
The Monitoring Core: A Framework for Sensor
Security Application Development

Marco Valero∗†, Selcuk Uluagac†, Venkatachalam S.†, Ramalingam K. C.†, and Raheem Beyah†
∗Department of Computer Science †GT CAP Group, The School of ECE

Georgia State University Georgia Institute of Technology
Atlanta, Georgia 30303,USA Atlanta, GA 30332, USA

mvalero@cs.gsu.edu {venkat.subbu, ramalingam.chandrasekar}@gatech.edu
{selcuk, rbeyah}@ece.gatech.edu

Abstract—Wireless sensor networks (WSNs) are used for
the monitoring of physical and environmental phenomena, and
applicable in a range of different domains (e.g., health care,
military, critical infrastructure). When using WSNs in a variety
of real-world applications, security is a vital problem that should
be considered by developers. As the development of security
applications (SAs) for WSNs require meticulous procedures and
operations, the software implementation process can be more
challenging than regular applications. Hence, in an effort to
facilitate the design, development and implementation of WSN
security applications, we introduce the Monitoring Core (M-
Core). The M-Core is a modular, lightweight, and extensible
software layer that gathers necessary data including the internal
and the external status of the sensor (e.g., information about
ongoing communications, neighbors, and sensing), and provides
relevant information for the development of new SAs. Similar
to other software development tools, the M-Core was developed
to facilitate the design and development of new WSN SAs
on different platforms. Moreover, a new user-friendly domain-
specific language, the M-Core Control Language (MCL), was
developed to further facilitate the use of the M-Core and reduce
the developer’s coding time. With the MCL, a user can implement
new SAs without the overhead of learning the details of the
underlying sensor software architecture (e.g., TinyOS). The M-
Core has been implemented in TinyOS-2.x and tested on real
sensors (Tmote Sky and MicaZ). Using the M-Core architecture,
we implemented several SAs to show that the M-Core allows
easy and rapid development of security programs efficiently and
effectively.

Index Terms—Wireless Sensor Network Applications, Moni-
toring Core (M-Core), M-Core Control Language (MCL), Sensor
Security Application Development

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are no longer a nascent
technology and they are actively deployed as a viable technol-
ogy in many diverse application domains such as health care,
military, and environmental. More companies offer sensor-
based solutions, and the usage of billions of networked sensors
are envisioned to be deployed on land, in sea, air, and space
to detect and predict the environmental changes in an effort
to build a globally pervasive nervous system [1]. Given their
low cost and multiple functionality, they have been predicted
to be one of the ten technologies that will change the world
in the next 10 years [2]. Moreover, with recent initiatives
such as Cyber-Physical Systems, Internet of Things [3], and

Planetary Skin [1], sensor-based applications have gained new
momentum in the research community and industry.

To enable more secure wireless sensor networks, the re-
search community has identified many unique security threats,
and there has been a tremendous effort to build mechanisms to
detect and defend against these threats and a myriad of security
solutions have been proposed in the literature. The task of
developing security solutions for WSNs is challenging because
(1) sensors have limited technical capabilities, and (2) software
implementations for security require meticulous procedures
and extra operations to provide a desired level of security
for applications. However, this process can be expedited
and simplified with the assistance of development tools. To
facilitate the design, development and implementation of WSN
security applications (SAs) we introduce the Monitoring Core
(M-Core), a modular, lightweight and extensible middleware.

The M-Core provides information in the form of services
that can be simultaneously accessed by multiple processes
running on the sensor, and can be used to develop a wide range
of SAs. The architecture of the M-Core is divided into sub-
components, each of which provides some specific services to
the SAs. The design of the M-Core facilitates its usage and
understanding, and reduces the overhead of learning the details
of the underlying sensor software architecture (e.g., TinyOS).
The M-Core also reduces the risk of implementation flaws,
which is the most common cause of broken security protocols.
Attacks on protocols are often successful when a specific flaw
in the implementation of a component is exploited to cause
unexpected behaviors [4].

Along with the intuitive architecture of the M-Core, we
leverage the collected data to provide developers with useful
information in a timely manner to facilitate the development of
their solutions. Using the M-Core, developers can spend less
time gathering and processing data, and more time designing
and implementing their actual algorithms.

To further reduce the time in code development, a new
user-friendly domain-specific language, the M-Core Control
Language (MCL), was developed to facilitate the use of the
M-Core and its services. Using the M-Core and the MCL,
we implemented four different security solutions which are
presented in Section V.

The main contribution of this work include, the devel-

opment of a new service-oriented framework that expedites
the development of security applications for WSNs, and the
introduction of a new domain-specific language to highly
simplify the use of the proposed framework.

The rest of the paper is organized as follows. The related
work is discussed in Section II. Section III presents the
overview of the M-Core framework and services. The MCL is
formally introduced in Section IV and a sample usage is also
given. The functional evaluation of the M-Core is presented
in Section V. The benefits of the M-Core and MCL, based
on the amount of work required for developing new ASs, is
discussed in Section VI. We conclude the paper and discuss
future work in Section VII.

II. RELATED WORK

Application development in wireless sensors is carried
out close to the operating system level [5]. This forces the
application developer to have a detailed understanding of
the underlying system’s architecture while programming an
application. To ease the programmer’s task, many middleware
approaches have been proposed to provide a programming
abstraction for rapid application development.

Approaches like OASiS [6] and MiSense [7] propose an
object-centric, ambient-aware, service-oriented sensornet pro-
gramming framework to aid the application development in
WSNs. In these approaches, a code implementing a basic unit
of functionality is wrapped with a defined interface, called
service. OASiS [6] provides services which handle dynamic
service discovery and configuration, network heterogeneity,
constraints management, application and network QoS aware
functionalities. Similarly, MiSense [7] aims to provide a
content-based publish/subscribe communication model. The
service-oriented approach simplifies the work of a developer
who can now identify the relevant and useful services from
the domain service library and wire them to their application,
instead of implementing the service functionality. Although
[6] and [7] use a service-oriented programming approach
similar to used by M-Core, the developer still has the overhead
of learning the details of the framework (e.g., wiring the
appropriate service interfaces to their application modules in
NesC). Whereas, the M-Core provides a higher-level user-
friendly language called the MCL, which simplifies the process
of developing and wiring the applications. Also, the M-Core
and MCL are specifically designed for security. Thus, the
services provided are more security-focused and represent the
services used by most security applications in the literature.

Agila is a middleware proposed in [8], which uses a mobile
agent-based paradigm for development of WSN applications.
Similar to [6] and [7], Agila sits on top of the underlying
network infrastructure. However, the middleware proposed in
[8] depends on agents, which are in effect, distinct virtual
machines with dedicated instruction and data memory, to adapt
to the varying application scenario. The work in [8] differs
from approaches like [6] and [7], by making use of a higher-
level language for simple development of these application-
specific agents. However, due to the mobile agent-paradigm,

these application-specific mobile agents developed using the
high-level language are limited by their size. In contrast to
this, the M-Core uses a high-level language, but not a mobile
agent-paradigm, and thereby enables rapid WSN application
development, and most importantly, it is not limited by the
size of the application. Moreover, the M-Core allows the
rapid prototyping of security applications, while the other
approaches focus on other general purpose applications.

TinyDB [9], takes a data-centric middleware approach,
which uses an Acquisitional Query Processing (ACQP) tech-
nique to query and gather data from the motes in a WSN.
TinyDB considers all motes and sensing physical entities in
the WSN as a database system and using the acquisitional
query language, a user can send SQL-like queries to collect
the sensed data. These queries are processed at the base
station, and then dispatched to the sensors in the network.
Before the query is dispatched, the optimizer in the base
station, with the metadata information about all motes in the
network, chooses a query plan with the lowest overall power
consumption. TinyDB is a middleware specifically designed
for data-centric WSN applications and for data aggregation.
It is not for application development, it is a type of macro-
programming approach. However, the M-Core, which takes a
service-oriented programming approach, has the capability to
provide services for the users to develop a data-centric applica-
tion with emphasis on security. The modular approach for the
implementation of the M-Core services, aids the programmers
to develop secure data-centric applications, which are scalable
and are easily modifiable based on the changing requirements
of the applications.

III. THE M-CORE ARCHITECTURE

In this section, we discuss the architecture of Monitoring-
Core (M-Core) and its interactions with other main compo-
nents of a sensor. We also present the M-Core services and
discuss how they are used to provide services.

A. Design Principles

The M-Core runs on TinyOS [10]. TinyOS is a modular
operating system (OS) based on components that are wired
together through interfaces to create applications with different
functionalities. Following this feature of the OS, we designed
the M-Core with a highly modular architecture where every
component is independent, and can be easily added and
removed without affecting the rest of the system.

The M-Core enables a novel way to provide information
for the development of new security applications based on a
modular and independent set of services. The M-Core acts
as an information manager and dispatcher to facilitate access
to the services. The M-Core is divided into sub-components,
each of which provides some specific services to the security
applications (SAs). Note that any of these sub-components
(services) can be easily removed or replaced, and more sub-
components can be added to enhance the M-Core’s function-
ality.

Fig. 1. M-Core data collection and flow.

To create a comprehensive software development archi-
tecture, we analyzed the functionality of WSN devices and
identified three important functions of sensor devices: sensing
physical or environmental conditions, processing collected
data, and communicating with other devices. The sensor
communication function is an essential component that should
be monitored since it is one of the common and easy target
for attacks. Therefore, we created our own communication
module that controls packets transmitted and received through
the radio transceiver and it is the main data source component
that feeds the M-Core.

The M-Core collects its data from three components: the
communication module, the sensing module, and the OS.
All the data and packets going through the communication
(COMM) module are also copied to the M-Core for collection
and analysis. For each outgoing packet, the COMM module
notifies the M-Core whether the transmission was successful
or not. For all incoming packets, the COMM module passes a
copy to the M-Core even though the packet is not addressed to
that specific sensor node. The M-Core can also be connected
to the sensor suites using a sensing module (SENSE) to
monitor external phenomena. Using the SENSE module, the
M-Core can intercept, monitor, and record all external sensing
measurement values and requests. The operating system (i.e.,
TinyOS) also provides important data that can be leveraged
by the M-Core to generate suitable information for security
software development.

The benefits of using the M-Core for developing new WSNs
software solutions are the following: (1) It has a built-in
modular and flexible software architecture that provides an
easy means to add, remove, and replace sub-components. (2)
It is a lightweight monitoring and control layer invisible to
upper layers. (3) It is easy to activate and use. (4) The provided
services can be easily expanded. (5) The M-Core reduces the
design and development time of software solutions.

The M-Core architecture is shown in Figure 1, where
we also illustrate five SAs and six M-Core sub-components,
each of which provides a service. Each SA includes the
implementation of the necessary behavior utilizing the M-Core
services. For instance, to implement a Sybil attack detection
program, a developer might use the rssivalue interface (ser-
vice) provided by the RSSI sub-component of the M-Core.
The list of implemented M-Core sub-components and services
are summarized in Table I and will be further described in the
next sub-section, and the details of our implemented SAs will
be discussed in Section V.

B. M-Core Services

In TinyOS jargon, interfaces are used to interconnect com-
ponents. Each interface define commands and events that
can be used by developers of new SAs to interact with
existing solutions. Our implemented M-Core sub-components
and services are presented in Table I and their descriptions are
as follows:

1) commScan: The commScan sub-component can be used
to detect the status of the communication channel based on two
parameters: the number of consecutive successfully transmit-
ted packets, and the average number of received packets per
second. Both parameters can be obtained by the commands
getConsecutiveSuccess() and getpps(), respectively. To collect
information about the successfully transmitted packets, we
configured the COMM module to notify the M-Core whether
a packet is successfully sent or not by signaling two different
events, packetsuccess() and packetfail(), respectively. For the
received packets per second calculation, we count all the
packets received by the node and average them every second.
The COMM module passes a copy of all messages to the M-
Core even when the packets are not addressed to the sensor.

This sub-component also provides a command setThresh-
old() that allows users to define a threshold for a minimum

TABLE I
M-CORE SUB-COMPONENTS

sub-component Interface Commands/Events Action
commScan channelinfo getConsecutiveSuccess Returns the number of consecutive sent packets

getpps Returns the number of received packets per second
setThreshold Sets the threshould for acceptable consecutive sent packets

packetCount packetcount getPacketCount Returns the total received packets
lostPacket Returns the number of lost packets by node

packetSize packetsize getPacketSize Calculates and returns the size of a packets
getReceivedPacketSize Returns the average size of all the received packets

RSSI rssivalue getRssiTable Returns neighbors RSSI table
initRssiTable Initializes the neighbors RSSI table

LQI lqivalue getLqiTable Returns neighbors LQI table
initLqiTable Initializes the neighbors LQI table

hopCount hopcount hopcount Initiates the hop count process
hopcountDone Notifies the nodes when the hopcount value is ready

neighbors neighbors request Triggers a neighbor discovery message
neighborsinfo getNeighbors Returns the number of current neighbors

initNeighbors Initializes current neighbors table
commAttributes commAttributes setCommChannel Changes the communication channel

setTransPower Adjusts the transmission power a the specified value
tickCount tickcount getTicks Returns the number of CPU ticks to transmit a packet
sensingInfo sensingstat getAvgSenseValue Returns the average sensed value aggregated at the mcore
RC4 encryptI encrypt Encrypts/Decrypts a message based on a secret key
remoteExecution remoteexec execute Executes command provided by another M-Core component

acceptable successfully transmitted packet rate. If this thresh-
old is not reached, the commScan sub-component will notify
the upper layer by signaling an event. Some other possible
uses of this sub-component include the detection of correct
(or incorrect) functioning of the radio transceiver, the amount
of traffic in the channel, and congestion in the network.

2) packetCount: The packetCount sub-component provides
the interface packetcount with one command (getPacket-
Count()) to return the total number of packets received by the
sensor, and one event lostPacket(), which is signaled every
time a packet is lost by one of the node’s neighbors. For the
lostPacket event the sensor keeps track of all its neighbor’s
transmissions and maintains a four-tuple table to simplify the
detection of a neighbor losing or dropping packets. The four-
tuple contains the ID of the node who created the packet
(NodeS), the ID of the node forwarding a packet (NodeF),
the sequence number for the combination (NodeS,NodeF),
and the total lost packets for the same combination. Hence,
one can detect if any of the forwarding nodes F is dropping
packets generated at node S. This sub-component can be used
to detect unreliable communication links as well as malicious
activities in the network.

3) packetSize: The packetSize sub-component is used to
get information about the size of the packets. The packetsize()
interface provides two commands: getPacketSize() which was
designed for the users to directly ask the M-Core for payload
size of a specific packet, and getReceivedPacketSize() which
returns the average payload size of all received packets.
Average payload size information can be used in conjunction
with the received packets per second information (provided by
the getpps() command) to calculate network throughput.

4) RSSI and LQI: The receiver signal strength indication
(RSSI) and link quality index (LQI) are independent sub-
components, but the way they collect data and operate is

very similar. A copy of every packet received by the COMM
module is passed to each of these sub-components where they
parse the message to extract the RSSI and LQI values respec-
tively. The sub-components maintain a neighbors’ table and
all the extracted values are averaged with the corresponding
values from the tables. Our current implementation supports
CC2420, and RF230 radios, which are used by many of the
sensors currently available in the market. However, support for
other radios can be easily added. The information provided by
these two sub-components can be used for defining reliable
links in routing protocols, and also for device fingerprinting
for authentication.

5) neighbors: The neighbors sub-component provides two
interfaces, neighbors and neighborsinfo, to gather neighbor
information. Using the request() command from the neighbors
interface, the sensor initializes a neighbor discovery process
where it broadcasts a discovery message that is acknowl-
edged by all the neighbors within its transmission range.
Once the acknowledgement is received, the sensor refreshes
its neighbor table with updated information. Accordingly,
the getNeighbors() command provided by the neighborsinfo
interface returns the neighbors’ table, which can be initialized
or reset with the initNeighbors() command. The information
provided by this sub-component can be used to dynamically
create communication routes for mobile WSN deployments.

6) commAttributes: The commAttributes sub-component is
used to adjust communication attributes such as the commu-
nication channel and the transmit power using the setComm-
Channel() and setTransPower() commands respectively. These
attributes can also be modified at run time, which is convenient
for users that need to tune their application while running.

7) tickCount: The tickCount can be used to verify the
CPU load. The command getTicks() provided by the tickcount
interface initiates the transmission of an arbitrary packet to

calculate the number of CPU ticks elapsed from the message
creation until the confirmation of the transmission. This value
varies according to the CPU load, and can be used to establish
a threshold for minimum or maximum CPU utilization. This
sub-component can also be used for security to observe
abnormal activities onboard.

8) sensingInfo: The sensingInfo sub-component collects
information about the sensor readings and keeps an average of
the measured sensing values. Sensor information is important
to monitor since it can be used to verify the correct functioning
of the sensor itself. For instance, an overloaded sensor might
report a higher temperature readings due to overheating.

9) RC4: An instance of the RC4 [11] encryption algorithm
is also provided as a service in the M-Core. The encrypt com-
mand provided by the encryptI interface is used to encrypt
and decrypt a message that is passed as a parameter along
with the encryption key of a certain desired size.

10) hopCount: The hopCount is used to enable all the
nodes to determine their hop-count values with respect to
the cluster head. It provides the interface HopCount with a
command hopcount() to initiate the hop-count service and an
event hopcountDone() which is signaled once the nodes have
determined their hop-count values. This service can be used
periodically or on-demand.

11) remoteExecution: The remoteExecution is a sub-
component used to remotely call commands from other M-
Core sub-components to initialize variables as well as con-
figure sensors attributes. This component can be used to
initialize neighbors, RSSI, and LQI tables, to remotely change
the channel and transmit power, and to adjust any parameter
available in the M-Core.

To further facilitate the use of the M-Core and its services,
we developed the M-Core Control Language which is ex-
plained in the following section.

IV. THE M-CORE CONTROL LANGUAGE (MCL)

To easily use the services provided by the M-Core, we have
created a new domain specific language: the M-Core Control
Language (MCL). In this section, we introduce the MCL,
present the formal grammar of the language, and provide an
example that shows it can be used to activate, deactivate or
create new programs.

A. Rationale for the MCL & Formal Definition

The M-Core was designed to provide a full and extensible
set of services for the development of new SAs. However, a
programmer needs to learn the underlying M-Core architecture
(e.g., modules, interfaces, events, and commands) and do
additional implementation (e.g., wiring in TinyOS) to integrate
existing software solutions with the M-Core and also for
creating new ones. Moreover, this situation may be exacer-
bated given the sophistication needed to implement programs
on sensors for a novice programmer (this is evaluated in
Section VI). Therefore, the MCL has been designed to address
these issues. It utilizes the sub-components defined in the M-
Core and simplifies the programmer’s work to easily activate,

deactivate or create their SAs by automatically generating
important programming components needed for the underlying
M-Core architecture (e.g., configuration files, module files and
wiring). The MCL is a language consisting of a small set of
keywords. It was developed with Python. The formal definition
of the grammar of the MCL using the Extended Backus-Naur
Form (EBNF) is given in Listing 1.

Listing 1. Formal definition of MCL with EBNF.
MCL : : = ’START’ , SPACES ,

{ KEYWORDS, ’ (’ , EXPRESSIONS , ’) ’ , SPACES } ,
’END’ ;

KEYWORDS : : = ’ACTIVATE’ | ’STOP’ | ’SET ’ |
’ASSOCIATE’ | ’DISSOCIATE ’ | ’NEW’ ;

EXPRESSIONS : : = PARAMETERS, { [’ , ’ , SPACES ,
PARAMETERS] } , [’ , ’ , SPACES , VALUE] ;

PARAMETERS : : = [a−zA−Z]\w∗ ;

VALUE : : = \d∗ ;

SPACES : : = ’ ’∗ ;

A program written with MCL starts and ends with the
keywords, START and END. Between these, one can use
the other keywords ACTIVATE, STOP, or NEW to activate,
deactivate or create the modules, respectively. A programmer
can even define its own variables using the SET keyword.

B. Sample Usage

In this sub-section, we show a sample usage of MCL. In our
realistic scenario, the user implements four WSN programs
that can be interchangeably activated, deactivated, or even
run in parallel using the MCL. The MCL script written by
the user is given in Figure 2 (actual code snippet in the
middle). Specifically, the user instructs the M-Core to activate
existing program D1 and deactivate D2 and D3. The user
also creates a new program D4 into the M-Core, and sets the
specific activation time and specifies that it use the tickCount
sub-component of the M-Core. In the example, ACTIVATE
enables the existing D1 and specifies the D1 starting time.
ASSOCIATE is used to connect the D1 to the sub-components
of the M-Core. STOP simply disables the existing D2 and
D3 that might not be used at run time and disconnects them
from the sub-components. Moreover, NEW adds the new D4
program configurations into the M-Core and generates a new
template file for the D4 module implementation. With this
one keyword (NEW), the users can start writing their own
detailed program behavior in the newly created file without
worrying about the underlying details of the M-Core and
TinyOS. As seen in the figure, a user would be able to handle
existing programs and create new ones with simple keywords.
Most importantly, the conversion from MCL to the necessary
underlying components (i.e., side files in Figure 2) of the M-
Core and all the integration process are automatically handled
by the MCL.

V. M-CORE FUNCTIONAL EVALUATION

To evaluate the functionality of the M-Core and the MCL
we implemented four security applications:

Fig. 2. A realistic example usage of MCL.

• The detection and defense against Wormhole attacks.
• The detection and defense against Sybil attacks.
• A secure code dissemination using Deluge [12].
• A task manager application for sensors that we call

TinyOSTaskManager.

A. Wormhole Detection and Defense Application

The Wormhole attack [13], is one of the potential threats
targeting ad hoc and sensor networks. To launch this kind of
attack, an adversary connects two distant points in the network
using a tunnel with low latency, to deceive distant sensors and
make them believe they are neighbors. Once the routes are
established and the network traffic starts using the wormhole
link, the attacker can retrieve sensitive information or disrupt
the network communication.

For this experiment, the complete wormhole detection and
defense mechanism was implemented using the M-Core ar-
chitecture. As shown in Figure 3, the scenario consisted of
four legitimate nodes and an attacker node placed near node
4. Using the attacker node, the wormhole link (i.e., faster link)
is established between node 4 and the cluster head (node 1).

For the wormhole detection mechanism, we use the hop-
count service provided by the M-Core. During the initialization
of the topology, the hop-count service is called by the cluster
head and all the nodes estimate their corresponding hop-
counts from the cluster head. The hop-count service can also
be called periodically or whenever there is a change in the
topology (e.g., new node addition). At the end of each hop-
count service, all nodes update their corresponding node id of
their preceding node towards the cluster head and cache it.

In the normal communication procedure, each node which
initiates a transmission towards the cluster head sets its current
hop field to its estimated hop-count and sends the packet.
Each subsequent node decrements this current hop value and
compares with its own estimated hop-count. It forwards the
packet only if both the values match. If not, it immediately
broadcasts an alert message. On reception of the alert message,
the nodes revert back to their cached preceding node id for
sending packets towards the cluster head.

Fig. 3. Wormhole scenario.

Whenever a node receives an advertisement packet for a
shorter (or faster) route towards the cluster head, it starts
sending packets to the cluster head through this new route.
However, it still holds the previous preceding node id in
its cache. Now, when the attacker node placed near node 4
advertises a shorter route to the cluster head, node 4 sends
packets to the cluster head through the attacker. When node
1 receives these packets, it identifies a mismatch between its
own hop-count and the current hop associated with each of
these packets. It broadcasts an alert message once the threshold
(number of packets arriving with a hop-count mismatch) is
reached, which directs node 4 to revert back to its cached
preceding node id and resume transmission. Now, the route
through the attacker is avoided and also both ends of the
wormhole link are identified using the hop-count and current
hop parameters of the node which initiated the alert message.

Figure 4 shows the time taken for each packet transmitted
by node 4 to reach the cluster head. It takes around 14.019
milliseconds in the normal scenario (without attacker). After
8 packets have been transmitted successfully, the attacker is
introduced. As shown there is a significant decrease in the time
taken (around 6.746 milliseconds) for packets 9-13 to reach
the cluster head. This is due the fact that these packets (9-13)
now take the faster route through the attacker. The cluster head
detects the wormhole attack once the threshold is reached (five

0 2 4 6 8 10 12 14 16 18 20
2

3

4

5

6

6.7460
7

7

9

10

11

12

13

14.0190

15

16

Packet Arrival

T
im

e
 T

a
k
e
n
 p

e
r
 p

a
c
k
e
t
(
in

 m
il
li
s
e
c
o
n
d
s
)

Wormhole Attack − Detection and Recovery

Node 1
Packets going through

attacker Threshold Reached −
Defense Activated

Recovery

Fig. 4. Wormhole results.

packets arriving with hop-count mismatch) and broadcasts the
alert message. After recovery, the subsequent packets (14th

packet onwards) take the previously cached route which takes
around 14.091 milliseconds to reach the cluster head. Note
that the contribution of this work is not the technique used to
defend against Wormhole attacks, rather the use of the M-Core
and the MCL to facilitate the development of an AM.

B. Sybil Detection and Defense Application
The Sybil attack consists of one or more malicious nodes

that use legitimate nodes identifiers (IDs) to inject fake data
into the network. Our attack scenario consists of a malicious
node (Sybil node) impersonating other legitimate nodes by
broadcasting messages with one or multiple node IDs [14].
In our scenario, we use a RSSI-based approach to detect the
Sybil attack. For the Sybil detection the M-Core provides a
RSSI table containing average RSSI values for each neighbor.
This table is updated every time a packet arrives to the sensor
since the packet is passed to the M-Core and the RSSI value is
extracted and averaged. We collect at least 10 sample packets
from each neighbor to calculate the RSSI average and define
an upper and lower threshold for the RSSI. Note that all values
and thresholds in our framework are configurable.

The setup of the experiment consists of 2 legitimate sensors:
one sampler and one collector. The sampler gets light intensity
measurements and transmits the values to the collector. The
collector receives and displays the data. We also have 1 Sybil
sensor that impersonates the sampler and injects false data into
the network which is received by the collector node (Figure 6).
When our SA detects a Sybil message, it discard the packet.

Figure 5 shows the results of our experiment including the
data fluctuation caused by the injections and the detection and
recovery point. As seen in the figure, the M-Core is able to
support Sybil scenario as well. While implementing this RSSI
approach we notice that there are some false positives due to
the unstable nature of the communication channels and RSSI.
This is not the optimal defense against Sybil attacks, but we are
showing that the M-Core provides useful services for security.

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

S
o

la
r

R
a

d
ia

tio
n

 V
a

lu
e

 (
L

ig
h

t)

Pkt Arrival

Sybil Attack Experiment

Collector Node

Recovery

Data from Sybil Node

Fig. 5. Sybil Results.

Fig. 6. Sybil Scenario.

C. Secure Code Dissemination Application

Our secure code dissemination application is a secure
version of Deluge. Deluge is the de-facto TinyOS network
reprogramming tool. Since it does not provide any commu-
nication security, we used the RC4 M-Core service to create
a secure version of Deluge. The M-Core provides the RC4
stream cipher [11] encryption and decryption algorithm as a
service by providing the encryptI interface. Since the RC4
ciphers are generated using a symmetric operation, the SA can
use the same encrypt function call of the encryptI interface to
encrypt and decrypt the data.

To perform this encryption or decryption operation, our
secure deluge passes the secret key, size of secret key, plaintext
and size of plaintext as input to the encrypt function call.
After encrypting the plaintext, the RC4 service will overwrite
the input plaintext with the resultant ciphertext data. Hence
applications have to make only one function call before
sending and after receiving the data to encrypt and decrypt
the data stream, respectively. This RC4 encryption is a simple
algorithm which is platform independent and can work with
all versions of TinyOS. The implementation of the secure code
dissemination using the M-Core is presented in Figure 7.

The memory sizes of the secure code dissemination ap-
plication with and without M-Core are: (1) M-Core: 2743

Fig. 7. Secure Code Dissemination Scenario.

bytes (RAM) and 43094 bytes (ROM). (2) Plain: 2743 bytes
(RAM) and 42916 bytes (ROM). And the transmission times in
milliseconds are: (1) M-Core: 2432 and (2) Plain: 2236. This
demonstrates that the M-Core only adds a small overhead to
the secure Deluge AM.

D. TinyOSTaskManager Application

Using the M-Core services, we also developed a simple
task manager-like program that allows one to monitor different
activities on the sensor (TinyOSTaskManager). The monitor
application collects information about the CPU ticks, number
of neighbors, number of active M-Core services, packets
in/sec, packets out/sec, and total packets received. The status
of the different parameters are displayed in a java interface.
Figure 8 shows a screen capture of the TinyOSTaskManager.

Fig. 8. TinyOSTaskManager.

Besides the security applications presented in this paper, the
M-Core architecture and services can be leveraged to develop
a complete security system. For instance, in our previous work
[15], we used the M-Core to develop Di-Sec, a comprehensive
security framework for sensor networks that can defend against
all kinds of attacks.

Note that the security applications illustrated above are
based on existing solutions in the literature and were presented
as examples. The novelty (and contribution of this work) lies
in the fact that they were quickly developed using the M-Core
and MCL.

VI. M-CORE AND MCL DEVELOPMENT COSTS

To evaluate the benefits of the M-Core and the MCL, we
describe the amount of work (i.e., costs) required to develop
new software solutions with and without our framework. We
divided the development costs in two categories: learning costs
and implementation costs.

A. Learning Costs

For the development of new WSN software programs in
TinyOS, one needs to understand the concepts of modules,
configurations, interfaces, and wiring. Modules (or compo-
nents) are the basic building blocks of a TinyOS program since
they implement the program’s executable logic and include
some specific behaviors. For one module to be able to call
and use the functions provided by another module, we need
configuration files to map the set of provided functions in one
component to a set of required functions in another component
(interfaces). In TinyOS, connecting two components through
an interface is called wiring. Whenever a developer wants
to create a new program, he/she must define the program
requirements and then identify the components that provide
the required functionality. Once the components are identified,
the developer needs to find the interfaces to communicate with
those components and implement their events and learn how to
use their commands. Moreover, when some functionalities are
not implemented in the required components, the developer
has to implement it himself.

Given that the M-Core provides all the required information
(services) for the development of new security applications
within a single component, a developer only needs to add an
M-Core component in their programs and call any service di-
rectly through the M-Core. These services provided by the M-
Core take care of parsing all the messages and sensing values
and abstracts most of the system level configurations from
the application developers. Therefore, the amount of work
required to create new application is much smaller when using
the M-Core and it aids the security application developers to
write efficient defense modules for various security attacks and
in providing security fixes for the deployed WSN applications,
without worrying about the system configuration.

B. Implementation Costs

The M-Core provides a simple architecture that eases the
design of new software solutions. As shown in Figure 1, the
architecture of the M-Core allows the developer to create
multiple upper layer programs running individually or in
parallel, and it is also possible to have a stack of layers using
the M-Core services. To compare the implementation costs,
we discuss the amount of work to create a simple SA that
maintains a table with the node neighbors’ RSSI information.
The evaluation is based on the number of lines of code to
write and the number of files to modify for a basic code
setup of a new program. This is taken as an evaluation metric
because security application developers often need a rapid
application development platform to aid them in providing
security fixes for an on going security attack in WSN. Also,

TABLE II
IMPLEMENTATION COMPARISON FROM THE DEVELOPER’S PERSPECTIVE

No M-Core M-Core only M-Core & MCL
Lines of code 20 for new component 20 for new component 5 for new program

8 for new configuration 8 for new configuration
4 for component wiring 4 for M-Core wiring
8 for every additional event per interface 8 for every additional event per interface
55 for RSSI extraction and tables RSSI extraction and tables are provided as

M-Core services
RSSI extraction and tables are provided as
M-Core services

Total 91 36 5
Files to modify 2 modules 1 New module 1 MCL program

1 configuration 1 configuration 1 module
1 interface 1 M-Core
1 headers

Total 5 3 2

most of the existing middleware approaches, do not emphasis
security application development and this metric evaluates the
use of M-Core as a rapid application development platform
for a security application developer.

As seen in Table II, using the M-Core and MCL only takes
5 lines of code to develop our simple program compared to 91
lines of code without the M-Core. For our evaluation, we used
a simple scenario, but savings are amplified when developing
more complex SAs.

VII. CONCLUSION AND FUTURE WORK

In this work we introduced the Monitoring Core (M-Core).
The M-Core is a lightweight and extensible software layer
that allows for the monitoring of both internal and external
activities simultaneously to provide information in the form
of services. The service-oriented architecture of the M-Core
facilitates and expedites the development of security appli-
cations (SAs) for WSNs. Moreover, a new domain specific
language, the M-Core Control Language (MCL) has been
introduced to easily use M-Core. Both the M-Core and the
MCL along with five example SAs have been implemented and
tested on real sensors. As an overall contribution, this work
realized an architecture that can be leveraged by developers
to expedite the development of security application for sensor
networks. In our future work, we will increase the number of
M-Core services and provide a quantitative analysis and better
evaluation of the MCL.

ACKNOWLEDGMENT

This work was partly supported by NSF Grant No. CNS-
1052769

REFERENCES

[1] “Planetary Skin,” http://www.planetaryskin.org/home.
[2] J. Bort, “10 technologies that will change the world in the

next 10 years,” http://www.networkworld.com/news/2011/071511-cisco-
futurist.html, 2011.

[3] “The Internet of Things,” http://www.theinternetofthings.eu/.
[4] G. Ormazabal, S. Nagpal, E. Yardeni, and H. Schulzrinne, “Principles,

systems and applications of IP telecommunications. services and security
for next generation networks,” H. Schulzrinne, R. State, and S. Niccolini,
Eds. Berlin, Heidelberg: Springer-Verlag, 2008, ch. Secure SIP: A
Scalable Prevention Mechanism for DoS Attacks on SIP Based VoIP
Systems, pp. 107–132.

[5] L. Mottola and G. P. Picco, “Programming wireless sensor networks:
Fundamental concepts and state of the art,” ACM Comput. Surv., vol. 43,
no. 3, pp. 19:1–19:51, Apr. 2011.

[6] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema, and J. Szti-
panovits, “Oasis: A programming framework for service-oriented sensor
networks,” in the 2nd International Conference on Communication
Systems Software and Middleware (COMSWARE), jan. 2007, pp. 1 –
8.

[7] J. M. Prinsloo, C. L. Schulz, D. G. Kourie, W. H. M. Theunissen,
T. Strauss, R. Van Den Heever, and S. Grobbelaar, “A service oriented
architecture for wireless sensor and actor network applications,” in the
Proceedings of the annual research conference of the South African
institute of computer scientists and information technologists on IT
research in developing countries (SAICSIT), 2006, pp. 145–154.

[8] C.-L. Fok, R. Gruia-Catalin, and C. Lu, “Agilla: A mobile agent
middleware for self-adaptive wireless sensor networks,” in the ACM
Transactions on Autonomous and Adaptive Systems (TAAS), vol. 4, no. 3,
pp. 16:1–16:26, Jul. 2009.

[9] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
an acquisitional query processing system for sensor networks,” in the
ACM Transactions on Database Systems (TODS), vol. 30, no. 1, pp.
122–173, Mar. 2005.

[10] TinyOS homepage, http://www.tinyos.net/.
[11] B. A. Forouzan, Cryptography & Network Security (1st edition).

McGraw-Hill, 2007.
[12] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination

protocol for network programming at scale,” in the Proceedings of the
2nd International conference on Embedded Networked Sensor Systems,
pp. 81–84, 2004.

[13] Y.-C. Hu, A. Perrig, and D. Johnson, “Wormhole attacks in wireless
networks,” in the IEEE Journal on Selected Areas in Communications,
vol. 24, no. 2, pp. 370 – 380, feb. 2006.

[14] M. Demirbas and Y. Song, “An RSSI-based scheme for sybil attack
detection in wireless sensor networks,” in the Proceedings of the
2006 International Symposium on on World of Wireless, Mobile and
Multimedia Networks (WOWMOM). Washington, DC, USA: IEEE
Computer Society, 2006, pp. 564–570.

[15] M. Valero, S. S. Jung, A. S. Uluagac, Y. Li, and R. Beyah, “Di-Sec:
A Distributed Security Framework for Heterogeneous Wireless Sensor
Networks.” in In the Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), Orlando, FL, USA, Mar.
2012.

