
Continuous Data Collection Capacity of Wireless Sensor Networks Under Physical
Interference Model

Shouling Ji
Department of Computer Science

Georgia State University
Atlanta, Georgia 30303, USA

Email: sji@cs.gsu.edu

Raheem Beyah
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30308, USA

Email: rbeyah@ece.gatech.edu

Yingshu Li
Department of Computer Science

Georgia State University
Atlanta, Georgia 30303, USA

Email: yli@cs.gsu.edu

Abstract—Data collection is a common operation of Wireless
Sensor Networks (WSNs). The performance of data collection
can be measured by its achievable network capacity. However,
most existing works focus on the network capacity of unicast,
multicast or/and broadcast, which are different communication
modes from data collection, especially continuous data collec-
tion. In this paper, we study the Snapshot/Continuous Data
Collection (SDC/CDC) problem under the Physical Interference
Model (PhIM) for randomly deployed dense WSNs. For SDC,
we propose a Cell-Based Path Scheduling (CBPS) algorithm
based on network partitioning. Theoretical analysis shows
that its achievable network capacity is Ω(𝑊 ) (𝑊 is the data
transmitting rate, i.e. bandwidth, over a channel), which is
order-optimal. For CDC, we propose a novel Segment-Based
Pipeline Scheduling (SBPS) algorithm that significantly speeds
up the CDC process, and achieves a surprising network
capacity, which is at least

√
𝑛

log𝑛
or 𝑛

log𝑛
times better than

the current best result.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are mainly used for
collecting data from the physical world. Data gathering
can be categorized as data aggregation [1], which obtains
aggregated values from WSNs, e.g. maximum, minimum
or/and average value of all the data, and data collection
[2][17][30], which gathers all the data from a network
without any data aggregation. For data collection, the union
of all the sensing values from all the sensors at a particular
time instance is called a snapshot [2][4]. The problem
of collecting one snapshot is called snapshot data collec-
tion (SDC). The problem of collecting multiple continuous
snapshots is called continuous data collection (CDC). To
evaluate the network performance, network capacity, which
can reflect the achievable data transmission rate, is usually
used [2]-[32]. For unicast, multicast and broadcast, we use
unicast capacity, multicast capacity, and broadcast capacity
to denote the network capacity, respectively. Particularly, for
a data collection WSN, we use the data receiving rate at
the sink, referred to as data collection capacity, to measure
its achievable network capacity, i.e. data collection capacity

reflects how fast data is collected by the sink1 [2][4].
After the first work [28] in this area, many works

emerged to study the network capacity issue for a variety
of network scenarios, e.g. multicast capacity [9][20], unicast
capacity [23], broadcast capacity [25][26][27], SDC capacity
[2][17][30]. When researchers studied the network capacity
of wireless networks, one of two interference models is
usually used, i.e. the Protocol Interference Model (PrIM) [2]-
[16] or the Physical Interference Model (PhIM) [17]-[24].
Under the PrIM, two nodes can successfully communicate if
and only if the receiver is within the transmission range of
the sender, and the receiver is out of the interference range of
other simultaneous senders. Under the PhIM, a receiver can
successfully receive data from the sender if and only if the
Signal-to-Interference-and-Noise-Ratio (SINR) of the sender
at the receiver is no less than a threshold (denoted by 𝜂).
The PrIM simplifies the communication model of wireless
networks and is therefore more convenient for analysis. By
contrast, the PhIM takes the received physical signal strength
as a criterion, which is more accurate and reliable. In this
paper, we consider the achievable data collection capacity
for WSNs under the PhIM.

For most of the existing works, they studied the multi-
cast capacity [9][20], the unicast capacity [23], and/or the
broadcast capacity [26] of wireless networks. In contrast,
we study the SDC capacity and the CDC capacity of large-
scale WSNs. Mulitcast/unicast/broadcast and data collection
are different communication modes. Furthermore, the data
collection communication mode introduces more communi-
cation traffic and wireless interference. Recently, the authors
in [3][4] considered CDC under the PrIM. In [3], the authors
proposed a method that combines the SDC scheduling and
the pipeline technology to carry out CDC. However, the
authors also proved that their CDC method cannot achieve a
better network capacity compared with their SDC method. In
our previous work [4], we studied the CDC problem in dual-
radio multi-channel WSNs under the PrIM. To further study

1Without confusion, we use data collection capacity and network capacity
interchangeably in the following of this paper.
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how to significantly improve the CDC capacity under the
PhIM, we investigate the restriction that limits the pipeline
technology to achieve a higher CDC capacity. By combining
the Compressive Data Gathering (CDG) technique [30] and
the pipeline technology, we propose a new transmission and
scheduling method for CDC which achieves a surprising
network capacity. Particularly, the main contributions of this
work are as follows:

∙ For a WSN deployed in a square area, we first partition
the network into small cells, and then abstract every cell
as a super-node in a data collection tree rooted at the
sink. Based on the data collection tree, we propose a
scheduling algorithm, called Cell-Based Path Schedul-
ing (CBPS), for the SDC problem in WSNs. Theoretical
analysis of CBPS shows that the achievable network
capacity is Ω(𝑊 ), where 𝑊 is the data transmission
rate over a wireless channel, i.e. the channel bandwidth.
Since the upper bound of the SDC capacity is shown
to be 𝑊 [2][4], CBPS successfully achieves the order-
optimal network capacity.

∙ We propose a novel Segment-Based Pipeline Scheduling
(SBPS) method for CDC in WSNs. SBPS combines the
CDG [30] technology and the pipeline technology and
can significantly improve achievable network capacity.
We theoretically prove that the asymptotic achievable
network capacity of SBPS to collect 𝑁 continuous
snapshots is Ω(

√
𝑛

log𝑛𝑊 ) when 𝑁 ≤
√

𝑛
log 𝑛 or

Ω( 𝑛
log𝑛𝑊 ) when 𝑁 >

√
𝑛

log𝑛 , where 𝑛 is the number

of sensors in a WSN. Since the current best result
is Ω(𝑊 ) [2][17], our result is at least

√
𝑛

log𝑛 or
𝑛

log𝑛 times better than the best result, which is a very
significant improvement.

II. RELATED WORKS

Following the first work [28] by Gupta and Kumar, many
works emerged to study the network capacity issue.

A. Network Capacity under the PrIM

The authors of [2][3] derived the upper and lower bounds
of data collection capacity under the PrIM for arbitrary
WSNs. In [9], the authors investigated the multicast capacity
for large scale wireless ad hoc networks. They showed that
the network multicast capacity is Θ(

√
𝑛

log𝑛 ⋅ 𝑊
𝑘 ) when

𝑘 = 𝑂( 𝑛
log𝑛 ) and is Θ(𝑊 ) when 𝑘 = Ω( 𝑛

log𝑛 ). A more
general (𝑛,𝑚, 𝑘)-casting capacity problem under the PrIM
was investigated in [10], where 𝑛, 𝑚 and 𝑘 denote the
total number of the nodes in the network, the number of
destinations of each communication group, and the actual
number of communication-group members that receive in-
formation, respectively. In [10], the upper and lower bounds
for the (𝑛,𝑚, 𝑘)-casting capacity were obtained for random
wireless networks.

A general framework to characterize the network capacity
of wireless ad hoc networks with arbitrary mobility patterns
was studied in [11]. By relaxing the “homogeneous mixing”
assumption in most existing works, the network capacity of
a heterogeneous network was analyzed. The authors in [12]
studied the relationship between the network capacity and
the delay of mobile wireless ad hoc networks. They derived
how much delay must be tolerated under a certain mobile
pattern to achieve an improvement of the network capacity.
In another similar work [13], the authors investigated the
network capacity scaling in mobile wireless ad hoc networks
under the PrIM with infrastructure support.

In [14], the authors studied the connectivity and network
capacity problems of multi-channel wireless networks un-
der the PrIM. They considered a multi-channel wireless
network with constraints on channel switching, proposed
some routing and channel assignment strategies for multiple
unicast communications, and derived the per-flow capacity.
In [15], the authors first proposed a multi-channel network
architecture, called MC-MDA, and then obtained the capac-
ity of multiple unicast communications under the PrIM for
arbitrary and random wireless networks. In a similar work
[16], the authors studied the network capacity of hybrid
wireless networks with directional antenna and delay con-
straints. Unlike previous works, the authors in [29] studied
the capacity of multi-unicast for wireless networks from
the algorithmic aspects, and they designed provably good
algorithms for arbitrary instances. The broadcast capacity of
wireless networks under the PrIM is investigated in [25],
where the authors derived the upper and lower bounds of
the broadcast capacity in arbitrary connected networks.

When the authors in [5] studied the data gathering capac-
ity of wireless networks under the PRIM, they concerned
the per source node throughput in a network where a subset
of nodes send data to some designated destinations while
other nodes serve as relays. To gather data from WSNs, a
multi-query processing technology is proposed in [6]. In that
work, the authors considered how to obtain data efficiently
with data aggregation and query scheduling. Under different
communication organizations, the authors in [7] derived the
many-to-one capacity bound under the PrIM. Another work
studied the many-to-one capacity issue for WSNs is [8],
where the authors considered to use data compression to
improve the data gathering efficiency. They also studied the
relation between a data compression scheme and the data
gathering quality.

B. Network Capacity under the PhIM

In [17], the authors investigated the data collection ca-
pacity for WSNs under the PhIM. They proposed a grid
partition method which divides the network into small grids
to collect data and then derived the network capacity. In
[18], the authors considered the scheduling problem, where
all the communication requests are single-hop and all the
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nodes transmit at a fixed power level. They proposed an
algorithm to maximize the number of links in one time-
slot. Unlike [18], the authors in [19] considered the power-
control problem. A family of approximation algorithms were
presented to maximize the network capacity of arbitrary
wireless networks. In [20], the authors showed that when
𝑘 ≤ 𝜃1

𝑛
(log𝑛)2𝛼+6 and 𝑛𝑠 ≥ 𝜃2𝑛

1/2+𝛽 , the capacity that

each multicast session can achieve is at least 𝑐8
√
𝑛

𝑛𝑠

√
𝑘

. In
[21], the authors studied the scaling laws of WSNs based
on an antenna sharing idea. In that work, the author derived
the many-to-one capacity bounds under different power
constraints.

In [23], the authors studied the balanced unicast and
multicast capacity of a wireless network consisting of 𝑛
randomly placed nodes, and obtained the characterization
of the scaling of the 𝑛2-dimensional balanced unicast and
𝑛2𝑛-dimensional balanced multicast capacity regions under
the Gaussian fading channel model. In [24], the authors
studied the multicast capacity of MANETs under the PhIM,
called motioncast. They considered the network capacity
of MANETs in two particular situations, which are the
LSRM (local-based speed-restricted) model and the GSRM
(global-based speed-restricted) model. In [26] and [27], the
authors studied the broadcast capacity of wireless networks,
where they obtained the broadcast capacity bounds under
the (general) PhIM. The multi-unicast capacity of wireless
networks is studied in [22] via percolation theory. By
applying percolation theory, the authors obtained a tighter
capacity bound for arbitrary wireless networks.

The authors of [30]-[32] considered both the PrIM and the
PhIM when they studied the network capacity for wireless
networks. The work in [30] studies how to distribute the data
collection task to the entire network for WSNs to achieve
load balancing. In this work, all the sensors transmit the
same number of data packets during the data collection
process. The authors in [31] studied the network capacity
of CSMA wireless networks. They formulated the models
of a series of CSMA protocols and studied the network
capacity of CSMA scheduling versus TDMA scheduling. In
[32], a scheduling partition method for large-scale wireless
networks was proposed. This method decomposes a large
network into many small zones, and then localized schedul-
ing algorithms which can achieve the order optimal network
capacity as a global scheduling strategy are executed in each
zone independently.

III. NETWORK PARTITION

A. Network Model

In this paper, we consider a WSN consisting of 𝑛 sensors,
denoted by 𝑠1, 𝑠2, . . . , 𝑠𝑛, and one sink deployed in a square
with area 𝐴 = 𝑐𝑛, where 𝑐 is a constant. Furthermore, we
assume the distribution of all the sensors is independent and
identically distributed (i.i.d.) and loosing only a constant

factor, the sink is located at the top-right corner of the
square2. The communication radius of a sensor is 𝑟. In each
time interval, every sensor generates a data packet with size 𝑏
bits, and transmits its data to the sink in a multi-hop fashion
over a single common wireless channel with bandwidth 𝑊
bits/second, i.e. the data transmission rate of the common
channel is 𝑊 . We further assume the network time is slotted
into time slots with each of length 𝑡 = 𝑏/𝑊 seconds. To
accurately represent the wireless interference in a WSN, we
consider the data collection problem under the PhIM, where
a receiver 𝑠𝑗 successfully receives the transmitted data from
the sender 𝑠𝑖 if and only if the SINR of 𝑠𝑖 at 𝑠𝑗 is no less
than a constant 𝜂 > 0, i.e.

𝑆𝐼𝑁𝑅 =
𝑃𝑖 ⋅ (∥𝑠𝑖 − 𝑠𝑗∥)−𝛼

𝑁0 +
∑
𝑘 ∕=𝑖

𝑃𝑘(∥𝑠𝑘 − 𝑠𝑗∥)−𝛼
≥ 𝜂,

where 𝑃𝑖 is the transmission power of 𝑠𝑖, ∥𝑠𝑖 − 𝑠𝑗∥ is the
Euclidean distance between 𝑠𝑖 and 𝑠𝑗 , 𝛼 is the path-loss
exponent and usually 𝛼 ∈ [3, 5], 𝑁0 > 0 is a constant
representing the background noise, and 𝑃𝑘 is the transmis-
sion power of concurrent sender 𝑠𝑘(1 ≤ 𝑘 ≤ 𝑛, 𝑘 ∕= 𝑖).
In this paper, we assume all the sensors have the same
transmission power 𝑃 when they transmit data and therefore
we have the communication radius 𝑟 of a sensor satisfying
𝑟 ≤ ( 𝑃

𝜂𝑁0
)1/𝛼.

We further formally define the achievable data collection
capacity 𝐶 as the ratio between the amount of data success-
fully collected by the sink and the time 𝜏 used to collect
these data. For instance, in our WSN model, the achievable
𝐶 to collect 𝑁 continuous snapshots of data is defined by
𝐶 = 𝑁𝑛𝑏/𝜏 , which is actually the data receiving rate at
the sink. Particulary, when 𝑁 = 1, 𝐶 = 𝑛𝑏/𝜏 is the SDC
capacity.

B. Network Partition

In the previous subsection, we assume the network is
distributed in a square with area size 𝐴 = 𝑐𝑛. We parti-
tion the network into small square cells with edge length√
2𝑐 log 𝑛, denoted by 𝑙, by a group of horizontal and

vertical lines. The resulting network is shown in Figure
1. In order for the sensors in a cell to transmit their data
to the sensors in the neighboring cells, we set a sensor’s
communication range 𝑟 = 2

√
2𝑙. Furthermore, we use

𝜆 =
√
𝑐𝑛/

√
2𝑐 log 𝑛 =

√
𝑛/2 log 𝑛 to denote the number

of cells in each row/column and define 𝜆′ = 𝜆 − 1. For
the cells shown in Figure 1, we assign each cell positive
integer coordinates (𝑖, 𝑗)(1 ≤ 𝑖, 𝑗 ≤ 𝜆), and a cell with
coordinates (𝑖, 𝑗) is denoted by 𝜅𝑖,𝑗 . Hence, the coordinates
of the bottom-left corner cell are (1, 1) and the coordinates
of the upper-right corner cell are (𝜆, 𝜆).

2Note that when the sink is in the middle of the network, one achieves
a 1/4 of data collection capacity of the sink in the corner.
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Figure 1. Network partition.

Based on the above network partition, the following two
lemmas can be derived by similar techniques as those used
in [33]. We omit the proofs of Lemma 1 and Lemma 2 due
to space limitation.

Lemma 1: For any cell 𝜅𝑖,𝑗 , let 𝑒𝑖𝑗 denote the random
event that cell 𝜅𝑖,𝑗 is empty, i.e. no sensor is located at cell
𝜅𝑖,𝑗 . Then, the probability that at least one cell is empty is
no more than 1

2𝑛 log𝑛 , i.e. Pr[
∪

1≤𝑖,𝑗≤𝜆

𝑒𝑖𝑗 ] ≤ 1
2𝑛 log𝑛 .

Lemma 1 implies that when 𝑛 → ∞, the probability that
one cell is empty is zero. Therefore, when 𝑛 is a large value,
we can assume that there is at least one sensor located in
every cell.

Lemma 2: For any cell 𝜅𝑖,𝑗 , let the random variable 𝑍𝑖𝑗

denote the number of sensors in it. Then, the probability that
cell 𝜅𝑖,𝑗 contains more than 8 log 𝑛 sensors is no more than
1
𝑛2 , i.e. Pr[𝑍𝑖𝑗 > 8 log 𝑛] ≤ 1

𝑛2 .
From Lemma 2, the probability that a cell contains more

than 8 log 𝑛 sensors is zero when 𝑛 → ∞. Hence, for a
large 𝑛, we use 8 log 𝑛 as the upper bound of the number
of sensors located in a cell.

C. Interference Zone

Since we assume the sink is located at the upper-right
corner cell 𝜅𝜆,𝜆, for the sensors in cell 𝜅𝑖,𝑗 , they will forward
their data to the sensors located at cells 𝜅𝑖+1,𝑗 , 𝜅𝑖,𝑗+1 or/and
𝜅𝑖+1,𝑗+1 as shown in Figure 2, i.e. the sensors in each
cell will forward their data to sensors in subsequent cells
horizontally, vertically, or/and diagonally. Finally, the data
generated by all the sensors will be forwarded to the sink
via this multi-hop fashion.

Figure 2. Data transmission mode.

When data transmission is initialized between two neigh-
boring cells, they may incur interference caused by other
concurrent data transmissions. To make all the concurrent
data transmissions successful, we further partition the net-
work into larger square zones with side length 𝑅 = 𝜔 ⋅ 𝑙

(to avoid radio conflicts, 𝜔 > 2, i.e. 𝑅 ≥ 3𝑙) by another
group of horizontal and vertical lines and we call these
square zones interference zones as shown in Figure 3.
We also assign each interference zone integer coordinates
(𝑖, 𝑗)(1 ≤ 𝑖, 𝑗 ≤ ⌈√𝑐𝑛/𝑅⌉) and interference zone (𝑖, 𝑗)
is denoted by 𝑜𝑖,𝑗 . For a cell 𝜅𝑖′,𝑗′ in an interference
zone 𝑜𝑖,𝑗 , the relative position of 𝜅𝑖′,𝑗′ in 𝑜𝑖,𝑗 is defined
as (𝑖′ ⋅ 𝑙 − (𝑖 − 1) ⋅ 𝑅, 𝑗′ ⋅ 𝑙 − (𝑗 − 1) ⋅ 𝑅). We call
the cells having the same relative positions in different
interference zones compatible cells. In Figure 3, compatible
cells having relative position (𝑙, 𝑙) are highlighted. If two
sensors are in different cells which are compatible cells, then
they can transmit data simultaneously without incurring any
interference.

Figure 3. Interference zones and compatible cells.

At any time, we select one sensor in each compatible
cell to transmit data. The selected sensors transmit data
simultaneously. These transmitting sensors will not incur
interference, since they are spread in different compatible
cells. To this end, the next task is to decide the value of 𝑅
as shown in Theorem 1.

Theorem 1: If we partition the network into interference
zones with edge length 𝑅 = 𝜔 ⋅ 𝑙, where 𝜔 = 2

√
2 ⋅ 𝛼

√
𝑐1𝜂

is a constant value, it can be guaranteed that the sensors
in compatible cells can simultaneously and successfully
transmit data without interference, with each transmitting
sensor residing in a unique compatible cell.
Proof: Let 𝒞 be a compatible cell set that contains any
cell 𝜅𝑖,𝑗 and all of its compatible cells, i.e. 𝒞 = {𝜅𝑖,𝑗} ∪
{𝜅𝑖′,𝑗′ ∣𝜅𝑖′,𝑗′ ∕= 𝜅𝑖,𝑗 , and 𝜅𝑖′,𝑗′ is a compatible cell of 𝜅𝑖,𝑗}.
To make every cell in 𝒞 can initiate a data transmission
concurrently without interference3, it is sufficient to have

𝑃 ⋅ ∥𝜅𝑖,𝑗 − 𝜅′
𝑖,𝑗∥−𝛼

𝑁0 +
∑

𝜅𝑖′,𝑗′∈𝒞,𝜅𝑖′,𝑗′ ∕=𝜅𝑖,𝑗

𝑃 ⋅ ∥𝜅𝑖′,𝑗′ − 𝜅′
𝑖,𝑗∥−𝛼

≥ 𝜂, (1)

where 𝜅𝑖,𝑗 is any transmitting cell, 𝜅′
𝑖,𝑗 is the receiving cell

of 𝜅𝑖,𝑗 , and 𝜅𝑖′,𝑗′ is a compatible cell of 𝜅𝑖,𝑗 (𝜅𝑖′,𝑗′ is also
transmitting some data packets simultaneously with 𝜅𝑖,𝑗).

3Here, we actually mean “to make every cell in 𝒞 having a sensor
can initiate a data transmission concurrently without interference”. Without
confusion, we use cell and sensor interchangeably.
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Since 𝑃 , 𝑁0, and 𝜂 are constant values, we derive the bounds
of ∥𝜅𝑖,𝑗−𝜅′

𝑖,𝑗∥−𝛼 and
∑

𝜅𝑖′,𝑗′∈𝒞,𝜅𝑖′,𝑗′ ∕=𝜅𝑖,𝑗

∥𝜅𝑖′,𝑗′ − 𝜅′
𝑖,𝑗∥−𝛼 in

the following.

1st layer cells
2nd layer cells

Figure 4. Computation of 𝑅.

First, we have ∥𝜅𝑖,𝑗 − 𝜅′
𝑖,𝑗∥−𝛼 ≥ 𝑟−𝛼 since 𝑟 is the

transmission radius of a sensor (defined in Section III.A) and
every communication pair must within the communication
range of each other. Subsequently, all the compatible cells
of 𝜅𝑖,𝑗 in 𝒞 can be layered with respect to 𝜅𝑖,𝑗 as shown in
Figure 4, with the 𝜓-th (𝜓 ≥ 1) layer having at most 8𝜓
cells4. Furthermore, the distance between the receiving cell
of 𝜅𝑖,𝑗 , i.e. 𝜅′

𝑖,𝑗 , and any compatible cell at the 𝜓-th layer
is no less than 𝜓 ⋅𝑅− 2𝑙. Thus, we have∑

𝜅𝑖′,𝑗′∈𝒞,𝜅𝑖′,𝑗′ ∕=𝜅𝑖,𝑗

∥𝜅𝑖′,𝑗′ − 𝜅′
𝑖,𝑗∥−𝛼 (2)

≤
∑
𝜓≥1

8𝜓 ⋅ (𝜓 ⋅𝑅− 2𝑙)−𝛼 (3)

= 8𝑅−𝛼 ⋅
∑
𝜓≥1

𝜓(𝜓 − 2𝑙

𝑅
)−𝛼 (4)

= 8𝑅−𝛼 ⋅ [(1− 2𝑙

𝑅
)−𝛼 +

∑
𝜓≥2

𝜓(𝜓 − 2𝑙

𝑅
)−𝛼] (5)

≤ 8𝑅−𝛼 ⋅ [(1− 2

3
)−𝛼 +

∑
𝜓≥2

𝜓(𝜓 − 2

3
)−𝛼] (6)

≤ 8𝑅−𝛼 ⋅ [3𝛼 +
∑
𝜓≥2

𝜓(𝜓 − 1)−𝛼] (7)

= 8𝑅−𝛼 ⋅ [3𝛼 +
∑
𝜛≥1

𝜛−𝛼(𝜛 + 1)] (8)

= 8𝑅−𝛼 ⋅ [3𝛼 +
∑
𝜛≥1

𝜛−𝛼+1 +
∑
𝜛≥1

𝜛−𝛼] (9)

≤ 8𝑅−𝛼 ⋅ [3𝛼 +
∑
𝜛≥1

𝜛−2 +
∑
𝜛≥1

𝜛−3] (10)

= 8𝑅−𝛼 ⋅ (3𝛼 + 𝜁(2) + 𝜁(3)). (11)

The reason from (4) to (5) is because 𝑅 ≥ 3𝑙 (explained in
Section III.C). The reason from (7) to (8) is because we use
𝜛 to substitute 𝜓 − 1, i.e. 𝜛 = 𝜓 − 1. The reason from (9)

4This can be easily proven by mathematical induction.

to (10) is because 𝛼 ≥ 3. In (11), 𝜁(⋅) is the Riemann zeta
function, and with 𝜁(2) = 𝜋2

6 ≈ 1.645 and 𝜁(3) ≈ 1.202,
respectively. Let 𝑐1 = 8(3𝛼 + 2.847). We have∑

𝜅𝑖′,𝑗′∈𝒞,𝜅𝑖′,𝑗′ ∕=𝜅𝑖,𝑗

∥𝜅𝑖′,𝑗′ − 𝜅′
𝑖,𝑗∥−𝛼 ≤ 𝑐1 ⋅𝑅−𝛼. (12)

It follows, we have

𝑃 ⋅ ∥𝜅𝑖,𝑗 − 𝜅′
𝑖,𝑗∥−𝛼

𝑁0 +
∑

𝜅𝑖′,𝑗′∈𝒞,𝜅𝑖′,𝑗′ ∕=𝜅𝑖,𝑗

𝑃 ⋅ ∥𝜅𝑖′,𝑗′ − 𝜅′
𝑖,𝑗∥−𝛼

(13)

≥ 𝑃 ⋅ 𝑟−𝛼

𝑁0 + 𝑐1𝑃 ⋅𝑅−𝛼
. (14)

Now, to make the inequality in (1) valid, it is sufficient
to have

𝑃 ⋅ 𝑟−𝛼

𝑁0 + 𝑐1𝑃 ⋅𝑅−𝛼
≥ 𝜂 ⇔ 𝑅−𝛼 ≤ 𝑟−𝛼

𝑐1𝜂
− 𝑁0

𝑐1𝑃
(15)

⇔ 𝑅 ≥ (
𝑟−𝛼

𝑐1𝜂
− 𝑁0

𝑐1𝑃
)−1/𝛼 (16)

Since 𝑁0, 𝛼, 𝑐1, 𝜂, and 𝑃 are constant values, we have
𝑅 ≥ ( 𝑟

−𝛼

𝑐1𝜂
− 𝑁0

𝑐1𝑃
)−1/𝛼 ∼ Θ(𝑟). Furthermore, considering

that 𝑁0 is negligible compared with the interference brought
by concurrent transmitters [31], we can ignore 𝑁0, i.e. let
𝑁0 = 0. Thus, we have 𝑅 ≥ 𝛼

√
𝑐1𝜂 ⋅ 𝑟 = 2

√
2 ⋅ 𝛼

√
𝑐1𝜂 ⋅ 𝑙,

since 𝑟 = 2
√
2𝑙. Based on the definition of interference

zones, a small 𝑅 implies more compatible cells, which
further implies more sensors can conduct transmissions
concurrently, we set 𝑅 = 2

√
2 ⋅ 𝛼

√
𝑐1𝜂 ⋅ 𝑙, which is sufficient

to make every cell in 𝒞 can initiate a data transmission
concurrently without interference. Now, let 𝜔 = 2

√
2⋅ 𝛼

√
𝑐1𝜂,

i.e. 𝑅 = 𝜔 ⋅ 𝑙. Evidently, 𝜔 is a constant value. It follows
that we have proved Theorem 1. □

IV. NETWORK CAPACITY OF SDC

A. Cell-Based Path Scheduling (CBPS)

For each cell 𝜅𝑖,𝑗 in a WSN, we abstract it to a super-
node, denoted by 𝜈𝑖,𝑗 . Note that 𝜈𝑖,𝑗 may actually contain
at most 8 log 𝑛 sensors by Lemma 2, and we use this 𝜈𝑖,𝑗
to represent the sensors in 𝜅𝑖,𝑗 . We further define a super
time slot 𝑡𝑠 = 8 log 𝑛 ⋅ 𝑡, which implies any super-node
can transmit all its data to the next-hop, super-node or sink,
within a super time slot 𝑡𝑠. Afterwards, we construct a data
collection tree rooted at the sink to connect all the super-
nodes according to the following rules:

∙ For super-node 𝜈𝜆,𝑗(1 ≤ 𝑗 ≤ 𝜆′) (note that 𝜆′ = 𝜆−1),
𝜈𝜆,𝑗 transmits its data to 𝜈𝜆,𝑗+1, i.e., create a directed
edge from 𝜈𝜆,𝑗 to 𝜈𝜆,𝑗+1;

∙ For super-node 𝜈𝑖,𝜆(1 ≤ 𝑖 ≤ 𝜆′), 𝜈𝑖,𝜆 transmits its
data to 𝜈𝑖+1,𝜆, i.e., create a directed edge from 𝜈𝑖,𝜆 to
𝜈𝑖+1,𝜆;

∙ For super-node 𝜈𝑖,𝑗(1 ≤ 𝑖, 𝑗 ≤ 𝜆′), 𝜈𝑖,𝑗 transmits its
data to 𝜈𝑖+1,𝑗+1, i.e., create a directed edge from 𝜈𝑖,𝑗
to 𝜈𝑖+1,𝑗+1.
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The abstraction and data collection tree construction pro-
cess are shown in Figure 5. In Figure 5, we also assign every
path a name: 𝑝1, the principal diagonal path; 𝑝𝑖(2 ≤ 𝑖 ≤ 𝜆′),
the 𝑖-th path below 𝑝1; 𝑝′𝑖(2 ≤ 𝑖 ≤ 𝜆′), the 𝑖-th path above
𝑝1; 𝑝𝑣 , which consists of super-nodes located at the same
column with the sink; and 𝑝ℎ, which consists of super-nodes
located at the same row with the sink. Furthermore, if the
associated cells of some super-nodes are compatible cells,
then these super-nodes are called compatible nodes. The
paths that contain compatible nodes are called compatible
paths, e.g. in Figure 5, 𝑝1, 𝑝4 and 𝑝7 are compatible paths.
From the analysis in Section III-C, we know that the
compatible nodes on compatible paths can transmit data
concurrently.

Figure 5. Construction of a data collection tree.

We now present the idea of our CBPS algorithm according
to the example shown in Figure 5. CBPS has the following
four steps.

Step 1: Schedule paths 𝑝1, 𝑝2, . . . , 𝑝𝜆′ until all the data
packets on these paths have been transmitted to the super-
nodes on 𝑝𝑣 . When schedule 𝑝1, 𝑝2, . . . , 𝑝𝜆′ , it is obvious
that we can divide them into at most 𝜔 groups 𝐺𝑘(0 ≤ 𝑘 ≤
𝜔 − 1) with each group consisting of mutual compatible
paths. Thereafter, in the 𝑖-th super time slot, we schedule
paths in group 𝐺(𝑖−1)%𝜔 . Taking the data collection tree
shown in Figure 5 as an example, 𝑝1, 𝑝2, . . . , 𝑝7 can be
divided into three groups with 𝐺0 = {𝑝1, 𝑝4, 𝑝7}, 𝐺1 =
{𝑝2, 𝑝5} and 𝐺2 = {𝑝3, 𝑝6}. Thereafter, 𝐺0, 𝐺1 and 𝐺2

will be scheduled in a round-robin fashion. Within a group,
the super-nodes on all the paths can also be divided into at
most 𝜔 node-groups 𝑔𝑘(0 ≤ 𝑘 ≤ 𝜔 − 1) with each node-
group containing mutual compatible nodes. Then, in the 𝑗-
th available super time slot for a particular node-group, we
schedule the super-nodes in 𝑔(𝑗−1)%𝜔 . For group 𝐺0 in the
previous example, the super-nodes on paths 𝑝1, 𝑝4 and 𝑝7 can
be divided into three node-groups and they can be scheduled
in a round-robin manner in the available super time slots for
𝐺0.

Step 2: Schedule paths 𝑝′2, 𝑝
′
3, . . . , 𝑝

′
𝜆′ until all the data

packets on these paths have been transmitted to the super-
nodes on 𝑝ℎ. This step can be done in a similar way as in
Step 1.

Step 3: Schedule path 𝑝𝑣 until all the data packets have
been transmitted to the sink. After Step 1, for any super-
node 𝜈𝜆,𝑗(1 ≤ 𝑗 ≤ 𝜆′), it has the data of 𝑗 super-nodes.
Then, we abstract 𝑝𝑣 to a virtual tree rooted at the sink,
having 𝜆′ internal disjoint paths (except at the root) with
lengths 1, 2, . . . , 𝜆′ respectively by splitting super-node 𝜈𝜆,𝑗
into 𝑗 virtual nodes. Now, in the virtual tree, every virtual
node contains exactly the same data with a super-node as
the result of the splitting. For instance, 𝑝𝑣 in Figure 5 is
abstracted to a virtual tree shown in Figure 6. Afterwards, we
schedule each path of the resulting virtual tree by a similar
path-scheduling method used in Step 1.

Figure 6. A virtual tree.

Step 4: Schedule path 𝑝ℎ until all the data packets have
been transmitted to the sink. This step can be done in a
similar way as in Step 3.

After the above four steps of CBPS, the data of a snapshot
can be collected by the sink.

B. Network Capacity Analysis of CBPS

In this subsection, we derive the achievable network
capacity of CBPS. The upper bound of the SDC capacity
is 𝑊 , which has been explained in [17]. Consequently, we
focus on the lower bound of CBPS.

In each of the four steps of CBPS, the basic scheduling
blocks are paths. Hence, we show the upper bound of the
number of time slots used to schedule a path in the following
lemma.

Lemma 3: For a path 𝑝 (𝑝 consists of super-nodes) of
length 𝐿, it takes 8𝜔𝐿 log 𝑛 time slots to collect all the data
packets on 𝑝 by the sink.

Proof: From the description of CBPS, we know that
the super-nodes (or virtual nodes) on 𝑝 can be divided
into at most 𝜔 compatible node-groups. In each available
super time slot for 𝑝, we can schedule the super-nodes
in a compatible node-group. Therefore, after 𝜔 super time
slots, all the super-nodes on 𝑝 have been scheduled once.
Hence, all the super-nodes have transmitted their data to their
corresponding parent super-nodes except for the sink (or the
last end super-node of 𝑝), and all the super-nodes except
for the leaf super-node have received the data from their
corresponding children super-nodes. Therefore, after every
𝜔 super time slots, the data transmission path decreases by
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one. Finally, the data on 𝑝 can be collected by the sink within
𝜔+(𝐿−1) ⋅𝜔 super time slots, i.e. 8𝜔𝐿 log 𝑛 time slots. □

From Lemma 3, we have the following corollary which
shows the number of time slots used to collect data on 𝑝1
(𝑝1 is the path corresponding to the cells on the principal
diagonal).

Corollary 1: The data on 𝑝1 can be collected to the cells
on 𝑝𝑣 (i.e., the sink) within 8𝜔𝜆′ log 𝑛 time slots.

Lemma 4: Step 1 of CBPS can be finished within
8𝜔2𝜆′ log 𝑛 time slots.

Proof: In Step 1, the paths in a compatible path group
can be scheduled simultaneously, and the compatible path
groups are scheduled in a round-robin fashion in terms of
super time slots. Therefore, the number of time slots used
in Step 1 depends on the compatible path group with the
longest path. 𝑝1 is the longest path and the compatible path
group containing 𝑝1 is scheduled every 𝜔 super time slots.
Furthermore, by Corollary 1, the number of time slots used
to collect the data on 𝑝1 is at most 8𝜔𝜆′ log 𝑛. Hence, it
follows that the number of time slots used to collect data on
𝑝1, 𝑝2, . . . , 𝑝𝜆′ is at most 8𝜔2𝜆′ log 𝑛. □

From Lemma 4, we have the following corollary.
Corollary 2: Step 1 and Step 2 of CBPS can be finished

within 16𝜔2𝜆′ log 𝑛 time slots.
Lemma 5: Step 3 of CBPS can be finished within

4𝜔𝜆′(𝜆′ + 1) log 𝑛 time slots.
Proof: According to CBPS, path 𝑝𝑣 is abstracted into a

virtual tree having 𝜆′ internally disjoint paths (except at
the sink). Furthermore, the lengths of these 𝜆′ paths are
1, 2, . . . , 𝜆′, respectively. By Lemma 3, the number of time
slots used to collect data on these 𝜆′ paths is at most
8𝜔 ⋅ 1 ⋅ log 𝑛 + 8𝜔 ⋅ 2 ⋅ log 𝑛 + . . . + 8𝜔 ⋅ 𝜆′ ⋅ log 𝑛 =
8𝜔 ⋅ log 𝑛 ⋅ (1 + 2 + . . .+ 𝜆′) = 4𝜔𝜆′(𝜆′ + 1) log 𝑛. □

From Lemma 5, we have the following corollary.
Corollary 3: Step 3 and Step 4 of CBPS can be finished

within 8𝜔𝜆′(𝜆′ + 1) log 𝑛 time slots.
For the entire CBPS algorithm, the number of time slots

is bounded by 𝑂(𝑛), which is proved in Theorem 2.
Theorem 2: The number of time slots used by CBPS to

collect a snapshot data is bounded by 𝑂(𝑛).
Proof: Suppose 𝑇 is the number of time slots used

by CBPS to collect snapshot data by the sink. Then, by
Corollary 2 and Corollary 3, we have 𝑇 ≤ 16𝜔2𝜆′ log 𝑛 +
8𝜔𝜆′(𝜆′ + 1) log 𝑛 ≤ 16𝜔2𝜆 log 𝑛 + 8𝜔𝜆2 log 𝑛 = 16𝜔2 ⋅√

𝑐𝑛√
2𝑐 log𝑛

⋅ log 𝑛+8𝜔 ⋅ (
√
𝑐𝑛√

2𝑐 log𝑛
)2 ⋅ log 𝑛 = 16𝜔2 ⋅

√
𝑛 log𝑛

2 +

4𝜔𝑛 ≤ 𝑂(𝑛). □

Now, we can obtain the lower bound of the achievable
network capacity of CBPS which is order-optimal as shown
in Theorem 3.

Theorem 3: The achievable network capacity of CBPS is
Ω(𝑊 ), which is order-optimal.

Proof: By Theorem 2 and the definition of network
capacity, we have 𝐶 = 𝑛⋅𝑏

𝜏 ≥ 𝑛⋅𝑏
𝑂(𝑛)⋅𝑡 = Ω(𝑊 ). Since it

has been proved that the upper bound of the data collection
capacity is 𝑊 , this implies that CBPS is order-optimal. □

When addressing the CDC problem, an intuitive idea is to
pipeline the existing SDC algorithms. However, such an idea
cannot improve the achievable network capacity in order
as explained in [4]. This is because, data transmissions at
the nodes far from the sink can really be accelerated by a
pipeline. Nevertheless, the fact that a sink can receive at most
one packet during each time slot makes the data accumulated
at the nodes near the sink [4].

V. NETWORK CAPACITY OF CDC

Since CBPS and the existing works [2][17] with pipeline
technology cannot improve the CDC capacity significantly
as we discussed in Section IV, in this section, we propose a
novel Segment-Based Pipeline Scheduling (SBPS) algorithm
based on the the technology used in Compressive Data Gath-
ering (CDG) [30] for CDC in WSNs. Theoretical analysis
shows that the proposed SBPS algorithm can achieve a
surprising network capacity.

A. Segment-Based Pipeline Scheduling (SBPS)

CDG was first proposed in [30] for snapshot data gather-
ing in single-radio single-channel WSNs. The basic idea of
CDG is to distribute the data collection load uniformly to all
the nodes in the entire network. We take the data collection
on a path consisting of 𝐿 sensors 𝑠1, 𝑠2, . . . , 𝑠𝐿 and one sink
𝑠0 as shown in Figure 7 [30] as an example to explain CDG.
In Figure 7, the packet produced at sensor 𝑠𝑗(1 ≤ 𝑗 ≤ 𝐿)
is 𝑑𝑗 . For the basic data collection shown in Figure 7(a),
𝑠1 transmits one packet 𝑑1 to 𝑠2, 𝑠2 transmits two packets
𝑑1 and 𝑑2 to 𝑠3, and finally all the packets on the path
are transmitted to 𝑠0 by 𝑠𝐿. To balance the transmission
load, the authors in [30] proposed the CDG method as
shown in Figure 7(b). Instead of transmitting the original
data directly, 𝑠1 multiplies its data with a random coefficient
𝜙𝑖1(1 ≤ 𝑖 ≤ 𝑀), and sends the 𝑀 results 𝜙𝑖1𝑑1 to 𝑠2. Upon
receiving 𝜙𝑖1𝑑1(1 ≤ 𝑖 ≤ 𝑀) from 𝑠1, 𝑠2 multiplies its data
𝑑2 with a random coefficient 𝜙𝑖2(1 ≤ 𝑖 ≤ 𝑀), adds it to
𝜙𝑖1𝑑1, and then sends 𝜙𝑖1𝑑1 + 𝜙𝑖2𝑑2 as one data packet to
𝑠3. Finally, 𝑠𝐿 does a similar multiplication and addition and
sends the result

∑𝐿
𝑗=1 𝜙𝑖𝑗𝑑𝑗(1 ≤ 𝑖 ≤ 𝑀) to 𝑠0. After 𝑠0

receives all 𝑀 packets, 𝑠0 can restore the original packets
based on the compressive sampling theory [30]. The number
of the transmitted packets is 𝑂(𝑛2) in Figure 7 (a) and is
𝑂(𝑛𝑀) in Figure 7 (b), and usually 𝑀 ≪ 𝑛 for large scale
WSNs. Therefore, CDG reduces the number of transmitted
packets.

Thanks to the benefit brought by CDG, we can address
the CDC problem with the pipeline technique. Since we
partition the network into interference zones 𝑜𝑖,𝑗(1 ≤ 𝑖, 𝑗 ≤
⌈√𝑐𝑛/𝑅⌉) in Section III-C, we here define a new term
called segment based on interference zones. On the basis
of interference zone 𝑜𝑖,𝑖(1 ≤ 𝑖 ≤ ⌈√𝑐𝑛/𝑅⌉), the area
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(a) (b)

Figure 7. Comparison of (a) basic data collection and (b) CDG [30].

consisting of interference zones 𝑜𝑗,𝑖(𝑖 ≤ 𝑗 ≤ ⌈√𝑐𝑛/𝑅⌉)
and 𝑜𝑖,𝑗(𝑖 ≤ 𝑗 ≤ ⌈√𝑐𝑛/𝑅⌉) is called a segment, denoted by
𝑆𝑖. Taking the network shown in Figure 8 as an example,
there are three segments 𝑆1 (consisting of interference zones
{𝑜1,1, 𝑜2,1, 𝑜3,1, 𝑜1,2, 𝑜1,3}), 𝑆2 (consisting of interference
zones {𝑜2,2, 𝑜3,2, 𝑜2,3}), and 𝑆3 (consisting of interference
zone {𝑜3,3}). Within a segment 𝑆𝑖, the area consisting of
cells on and below the principal diagonal is denoted by 𝑆𝑖𝑟,
and the area consisting of the remaining cells is denoted
by 𝑆𝑖𝑢, i.e., 𝑆𝑖 = (𝑆𝑖𝑟, 𝑆𝑖𝑢). For instance, in the network
shown in Figure 8, 𝑆1𝑟 = {𝜅𝑖,1(1 ≤ 𝑖 ≤ 𝜆), 𝜅𝑖,2(2 ≤
𝑖 ≤ 𝜆), 𝜅𝑖,3(3 ≤ 𝑖 ≤ 𝜆)}, and 𝑆1𝑢 = {𝜅1,𝑗(1 < 𝑗 ≤
𝜆), 𝜅2,𝑗(2 < 𝑗 ≤ 𝜆), 𝜅3,𝑗(3 < 𝑗 ≤ 𝜆)}.

Figure 8. Segments.

For CDC, we use a similar routing structure as in the
CBPS algorithm (note it does not imply the same schedul-
ing), i.e., we abstract each cell as a super-node and then
construct a data collection tree following the same rules as in
CBPS (we use cells and super-nodes interchangeably in the
subsequent discussion). Unlike in CBPS, a super-node here
can compress its currently held data packets of a snapshot
into 𝑀 data packets for transmission.

Based on the defined segments and the constructed
data collection tree, we propose a Segment-Based Pipeline
Scheduling (SBPS) algorithm for CDC. We present the
general idea of SBPS in a hierarchy-level fashion as follows.

Figure 9. Data collection pipeline of 3 segments.

First, scheduling at the segment-level. At this level,
each segment as a whole is considered. Since there is no
intersection between any two segments, we can pipeline the
data transmission on the segments (it can also be guaranteed
that there is no wireless interference among segments in the
next step), i.e., for each segment 𝑆𝑖 = (𝑆𝑖𝑟, 𝑆𝑖𝑢), 𝑆𝑖 starts
the data transmission of the (𝑘+1)-th snapshot immediately
after it transmits all the data of the 𝑘-th snapshot to segment
𝑆𝑖+1. Let 𝑡𝑝 = max{𝑡(𝑆𝑖)∣1 ≤ 𝑖 ≤ ⌈√𝑐𝑛/𝑅⌉ , 𝑡(𝑆𝑖) is
the number of time slots used by segment 𝑆𝑖 to transmit
all the data packets of a snapshot}. Then, a segment data
transmission pipeline on all the segments is formed with
each segment working with 𝑡𝑝 time slots for every snapshot
(here, a snapshot is an individual task in a traditional pipeline
operation). For instance, Figure 9 shows the data collection
process of three snapshots by the segment data transmission
pipeline formed from the network shown in Figure 8.

Second, scheduling at the row/column-level, i.e., within
a segment. For the 𝑘-th snapshot, within each segment
𝑆𝑖 = (𝑆𝑖𝑟, 𝑆𝑖𝑢), we first schedule 𝑆𝑖𝑟 to transmit the data
in the cells of 𝑆𝑖𝑟 to 𝑆(𝑖+1)𝑟 row by row. Thereafter, we
schedule 𝑆𝑖𝑢 by a similar way to transmit the data in the cells
of 𝑆𝑖𝑢 to 𝑆(𝑖+1)𝑢 column by column. When we schedule 𝑆𝑖𝑟,
the first row of cells of 𝑆𝑖𝑟, i.e. the cells 𝜅𝑗,𝑖(𝑖 ≤ 𝑗 ≤ 𝜆), are
scheduled first, followed by the second row of cells, i.e. the
cells 𝜅𝑗,𝑖+1(𝑖+ 1 ≤ 𝑗 ≤ 𝜆), and so on until the last row of
cells of 𝑆𝑖𝑟, i.e. the cells 𝜅𝑗,𝑖+𝜔−1(𝑖 + 𝜔 − 1 ≤ 𝑗 ≤ 𝜆),
are scheduled. When we schedule each row, we can di-
vide the cells on that row into 𝜔 compatible cell groups
𝑔𝑖1, 𝑔

𝑖
2, . . . , 𝑔

𝑖
𝜔 with each group containing mutual compatible

cells. Afterwards, 𝑔𝑖1, 𝑔
𝑖
2, . . . , 𝑔

𝑖
𝜔 are scheduled in sequence.

Note that we follow the same approach when we schedule
all the segments in the segment data transmission pipeline.
Therefore, all the cells in 𝑔𝑖𝑗(1 ≤ 𝑗 ≤ 𝜔, 1 ≤ 𝑖 ≤ ⌈√𝑐𝑛/𝑅⌉)
are also mutual compatible cells according to the discussion
in Section III-C. This implies all the segments can be
scheduled without wireless interference. Afterwards, we can
schedule cells in 𝑆𝑖𝑢 column by column in a similar way.
Finally, 𝑆𝑖 transmits all the data packets of the 𝑘-th snapshot
to its subsequent segment 𝑆𝑖+1.

Third, scheduling at the cell-level, i.e. within each
row/column. For every sensor in cell 𝜅𝑖,𝑗 , it generates one
data packet of the 𝑘-th snapshot. Furthermore, for the sensors
in cells 𝜅𝑖,1(1 ≤ 𝑖 ≤ 𝜆) and 𝜅1,𝑗(1 ≤ 𝑗 ≤ 𝜆), they will not
receive any data packets of the 𝑘-th snapshot according to
the previous segment-level and row/column-level scheduling
strategies (actually, this is true for any snapshot). Thus, the
sensors in 𝜅𝑖,1(1 ≤ 𝑖 ≤ 𝜆) and 𝜅1,𝑗(1 ≤ 𝑗 ≤ 𝜆) transmit
the packets of the 𝑘-th snapshot in the CDG way in their
available time slots, i.e., for each sensor, it multiplies its
data with 𝑀 random coefficients respectively, and sends the
new obtained 𝑀 products to its parent node. For the sensors
in 𝜅𝑖,𝑗(1 < 𝑖, 𝑗 ≤ 𝜆), they will receive some data packets
of the 𝑘-th snapshot (it is possible that some sensors do not
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have any children. In this case, they do the same operation as
the sensors in 𝜅𝑖,1(1 ≤ 𝑖 ≤ 𝜆) and 𝜅1,𝑗(1 ≤ 𝑗 ≤ 𝜆).). After
they receive all the packets of the 𝑘-th snapshot from their
children sensors, they combine their data and the received
data in the same way as in CDG and transmit the obtained
𝑀 data packets to their parent sensors, respectively. For the
sink, it restores the data of a snapshot in the CDG way
after it receives all the packets of that snapshot. Here, it is
straightforward that it takes at most 8𝑀 ⋅ log 𝑛 time slots
for a cell to transmit the data packets of a snapshot to the
subsequent cell, since every cell contains at most 8 log 𝑛
sensors by Lemma 2.

B. Network Capacity Analysis of SBPS

In this subsection, we analyze the achievable network
capacity of SBPS. Since the 𝑡𝑝 in the SBPS algorithm is
essential for our analysis, we give the upper bound of 𝑡𝑝 in
the following lemma.

Lemma 6: For the 𝑡𝑝 in SBPS, 𝑡𝑝 ≤ 16𝜔2𝑀 log 𝑛.
Proof: It has been pointed out in Section V-A that it takes

a cell at most 8𝑀 ⋅ log 𝑛 time slots to transmit the data
of a particular snapshot. Furthermore, when we schedule
each row of a segment 𝑆𝑖 = (𝑆𝑖𝑟, 𝑆𝑖𝑢), we divide the cells
of that row into 𝜔 compatible cell groups and schedule
these groups in sequence. Therefore, the data packets of a
particular snapshot contained in the cells of a row can be
transmitted to the subsequent row within 8𝜔𝑀 log 𝑛 time
slots. Each segment has at most 𝜔 rows. Therefore, the
number of time slots used to schedule cells in 𝑆𝑖𝑟 is at most
8𝜔2𝑀 log 𝑛. For the same reason, the number of time slots
used to schedule the cells in 𝑆𝑖𝑢 for a particular snapshot is
also at most 8𝜔2𝑀 log 𝑛. In a sum, 𝑡𝑝 ≤ 16𝜔2𝑀 log 𝑛. □

Based on Lemma 6, we obtain the upper bound of the
number of time slots used by SBPS to collect 𝑁 continuous
snapshots as follows.

Theorem 4: The number of time slots used by the SBPS
algorithm to collect 𝑁 continuous snapshots is at most
8𝜔𝑀

√
2𝑛 log 𝑛+ 16𝜔2𝑀𝑁 log 𝑛.

Proof: Suppose the number of time slots used by SBPS
to collect 𝑁 continuous snapshots is 𝑇 . By Lemma 6, it
costs a segment 16𝜔2𝑀 log 𝑛 time slots to transmit the
data of a snapshot to the subsequent segment. Afterwards,
that segment starts to transmit data for the following snap-
shot immediately according to SBPS. Therefore, by the
formed segment data transmission pipeline, the sink can
collect the data of a snapshot in every 16𝜔2𝑀 log 𝑛 time
slots after it receives the data of the first snapshot. Thus,
to receive the data of 𝑁 continuous snapshots, we have
𝑇 ≤ 16𝜔2𝑀 log 𝑛 ⋅ ⌈ 𝜆

𝜔 ⌉ + (𝑁 − 1) ⋅ 16𝜔2𝑀 log 𝑛 ≤
16𝜔𝑀𝜆 log 𝑛 + 16𝜔2𝑀𝑁 log 𝑛 = 16𝜔𝑀

√
𝑐𝑛

2𝑐 log𝑛 log 𝑛 +

16𝜔2𝑀𝑁 log 𝑛 = 8𝜔𝑀
√
2𝑛 log 𝑛+ 16𝜔2𝑀𝑁 log 𝑛. □

Now, we are prepared to derive the achievable network
capacity of SBPS for CDC as shown in Theorem 5.

Theorem 5: The achievable network capacity of the SBPS
algorithm is Ω(

√
𝑛

log𝑛𝑊 ) when 𝑁 ≤
√

𝑛
log𝑛 ; or Ω( 𝑛

log𝑛𝑊 )

when 𝑁 >
√

𝑛
log𝑛 .

Proof: By Theorem 4, it takes the SBPS algorithm at
most 8𝜔𝑀

√
2𝑛 log 𝑛+16𝜔2𝑀𝑁 log 𝑛 time slots to collect

𝑁 continuous snapshots by the sink. Then, we discuss the
achievable network capacity of SBPS case by case.

case 1: 𝑁 ≤
√

𝑛
log𝑛 . In this case, 𝑇 ≤ 8𝜔𝑀

√
2𝑛 log 𝑛+

16𝜔2𝑀𝑁 log 𝑛 ≤ 𝑂(8𝜔𝑀
√
2𝑛 log 𝑛). Thus, we have

𝐶 =
𝑛𝑁 ⋅ 𝑏

𝜏
≥ 𝑛𝑁 ⋅ 𝑏

𝑂(8𝜔𝑀
√
2𝑛 log 𝑛) ⋅ 𝑡 = Ω(

√
𝑛

log 𝑛
𝑊 ),

since 𝜔 is a constant value and 𝑀 ≪ 𝑛.
case 2: 𝑁 >

√
𝑛

log𝑛 . In this case, 𝑇 ≤ 8𝜔𝑀
√
2𝑛 log 𝑛+

16𝜔2𝑀𝑁 log 𝑛 ≤ 𝑂(16𝜔2𝑀𝑁 log 𝑛). Thus, we have

𝐶 =
𝑛𝑁 ⋅ 𝑏

𝜏
≥ 𝑛𝑁 ⋅ 𝑏

𝑂(16𝜔2𝑀𝑁 log 𝑛) ⋅ 𝑡 = Ω(
𝑛

log 𝑛
𝑊 ).

□

From Theorem 5, the proposed scheduling algorithm
SBPS can achieve a surprisingly high network capacity
by combining the pipeline and CDG techniques. Since the
current best result is Ω(𝑊 ) [17], our result is at least

√
𝑛

log𝑛

or 𝑛
log𝑛 times better than the current best result, which is a

very significant improvement.

VI. CONCLUSION AND FUTURE WORK

Most existing works focus on network capacity of unicast,
multicast or/and broadcast, which are different communica-
tion modes from data collection, especially CDC. In this
paper, we first study the SDC problem under the PhIM,
and propose a Cell-Based Path Scheduling (CBPS) algorithm
based on network partitions. Theoretical analysis of CBPS
shows that its achievable network capacity is Ω(𝑊 ), which
is order-optimal. For CDC, we propose a novel Segment-
Based Pipeline Scheduling (SBPS) algorithm. SBPS sig-
nificantly speeds up the CDC process, and achieves a
surprising network capacity, which is at least

√
𝑛

log 𝑛 or 𝑛
log𝑛

times better than the current best result. Furthermore, the
numerical evaluation results also validate that the proposed
algorithms significantly improve network capacity compared
with existing works.

The future work of this paper can be conducted accord-
ing to the following directions. First, instead of assuming
all the nodes are randomly deployed, we will study the
achievable capacity of WSNs where the nodes are arbitrarily
deployed. Second, since most of the existed works that study
the network capacity issue are for centralized WSNs, we
will investigate the achievable data collection capacity of
distributed WSNs.
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