
maximization problem with or without the time constraint.
The last is the PIDS problem. Our work different from the
influence maximization problem is that we find a minimum-
sized set of individuals that guarantees the influence on ev-
ery node in the network no less than a threshold τ , while
the influence maximization problem focuses on choosing a
subset of a pre-established size k that maximizes the spread
of information. Moreover, our work is also different from
the PIDS problem. We study the MINS selection problem
under the independent cascade model which is more practi-
cal, while PIDS is investigated under the deterministic linear
threshold model.

3. PROBLEM DEFINITION AND HARDNESS
ANALYSIS

In this section, we first introduce the network model. Sub-
sequently, we formally define the MINS selection problem
and make some remarks for the proposed problem. Finally,
we analyze the hardness of the MINS selection problem.

3.1 Network Model
Wemodel a social network by an undirected graphG(V,E,

Λ(E)), where V is the set of n nodes, denoted by ui, and
0 ≤ i < n. i is called the node ID of ui. An undirected edge
(ui, uj) ∈ E represents a social tie between the pair of nodes.
Λ(E) = {pij | if (ui, uj) ∈ E, 0 < pij ≤ 1, else pij = 0},
where pij indicates the social influence between nodes ui

and uj
1. For simplicity, we assume the links are undirected

(bidirectional), which means two linked nodes have the same
social influence (i.e., pij value) on each other. Additionally,
we assume every node has an edge to itself. The correspond-
ing pii value (0 ≤ pii ≤ 1) represents the social influence to
itself.

3.2 Problem Definition
The objective of the MINS selection problem is to identify

a subset of influential nodes as the initialized nodes. Such
that, all the other nodes in a social network can be influenced
by these nodes no less than a threshold τ . For convenient, we
call the initial nodes been selected as active nodes, otherwise,

1This model is reasonable since many empirical studies have
analyzed the social influence probabilities between nodes [1,
2, 3, 4].

inactive nodes. Therefore, how to define influence is critical
to solve the MINS selection problem. In the following, we
first formally define some terminologies, and then give the
definition of the MINS selection problem.

Definition 3.1. Influential Node Set (I): For social net-
workG(V,E,Λ(E)), the influential node set is a subset I ⊆ V,
such that all the nodes in I are initially selected to be the
active nodes.

Definition 3.2. Active Neighbor Set (AI(ui)): For social
network G(V,E,Λ(E)), ∀ui ∈ V, the active neighbor set of
ui is defined as:

A
I(ui) = {ui} ∪ {uj | (ui, uj) ∈ E, uj ∈ I}.

Followed by Definition 3.2, we know that the set A
I(ui)

includes all the active neighbor nodes of ui and ui itself.
Since every node has a self-circled edge to itself as defined
in Section 3.1, we define the self influence as follows:

Definition 3.3. Self Influence (pii): For social network
G(V,E,Λ(E)), and ∀ui ∈ V, the self influence of ui is defined
as: pii = 1, if ui ∈ I; otherwise, pii = 0.

Definition 3.4. Influence: For social network G(V,E,
Λ(E)), a node ui ∈ V, and an influential node set I, we
define a joint influence probability of AI(ui) on ui, denoted
by pui(A

I(ui)) as

pui(A
I(ui)) = 1−

∏
uj∈AI(ui)

(1− pij).

If pui(A
I(ui)) ≥ τ , where 0 < τ < 1 is a pre-defined thresh-

old, then ui is said been influenced. Otherwise, ui is not
been influenced.

Definition 3.5. Minimum-sized Influential Node Set
(MINS). For social network G(V,E,Λ(E)), the MINS se-
lection problem is to find a minimum-sized influential n-
ode set I ⊆ V, such that ∀ui ∈ V, ui is influenced, i.e.,
pui(A

I(ui)) = 1− ∏
uj∈AI(ui)

(1− pij) ≥ τ .

In this paper, we study the MINS selection problem. First,
we analyze the complexity of the problem, which is NP-hard.
Subsequently, we propose a greedy algorithm called MINS-
GREEDY to solve the problem with performance analysis.

3.3 Problem Hardness Analysis
In general, given an arbitrary threshold τ , the MINS se-

lection problem is NP-hard. We prove the complexity of the
MINS selection problem in a general graph by constructing
a polynomial reduction from the Vertex Cover (VC) prob-
lem to MINS as shown in the following theorem. We only
provide proof sketch of Theorem 1 due to space limitation.

Theorem 1. The MINS selection problem is NP-hard.

Proof Sketch: We prove the NP-hardness of MINS by con-
structing a polynomial-time many-one reduction which con-
verts instances of one decision problem, i.e., the decision
version of the well known Vertex Cover (VC) problem in-
to instances of a second decision problem, i.e., the decision
version of a specific case of the MINS selection problem.
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The decision version of the VC problem is defined as fol-
lows: given a graphG(V,E,Λ(E)), where Λ(E) = {1 | (ui, uj)
∈ E;ui, uj ∈ V}, and a positive integer d, determine whether
G has a vertex cover2 of size at most d.
The decision version of a specific case of the MINS s-

election problem is: given a graph G(V,E,Λ(E)), where
Λ(E) = {p | (ui, uj) ∈ E, 0 < p < τ, ui, uj ∈ V}3, a pre-
defined threshold 0 < τ < 1, and a positive integer k, de-
termine whether there exists an influential node set I ⊆ V,
such that the size of I is |I| ≤ k, and every node in G is
influenced, i.e.,

∀ui ∈ V, pui(A
I(ui)) = 1−

∏
uj∈AI(ui)

(1− pij) ≥ τ.

First, for an instance of the VC problem, denoted by graph
G(V,E,Λ(E)), where Λ(E) = {1 | (ui, uj) ∈ E;ui, uj ∈ V},
we construct a new graph Ĝ as follows:

1) We create |V|+ |E| nodes with |V| nodes {vu1 , vu2 ,
· · · , vu|V|} representing the nodes in G and |E| nodes
{ve1 , ve2 , · · · , ve|E|} representing the edges in G.

2) We add an edge with influence weight p between nodes
vui and vej if and only if node ui is an endpoint of edge
ej .

3) We attach additional �log1−p(1− τ)	 nodes to each n-

ode vui , denoted by set va
ui

= {vjui
| 1 ≤ j ≤ �log1−p(1−

τ)	}.
4) We attach additional �log1−p(1 − τ)	 − 1 nodes to

each node vej , denoted by set va
ej = {vjej | 1 ≤ j ≤

�log1−p(1− τ)	 − 1}.

5) Then, we have Ĝ = {V̂, Ê}, where V̂ = {vu1 , · · · , vu|V|}
∪ {ve1 , · · · , ve|E|} ∪ ⋃|V|

i=1 v
a
ui

∪ ⋃|E|
i=1 v

a
ei , Ê is the

set of all the edges associated with the nodes in V̂, and

Λ(Ê) = {p | for every edge in Ê}.
Taking the network shown in Fig. 1(a) as an example to

illustrate the construction procedure from G to Ĝ. There
are 4 nodes and 6 edges in G. Therefore, we first create

{vui}4i=1 and {vej}6j=1 nodes in Ĝ. And then we add edges
with influence weight p between nodes vui and vej based on
the topology shown in G. Subsequently, we add additional
nodes va

ui
= {vjui

| 1 ≤ j ≤ �log1−p(1 − τ)	} to each node

vui . Similarly, we add additional nodes va
ej = {vjej | 1 ≤ j ≤

�log1−p(1−τ)	−1} to each node vej . The influence weights

on all the additional edges are p. Finally, the new graph Ĝ

is constructed as shown in Fig. 1(b).
We will prove that G has a VC D of size at most d if and

only if Ĝ has an influential node set I of size at most k by
setting k = |V|�log1−p(1− τ)	+ |E|(�log1−p(1− τ)	−1)+d.
In conclusion, we proved that a specific case of the MINS

selection problem is NP-hard, since the VC problem is NP-
hard. Consequently, the general MINS selection problem is
also at least NP-hard.

2A vertex cover is defined as a subset of nodes in a graph G

such that each edge of the graph is incident to at least one
vertex of the set.
3The graph model is a special case of the network model
defined in Section 3.1.

Based on Theorem 1, we conclude that MINS cannot be
solved in polynomial time unless P = NP. Therefore, we
proposed a greedy algorithm to solve the problem in the
next section.

4. GREEDY ALGORITHM
Since MINS is NP-hard, we propose a greedy algorithm

to solve it. The greedy criterion is that the node influencing
the most other nodes will be added into MINS first, which
is defined by the following contribution function:

Definition 4.1. Contribution function (f(I)). For a so-
cial network represented by graph G(V,E,Λ(E)), and an in-
fluential node set I, the contribution function of I to G is
defined as:

f(I) = −θ ∗ log[
∏
ui∈V

max(�Iui
, 1− τ)],

where �Iui
=

∏
uj∈AI(ui)

(1 − pij), θ = max(1/c1, 1/c2, 1/c3),

c1 = − log(1− τ), c2 = log( 1
max

pij<1
(1−pij)

), and

c3 = log(

min{ ∏

uj∈S

(1−pij) | uj∈V,S⊆V,
∏

uj∈S

(1−pij)>1−τ}

1−τ
).

For the defined contribution function, it has some impor-
tant properties as shown in the following lemma. The proof
of Lemma 1 is omitted due to space limitation.

Lemma 1. 1) f(∅) = 0. 2) f(I) is an increasing function.

Based on the defined contribution function, we propose a
greedy algorithm called MINS-GREEDY as shown in Algo-
rithm 1. MINS-GREEDY starts from an empty influential
node set I. Each time, it adds the node having the max-
imum f(·) value into I. The algorithm terminates when

f(I) = −θ ∗ log[(1− τ)|V|].

Algorithm 1: MINS-GREEDY Algorithm

Input: A social network represented by graph
G(V,E,Λ(E)); a pre-defined threshold τ

1 I = ∅;
2 while f(I) < −θ ∗ log[(1− τ)|V|] do
3 choose u ∈ V \ I to maximize f(I

⋃ {u});
4 I = I

⋃ {u};
5 return I;

To better understand Algorithm 1, we use the social net-
work represented by the graph shown in Fig. 2(a) to illus-
trate the selection procedure as follows. In the example,
θ = 4.5.

1) First round: I = ∅.

2) Second round: we first compute f(I = {u1}) = 8.64,
f(I = {u2}) = 8.64, f(I = {u3}) = 9.63, f(I =
{u4}) = 11.21. Therefore, we have I = {u4}, which
has the maximum f(I) value. However, f(I = {u4}) =
11.21 < −4.5 ∗ log(0.24) = 12.60. Consequently, the
selection procedure continues.
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(a) (b)

Figure 1: Illustration of the construction from G to Ĝ.

3) Third round: we first compute f(I = {u1, u4}) =
12.60, f(I = {u2, u4}) = 12.60, f(I = {u3, u4}) =
12.60. Therefore, we have I = {u1, u4}4. Since f(I =
{u1, u4}) = −4.5 ∗ log(0.24) = 12.60, algorithm termi-
nates and outputs set I = {u1, u4} as shown in Fig.
2(b), where black nodes represent the selected influen-
tial nodes.

It is easy to check that u2 and u3 are both influenced. Hence,
the constructed I by running Algorithm 1 is a feasible so-
lution for the MINS selection problem. From this example,
we know that the time complexity of Algorithm 1 is O(n2)
in worst case.

(a) (b)

Figure 2: Illustration of MINS-Greedy algorithm.

Now, we theoretically show the correctness of Algorithm 1
in the following theorem. The proof of Theorem 2 is omitted
due to space limitation.

Theorem 2. Algorithm 1 produces a feasible solution of
the MINS selection problem. To be specific, 1) Algorithm

1 terminates for sure. 2) f(I) = −�log[(1 − τ)|V|] ∗ θ	 if
and only if I is an influential node set and every node is
influenced by nodes in I no less than τ .

4If there is a tie on the f(I) value, we use the node ID to
break the tie.

Next, we analyze the performance ratio of the proposed
greedy algorithmMINS-GREEDY. As been well known, sub-
modular functions and greedy algorithms have close rela-
tionship. Hence, we first introduce some theoretical re-
sults about submodular functions and the submodular cov-
er problem. Consider a ground set V and a real function
f : 2V → R. f(·) is submodular if ∀X ⊆ Y ⊆ V and x ∈ V\Y,
f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y). A function f(·) is
called a polymatroid function if f(·) is submodular and in-
creasing with f(∅) = 0. Suppose f(·) is a polymatroid func-
tion on 2V. A set X ⊆ V is said to be a submodular cover of
(V, f(·)) if f(X) = f(V). Moreover, consider that f(·) and
a cost function c(·) are polymatroid functions on 2V. The
minimization problem min{c(X) | f(X) = f(V),X ⊆ V)}
is called the Minimum Submodular Cover with Submodular
Cost (MSC/SC) problem, where c(X) is the cost of set X.
It is worth to mention that given any influential node set
I ⊆ V, f(I) = −θ ∗ log((1 − τ)|V|) = f(V). Let the cost
function c(X) = |X|. Then the MINS selection problem can
be formulated as: min{c(I) | f(I) = f(V), I ⊆ V)}. Since
c(I) is linear (i.e., modular), the MINS selection problem is
a MSC/SC problem. Then, we have the following theorem
[21], which is helpful when analyzing MINS-GREEDY.

Theorem 3. [21] Suppose f(·) is a polymatroid function
on 2V, and f(V) ≥ opt where opt is the cost of a mini-
mum submodular cover. For a greedy algorithm, if the se-

lected x in each iteration always satisfied that Δxf(X)
c(x)

≥ 1,

then the greedy solution is a 1 + ρ ln( f(V)
opt

)-approximation,
where ρ is the curvature of the submodular cost c, i.e.,

ρ = min
Y⊆V

∑
y∈Y

c(y)

c(Y)
. If c is linear (i.e., modular), then ρ = 1.

In the following, we will employ Theorem 3 to analyze the
performance of MINS-GREEDY. First, we show the sub-
modularity of I in Lemma 2.

Lemma 2. f(I) is a submodular function.
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Proof. Based on the definition of a submodular function,
it is sufficient to prove that, for arbitrary two influential
node sets S and T, if S ⊆ T, we have for ∀uj ∈ V \ T,
f(S ∪ {uj})− f(S) ≥ f(T ∪ {uj})− f(T).

Since S ⊆ T, ∀ui ∈ V, we have �Sui
≥ �Tui

and �
S∪{uj}
ui ≥

�
T∪{uj}
ui . To prove f(I) is a submodular function, we first

prove that when |T| − |S| = 1, f(S ∪ {uj}) − f(S) ≥ f(T ∪
{uj})− f(T). Then, we extend it to the general case where
|T| − |S| = w > 1, and the lemma still holds.

First, suppose S = {u1, u2, · · · , uk}, then we have S ∪
{uj} = {u1, u2, · · · , uk, uj}. Let T = {u1, u2, · · · , uk, uk+1},
then we have T ∪ {uj} = {u1, u2, · · · , uk, uk+1, uj}. Let

Δujf(S, ui) = − log(max(�
S∪{uj}
ui , 1− τ))−

(− log(max(�Sui
, 1− τ))) = log(

max(�Sui
, 1− τ)

max(�
S∪{uj}
ui , 1− τ)

),

and

Δujf(T, ui) = − log(max(�
T∪{uj}
ui , 1− τ))−

(− log(max(�Tui
, 1− τ))) = log(

max(�Tui
, 1− τ)

max(�
T∪{uj}
ui , 1− τ)

).

Furthermore, let

Δujf(S) = f(S ∪ {uj})− f(S)

= −θ ∗ log[
∏
ui∈V

max(�
S∪{uj}
ui , 1− τ)]+

θ ∗ log[
∏
ui∈V

max(�Sui
, 1− τ)]

= θ ∗
∑
ui∈V

[− log(max(�
S∪{uj}
ui , 1− τ))]+

θ ∗
∑
ui∈V

[log(max(�Sui
, 1− τ))]

= θ ∗
∑
ui∈V

[log(
max(�Sui

, 1− τ)

max(�
S∪{uj}
ui , 1− τ)

)]

= θ ∗
∑
ui∈V

(Δujf(S, ui)),

and

Δujf(T) = f(T ∪ {uj})− f(T) = θ ∗
∑
ui∈V

(Δujf(T, ui)).

To prove that f(I) is a submodular function, we divide all
possibilities into the following six cases:

1) For ∀ui ∈ V, which is influenced by S, S ∪ {uj}, T,

and T ∪ {uj}, i.e., 1 − �Sui
≥ τ , 1 − �

S∪{uj}
ui ≥ τ ,

1−�Tui
≥ τ , and 1−�

T∪{uj}
ui ≥ τ , we have Δujf(S, ui) =

log(
max(�Sui

,1−τ)

max(�
S∪{uj}
ui

,1−τ)
) = log( 1−τ

1−τ
) = 0, and Δujf(T, ui)

= log(
max(�Tui

,1−τ)

max(�
T∪{uj}
ui

,1−τ)
) = log( 1−τ

1−τ
) = 0. Hence,

Δujf(S, ui) = Δujf(T, ui).

2) For ∀ui ∈ V, which is influenced by S ∪ {uj}, T, and
T∪{uj}, however, not influenced by S, i.e., 1−�Sui

< τ ,

1− �
S∪{uj}
ui ≥ τ , 1− �Tui

≥ τ , and 1− �
T∪{uj}
ui ≥ τ , we

have Δujf(S, ui) = log(
�Sui
1−τ

) > 0, and Δujf(T, ui) =

log( 1−τ
1−τ

) = 0. Hence, Δujf(S, ui) > Δujf(T, ui).

3) For ∀ui ∈ V, which is influenced by S ∪ {uj}, and
T ∪ {uj}, however, not influenced by S, and T, i.e.,

1 − �Sui
< τ , 1 − �

S∪{uj}
ui ≥ τ , 1 − �Tui

< τ , and 1 −
�
T∪{uj}
ui ≥ τ , we have Δujf(S, ui) = log(

�Sui
1−τ

), and

Δujf(T, ui) = log(
�Tui
1−τ

). Since �Sui
≥ �Tui

> 1 − τ ,

Δujf(S, ui) ≥ Δujf(T, ui).

4) For ∀ui ∈ V, which is influenced by T, and T ∪ {uj},
however, not influenced by S, and S ∪ {uj}, i.e., 1 −
�Sui

< τ , 1 − �
S∪{uj}
ui < τ , 1 − �Tui

≥ τ , and 1 −
�
T∪{uj}
ui ≥ τ , we have Δujf(S, ui) = log(

�Sui

�
S∪{uj}
ui

) =

log( 1
1−pij

) > 0, and Δujf(T, ui) = log( 1−τ
1−τ

) = 0.

Hence, Δujf(S, ui) > Δujf(T, ui).

5) For ∀ui ∈ V, which is influenced by T∪{uj}, however,
not influenced by S, S∪ {uj}, and T, i.e., 1− �Sui

< τ ,

1− �
S∪{uj}
ui < τ , 1− �Tui

< τ , and 1− �
T∪{uj}
ui ≥ τ , we

have Δujf(S, ui) = log(
�Sui

�
S∪{uj}
ui

), and Δujf(T, ui) =

log(
�Tui
1−τ

). Then, we obtain Δujf(S, ui)−Δujf(T, ui) =

log(
�Sui

�
S∪{uj}
ui

)−log(
�Tui
1−τ

) = log( 1
1−pij

1−τ
�Tui

) = log( 1−τ

�
T∪{uj}
ui

).

Since �
T∪{uj}
ui ≤ 1−τ , we obtain Δujf(S, ui)−Δujf(T, ui)

≥ 0. Hence Δujf(S, ui) ≥ Δujf(T, ui).

6) For ∀ui ∈ V, which is not influenced by S, S ∪ {uj},
T, or T ∪ {uj}, i.e., 1 − �Sui

< τ , 1 − �
S∪{uj}
ui < τ ,

1−�Tui
< τ , and 1−�

T∪{uj}
ui < τ , we have Δujf(S, ui) =

log(
�Sui

�
S∪{uj}
ui

) = log( 1
1−pij

), and Δujf(T, ui) = log(
�Tui

�
T∪{uj}
ui

)

= log( 1
1−pij

). Hence, Δujf(S, ui) = Δujf(T, ui).

In summary, Δujf(S, ui) ≥ Δujf(T, ui) in all the cases.
Therefore,

Δujf(S) =
∑
ui∈V

(Δujf(S, ui)) ≥
∑
ui∈V

(Δujf(T, ui)) = Δujf(T).

Now, suppose S = {u1, u2, · · · , uk}, and T = {u1, u2, · · · , uk,
uk+1, · · · , uk+w}. We obtain

f(S ∪ {uj})− f(S) ≥ f(S ∪ {uk+1, uj})− f(S ∪ {uk+1})
≥ f(S ∪ {uk+1, uk+2, uj})− f(S ∪ {uk+1, uk+2})

≥ f(S ∪ {uk+1, uk+2, · · · , uw, uj})− f(S ∪ {uk+1, uk+2, · · · , uw})
= f(T ∪ {uj})− f(T).

Therefore, f(I) is a submodular function.

Now, we can make the following conclusion.

Theorem 4. f(I) is a polymatroid function on 2V.

Proof. According to Lemma 1 and Lemma 2, f(I) is an
increasing, submodular function with f(∅) = 0. Hence, we
conclude that f(I) is a polymatroid function on 2V.

Before employing Theorem 3 to analyze the performance
ratio of MINS-GREEDY, we give the following important
lemmas first.
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Lemma 3. In MINS-GREEDY shown in Algorithm 1, if
f(I) < −θ∗ log[(1−τ)|V|], then there exists a node uk ∈ V\I
such that f(I ∪ {uk}) > f(I).

Proof. Let It be the selected influential node set after
the t-th iteration. In Algorithm 1, if f(It) < −θ ∗ log[(1 −
τ)|V|], the algorithm continues. Therefore, there must exists
a node uj ∈ V \ I satisfying �Ituj

> 1 − τ . Furthermore, let
uk be the node selected to add to It in step 3 of Algorithm 1
during the (t+ 1)-th iteration. Since uk maximizes the f(·)
value based on Algorithm 1, we have

f(It+1)− f(It) = f(It ∪ {uk})− f(It)

≥ f(It ∪ {uj})− f(It)

= −θ ∗ log[
∏
ui∈V

max(�
It∪{uj}
ui , 1− τ)]+

θ ∗ log[
∏
ui∈V

max(�Itui
, 1− τ)]

= θ ∗
∑
ui∈V

− log(max(�
It∪{uj}
ui , 1− τ))+

θ ∗
∑
ui∈V

log(max(�Itui
, 1− τ))

= θ ∗
∑
ui∈V

log(
max(�Itui

, 1− τ)

max(�
It∪{uj}
ui , 1− τ)

)

= θ ∗ [
∑

ui∈V\{uj}
log(

max(�Itui
, 1− τ)

max(�
It∪{uj}
ui , 1− τ)

)+

log(
max(�Ituj

, 1− τ)

max(�
It∪{uj}
uj , 1− τ)

)]

= θ ∗ [
∑

ui∈V\{uj}
log(

max(�Itui
, 1− τ)

max(�
It∪{uj}
ui , 1− τ)

)+

log(
�Itui

1− τ
)] > 0.

Therefore, we have f(It ∪ {uk}) > f(It).

Lemma 4. 1) f(V) ≥ opt, where opt = c(Iopt) = |Iopt|
is the cost of the optimal solution of the MINS selection
problem denoted by Iopt. 2) The selected ui of each itera-
tion of MINS-GREEDY shown in Algorithm 1 satisfies that
Δui

f(I)

c(ui)
≥ 1, where Δuif(I) = f(I ∪ {ui})− f(I).

Proof. For 1), Based on Definition 4.1, we know θ ≥
1/(− log(1− τ)). Therefore,

f(V) = −θ ∗ log[(1− τ)|V|] ≥ |V| ≥ |Iopt| = opt.

For 2), According to Lemma 3, we know that if f(I) <

−θ ∗ log[(1− τ)|V|], then there exists a node uk ∈ V \ I such
that f(I∪{uk}) > f(I). In other words, if Algorithm 1 does
not terminate, there must exist a node uj ∈ V satisfying
�Iuj

> 1− τ , and

Δukf(I, uj) = − log(max(�I∪{uk}
uj

, 1− τ))−
(− log(max(�Iuj

, 1− τ))

= log(
max(�Iuj

, 1− τ)

max(�
I∪{uk}
uj , 1− τ)

) > 0.

Then, we have

Δukf(I) = f(I ∪ {uk})− f(I)

= −θ ∗ log[
∏
ui∈V

max(�I∪{uk}
ui

, 1− τ)]+

θ ∗ log[
∏
ui∈V

max(�Iui
, 1− τ)]

= θ ∗
∑
ui∈V

[− log(max(�I∪{uk}
ui

, 1− τ))]+

θ ∗
∑
ui∈V

[log(max(�Iui
, 1− τ))]

= θ ∗
∑
ui∈V

[log(
max(�Iui

, 1− τ)

max(�
I∪{uk}
ui , 1− τ)

)]

= θ ∗
∑
ui∈V

(Δukf(I, ui)).

To prove the lemma, we divide the possibilities into the fol-
lowing two cases:

1) uj is not influenced by I ∪ {uk}. Then,

Δukf(I, uj) = log(
�Iuj

�
I∪{uk}
uj

) = log(
1

1− pkj
).

Since we know that θ ≥ 1

(log 1
max

pij<1
(1−pij)

)
. Hence

Δukf(I) = θ ∗
∑
uj∈V

(Δukf(I, uj)) ≥ θ ∗ log( 1

1− pkj
) ≥ 1.

2) uj is influenced by I ∪ {uk}. Then,

Δukf(I, uj) = log(
�Iuj

1− τ
) = log(

�Iuj

1− τ
).

Since θ ≥ 1

(log

min{ ∏

uj∈S

(1−pij) | uj∈V,S⊆V,
∏

uj∈S

(1−pij)>1−τ}

1−τ
)

, we

have

Δukf(I) = θ ∗ ∑
uj∈V

(Δukf(I, uj)) ≥ θ ∗ log( �Iuj

1−τ
) ≥ 1.

In summary,
Δui

f(I)

c(ui)
≥ Δuk

f(I)

c(ui)
= Δukf(I) ≥ 1.

Now, we are ready to analyze the performance ratio of
Algorithm 1 as follows.

Theorem 5. The performance ratio of the greedy algo-

rithm shown in Algorithm 1 is 1 + ln(−θ|V| log(1−τ)
opt

), where
opt is the size of the optimal solution of MINS.

Proof. According to Theorem 4, our proposed contribu-
tion function f(I) is a polymatroid function on 2V. More-
over, based on Lemma 4, and Theorem 3, MINS-GREEDY
produces an approximation solution with a factor of 1 +

ln( f(V)
opt

) = 1+ ln(−θ|V| log(1−τ)
opt

) from the optimal, where opt
is the size of the optimal solution of MINS.

5. PERFORMANCE EVALUATION
Since there are no existing works studying the MINS selec-

tion problem under the independent cascade model current-
ly, in the simulations and experiments, the results of MINS-
GREEDY (denoted by MINS) are compared with the most
related work [7] denoted by PIDS, and the optimal solution
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of MINS, which are obtained by exhausting searching, de-
noted by OPTIMAL. To ensure fairness of comparisons, the
condition of termination to the algorithm proposed in [7] is
changed to find a PIDS, such that every node in the network
is influenced no less than the same threshold τ in MINS.

5.1 Simulation Results

5.1.1 Simulation Setting
We build our own simulator to generate random graphs

based on the random graph model G(n, p) = {G | G has n
nodes and an edge between any pair of nodes is generated
with probability p}. For G = (V,E) ∈ G(n, p), ui, uj ∈
V , and (ui, uj) ∈ E, the associated social influence 0 <
pij ≤ 1 is randomly generated. For each specific setting,
100 instances are generated. The results are the average
values of these 100 instances. In the following, we show the
simulation results under different scenarios.

5.1.2 Simulation Results in Random Graphs
The objectives of MINS and PIDS are both to minimize

the size of the constructed subsets. In this subsection, we
check the size of the solutions of MINS, PIDS and OPTI-
MAL under different scenarios in random graphs. In this
simulation, we consider the following tunable parameters:
the network size n, the probability p to create an edge in
the random graph model G(n, p), and the user pre-defined
influence threshold τ . Since we adopt exhaust searching to
find the optimal solution of MINS, it is impractical to test
on large scale networks. Hence, we first run a set of simula-
tions on small scale networks of network size changing from
10 to 20, and the results are shown in Fig. 3.

The impacts of n, p, and τ on the size of the solution-
s of MINS, PIDS, and OPTIMAL are shown in Fig. 3(a),
(b), and (c), respectively. From Fig. 3(a), we can see that
the sizes of the solutions of all the three algorithms increase
when n increases. This is because more nodes need to be
influenced when network size increases. Additionally, for a
specific network size, PIDS produces a larger sized solution
than MINS. This is because MINS tries to find the most
influential node of the network (which has the largest f(I)
value) in each iteration, while PIDS gives the node with the
largest degree the highest priority instead. However, a large
degree does not necessarily implies high influence to a social
network. Furthermore, we can see that the size of the MIN-
S solution is very close to the optimal result. On average,
MINS produces 0.62 more nodes than the optimal solution,
while PIDS produces 3.53 more nodes than the optimal so-
lution, which implies that our proposed greedy algorithm
MINS-GREEDY can produce a close approximation solu-
tion to the optimal solution.

From Fig. 3(b), we can see that the solution sizes of all
the three algorithms decrease when p increases. This is be-
cause that a large p means more edges in the network, so
that one selected influential node may influence more nodes.
Again, for a specific p, PIDS produces a larger sized solu-
tion than MINS. This is because the objective of PIDS is not
aimed to obtain the most influential nodes in the network.
MINS again can construct a solution with similar size of the
optimal solution. On average, MINS only produces 8.07%
more nodes than the optimal solution, while PIDS produces
24.30% more nodes than the optimal solution.

From Fig. 3(c), we can see that the sizes of the solutions
of all the algorithms increase when τ increases, since large τ
value means that more nodes need to be put into the initial
active node set to influence all the other nodes. Further-
more, MINS has similar performance with optimal, and has
a better performance than PIDS since the greedy criterion
of PIDS is the node with the highest degree first. On av-
erage, MINS produces 5.01% more nodes than the optimal
solution, while PIDS produces 24.44% more nodes than the
optimal solution. This reason is similar as we mentioned
before.

Additionally, we run a set of simulations on large scale
networks of network size changing from 100 to 1000. The
impacts of n, p, and τ on MINS and PIDS are shown in
Fig. 4. From Fig. 4(a), we can see that the solution sizes of
MINS and PIDS are both increase when n increases. This
is because that more influential nodes are required for large
social networks. Moreover, MINS can find an influential
node set that is much smaller than that of PIDS, since MINS
tries to find the most influential node in the network during
each iteration. On average, MINS produces an influential
node set of size 46.67% less than PIDS.

From Fig. 4(b), we can see that the solution sizes of PIDS
and MINS are both decrease when p increases. p increases
means the number of edges in the network increases, which
further implies that the average number of neighbors of each
node increases. Hence, one selected influential node may in-
fluence more nodes when p increases. For a specific p, PIDS
again produces larger sized solution than MINS. On average,
PIDS produces 21.6% more nodes than MINS. Additionally,
the decreasing trend of PIDS is fast when p increases. This
is because when p is small, the expected degree of all nodes
is small. Hence, PIDS may find a solution through many
iterations till it find a solution satisfying that every node
in the network is influenced by the solution no less than τ .
When p is large, larger degree nodes could be added into
the solution first, so that PIDS might terminate quicker and
followed by an influential node set of small size.

From Fig. 4(c), because of similar reasons as in analyzing
Fig. 3(c), we can see that the solution sizes of PIDS and
MINS increase when τ increases. Moreover, PIDS outputs
more nodes than MINS. On average, PIDS produces 6.15
more nodes than that of MINS.

5.2 Experimental Results

5.2.1 Experimental Setting
We also perform our experiments on a real-world data set:

academic coauthor network, which is extracted from the a-
cademic search system Arnetminer [22]. The coauthor data
set consists of 640, 134 authors and 1, 554, 643 coauthor re-
lations [2]. The testing data sets used in this experiment
are extracted from the coauthor data set. In this experi-
ment, the network size n, which is the number of authors, is
change from 100 to 1100. The social influence of each pair of
nodes is calculated using the methodology introduced in [2].
Fig. 5 summarizes the distribution of social influence values
among the authors in one testing data set. From Fig. 5, we
can see that most of the social influence values fall into the
range 0 < pij < 0.05, which are very small. Moreover, the
largest social influence value in the test data set is close to
0.20. Based on this observation, we let τ change from 0.005
to 0.05 in this experiment. For each specific setting, 100
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(a) (b) (c)

Figure 3: The size of solutions on small scale networks. The default setting are n = 15, p = 0.5, and τ = 0.5.

(a) (b) (c)

Figure 4: The size of solutions on large scale networks: The default settings are n = 500, p = 0.5, and τ = 0.5.

instances are generated. The results are the average values
of these 100 instances.

Figure 5: The distribution of social influences of the
coauthor data set.

5.2.2 Experiments on Arnetminer Data
For τ = 0.008, the impacts of n on the size of the solu-

tions of MINS and PIDS are shown in Fig. 6(a). From Fig.
6(a), the solution sizes of PIDS and MINS increase when
n increases. This is because, when the network becomes
large, more influential nodes are requireed to influence the
whole network. Furthermore, because of similar reasons an-
alyzed before, MINS produces smaller influence node sets
than PIDS. This is consistent with the simulation results.

On average, MINS selects 23.49% less influential nodes than
that of PIDS.

The impacts of τ on MINS and PIDS are shown in Fig.
6(b). From Fig. 6(b), we can see that the solution sizes
of both algorithms increase when τ increases. The reason
is obvious, since in order to guarantee the requirement that
∀ui ∈ V, 1 − ∏

uj∈AI(ui)

(1 − pij) ≥ τ , more nodes need to be

selected as the initial active nodes in both MINS and PIDS.
Again, PIDS selects more influence nodes than MINS, since
it takes node degree as its greedy criteria instead of node
influence. On average, MINS selects 18.45% less influential
nodes than PIDS.

We also perform an experiment on a synthesized data set.
For the data set used in Section 5.2.1, we randomly generate
additional non-redundant p percent of existing edges to the
original testing data set. The impacts of p on both algo-
rithms are shown in Fig. 6(c). From Fig. 6(c), we can see
that the solution sizes of PIDS and MINS decrease when p
increases, since large p value means more edges in the net-
work. In other words, one node may influence more nodes
when p increase. Hence, smaller sized initial active node sets
may satisfy the requirements both for PIDS and MINS. A-
gain, the size of PIDS’s solution is larger than that of MINS’s
solution, which is also consistent with the simulation results.
On average, MINS selects 24.80% less influential nodes than
PIDS.

From the results of simulations on the random graphs,
and the results of experiments on the real world data sets,
we can conclude that the size of the constructed initial active
node set of MINS is smaller than it of PIDS. Moreover, the
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(a) (b) (c)

Figure 6: The size of solutions on real-world data sets.

solution of MINS is very close to the optimal solutions of
MINS in small scale networks.

6. CONCLUSION
In this paper, we study the Minimum-sized Influential N-

ode Set (MINS) selection problem which has useful commer-
cial applications in social networks. We show by reduction
that MINS is NP-hard under the independent cascade mod-
el. Subsequently, a greedy algorithm called MINS-GREEDY
is proposed to solve the problem, followed by the theoreti-
cal analysis of its performance ratio. Furthermore, we val-
idate our proposed algorithm through simulations on ran-
dom graphs, and experiments on real world data sets. The
simulation results indicate that MINS-GREEDY can con-
struct smaller sized satisfied initial active node sets than
the most related work PIDS. Moreover, MINS-GREEDY has
very close performance to the optimal solution of MINS in
small scale networks.
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