2011 Eighth IEEE International Conference on Mobile Ad-Hoc and Sensor Systems

Covert DCF: A DCF-Based Covert Timing Channel
in 802.11 Networks

Russell Holloway
Security Researcher
Counter Threat Unit

Dell SecureWorks

Atlanta, Georgia 30342
rholloway @secureworks.com

Abstract—Covert communications have been used for many
decades. Accordingly, when digital communications moved to
the forefront it was natural that covert channels be proposed
to operate over these networks. Covert channels are general
purpose transmission mediums that can be used for good (e.g.,
an additional layer of security) or bad (e.g., to conduct various
proximity-based attacks in wireless LANs). However, their use
has been limited as a result of their low throughput. One
area that is promising for covert channels is wireless networks.
Specifically, those that employ carrier sense multiple access with
collision avoidance (CSMA/CA) (e.g., 802.11 networks). These
schemes introduce randomness in the network that provides
good cover for a covert timing channel. In this paper, we
propose a relatively high bandwidth covert timing channel for
802.11 networks (Covert DCF). We exploit the random backoff
in the distributed coordinated function (DCF), used to avoid
collisions, to provide cover for our covert timing channel. Covert
DCEF provides significant improvements over other recent covert
channels in the area of throughput, while maintaining high
accuracy and remaining undetectable. We are able to covertly
achieve throughput of 1800 bps while maintaining 99% accuracy.
This throughput is approximately 17 times faster than that of
current covert timing channels. Covert DCF is robust in that it
can adapt to various network conditions.

Keywords-covert channel, MAC misbehavior, steganography,
802.11 DCF, wireless LANs

I. INTRODUCTION

In today’s society, security is becoming increasingly im-
portant in our networks. Initially, security was not designed
into many of the standards and protocols as the architects of
the Internet and standards never expected security to be an
issue. However, it has become clear that security is a major
concern. We have seen techniques and security patches applied
to existing technology, as well as new technology and systems
introduced with some form of security included, at least at the
most basic level. Unfortunately, no matter how much security
is added, there will always be people looking to bypass that
security for various reasons.

One popular method for bypassing security protocols is
the use of covert channels. By using covert communication
channels, an individual can hide messages and other informa-
tion within regular traffic, thus slipping by security protocols

978-0-7695-4469-4/11 $26.00 © 2011 IEEE
DOI 10.1109/MASS.2011.60

Raheem Beyah

Communications Assurance & Performance Group

School of Electrical & Computer Engineering

570

Georgia Institute of Technology
Atlanta, Georgia 30332
rbeyah @ece.gatech.edu

(in contrast to overt channels, where the message is sent
openly). Classically, covert channels are classified as either
storage channels or timing channels [1]. Storage channels use
some sort of storage medium to hide messages, and timing
channels use timing patterns to hide messages within regular
communication. In this paper, we focus on covert timing
channels.

The timing channel we propose is a wireless covert channel
that allows for a significantly higher bandwidth covert com-
munication in comparison to other covert channels. This could
facilitate various proximity-based WLAN specific attacks. For
example, one nefarious use of this channel would be to
covertly spread wildfire worms. Wildfire worms spread solely
over WLANs by using mobile nodes and overlapping AP
cells for inter-AP malware propagation [2]. The authors of
[2] illustrate that if a wildfire worm is carefully crafted, it can
infect all the vulnerable wifi-connected computers in 80% of
APs (this represents thousands of hosts) in the various areas
they considered in their work.

On the other hand, covert channels could provide an added
layer of security. For example, they could be used to store
additional information as part of an access control scheme
as we demonstrated in [3]. While they should not be used
as the sole method for access control since they merely aim
to provide security through obscurity, they could provide an
additional layer as part of an overall layered security scheme.

Our covert timing channel, Covert DCF, uses the 802.11
medium access control (MAC) contention window (CW) in the
distributed coordinated function (DCF) to send information.
The CW allows for random backoff to reduce the number
of collisions on the wireless medium and also offers the
variability required for a covert channel. However, a sender
can intelligently select the CW for each outgoing frame,
making it appear random over time. Each choice of the CW
can represent a symbol from a codebook, and through these
symbols the covert message can be sent. Note, one instance
of this (i.e., reducing the random backoff time) is considered
MAC misbehavior [4]. What we illustrate in this paper, is
that not only can a node improve throughput using MAC
misbehavior, but it can also send messages covertly.

This scheme can easily be extended to other distributed

@) CO‘ pute
1(!) I
& SOCIety

wireless networks, since by design they generally include
some randomness to avoid collisions on the medium. This
randomness is the source of our timing channel.

The rest of this paper is organized as follows. In Section II,
we present related work. A brief overview of the 802.11 DCF
is presented in Section III, with an overview of our proposed
covert channel following in Section IV. Section V discusses
optimizing throughput by adjusting our codebook and baud
rate, accuracy by analyzing two different network cases, and
covertness by avoiding current detection schemes. Section VI
presents Covert DCF’s design in detail, including the fitting
of our traffic to any known empirical distribution. We present
our analysis and results in Section VII. Lastly, Section VIII
presents our conclusions and future work.

II. RELATED WORK

In order to fully implement a covert channel as effectively
as possible, we must analyze other covert channel designs
and also detection and prevention methods of these channels.
In this section, we will look at previous storage channels
and timing channel schemes. Later in Section V, we present
additional details on detection and prevention methods.

There have been several designs of covert channels. Pre-
vious research has introduced a good number of storage
channels, with recent research covering a wider range of
protocols. In [5], the authors present a scheme to encode a
covert message by binning messages based on length with
each bin representing a different symbol, followed by sending
normal traffic messages from respective bins as needed. Khan
et al. present a method to encode a message using multiple
active network connections, where incoming traffic on one
connection has one meaning, and incoming traffic on another
connection means something different [6]. Ji et al. present
an Ethernet covert channel using ARP broadcasts, where
messages are represented by the last w bits of the target IP
address [7]. In [8], the authors demonstrate a covert channel
by placing messages into the B frames of MPEG-2 streaming
video files. A few papers have also been written on 802.11
covert channel schemes. One method we presented in [9]
uses rate switching as the covert channel but has a maximum
throughput of 96 bps. Furthermore, due to the unreliability of
UDP, the rate switching technique used can have a large effect
on UDP traffic. A simple covert storage channel at the data link
layer using the 802.11 sequence and WEDP initialization vector
fields in the header was introduced in [10]. Our research differs
from these previous methods in that we propose a timing
channel instead of a storage channel. Further, our throughput
far exceeds those of the previous schemes.

Several covert timing channels have been introduced as in
[11]. The authors introduce one of the earlier basic timing
channels using IP inter-packet arrival time (IAT) patterns. This
channel obtained approximately 17 bps. However, it is easy
to detect this covert timing channel based on the regularity
of the traffic it generates. Cabuk et al. provide an in-depth
study of IP covert channel detection in [12]. Sellke et al.
demonstrate a TCP timing channel which can also be created

571

in such a way that it can hide among traffic that can be
modeled by independent and identically distributed (i.i.d.)
random variables in [13]. It requires the sender and receiver to
agree upon a seed in advance, and the cumulative distribution
function (CDF) to model must have an inverse. However, when
the authors make their covert channel traffic computationally
indistinguishable within polynomial time from regular traf-
fic, there is a significant decrease in the throughput. They
demonstrated a maximum of 84 bps throughput for traffic that
is computationally distinguishable from legitimate traffic, or
5bps for the computationally indistinguishable scheme. While
being computationally indistinguishable can help hide the
covert message, the extremely low throughput detracts from
the appeal of this method.

Some previous schemes can stay covert well with very little
throughput. Other schemes have higher throughput yet are
easily detected. In this work, we develop an 802.11 covert
channel that optimizes throughput, accuracy, and covertness as
necessary for intended usage. We are able to achieve higher
throughput than previous timing channels, fit our traffic to any
empirical distribution on a given network, and achieve high
accuracy as well.

IIT1. 802.11 BACKGROUND INFORMATION

The 802.11 MAC uses carrier sense multiple access with
collision avoidance (CSMA/CA), which is a DCF aimed
at reducing collisions since they are not as easily detected
on wireless networks as on wired networks. The process is
described in full detail in [14], but below we discuss the
essential details necessary for an understanding of our covert
channel.

a2

DCF,

constant

DCF,

e
bee T T 1T I |irame

DCF,

constant

MAC
ACK

Fig. 1. Transmission of a packet using the DCF

Before a station may transmit, it must sense whether or not
the network is busy. This check must be performed at both
the physical layer and in the network allocation vector (NAV),
since two nodes may both be in range of an access point (AP),
but not each other.

If the medium is sensed to be busy, then the station must
wait until it is no longer in use before attempting to transmit.
There is a required waiting period after the medium is no
longer busy before transmission is allowed. This serves two
purposes. First, certain messages such as acknowledgement
(ACK) messages have higher priority than other messages
such as a new packet transmission. To provide higher priority,
ACK messages have to wait a shorter period of time, the Short
Interframe Space (SIFS), to access the medium. Other packets
must wait a longer period of time, the DCF Interframe Space

Regular Nodes

—A @

g

Uses IAT,
Radiotap,
PHY Details

\
Backoff Decoder @
" - &

Receiver

Generate Backoff Sequence
Add / Remove Traffic Fitting Symbols ot
1: 0010
BAD = 2": 1110
001011100001010101000001 3" 0001
T 4":0101
L 5™ 0100
\ 6™ : 0001
h | -~
- N
Codebook -
A: 0001 ~)
BAD = 001000010100
B:0010
€:0011 Create Message
D : 0100
Fig. 2.

(DIFS), in addition to a random period of backoff time, before
transmission.

Second, the random backoff time is required to solve the
issue where multiple nodes may be waiting for the medium
to become free, and thus otherwise would all attempt to
use the medium at exactly the same time when the DIFS
timer ran out. The random backoff time is calculated by
multiplying a randomly selected number of slots from [0, CW]
by slot_time, which is a constant value. The random number
of slots is chosen in the range of [0, CW] where the value of
CW starts at CW,,;,, and is doubled every time a collision
occurs until CW = CW,,4., at which point it remains at
CW,ae until a successful transmission takes place. At this
point, CW is set to CW,,;,, again. This binary exponential
backoff is designed to decrease the probability of collisions
while keeping the wait time at a minimum. If at the end of
the waiting period the medium is still free, the station may
transmit.

Fig. 1 shows the events that take place during transmission
of a packet. Of notable interest is the fact that outside of the
random backoff, there are no other random times. In the next
section, we use this to our advantage when developing Covert
DCE.

In addition to the DCEF, there are different physical layers
(PHY) that may be used in 802.11 as well. For example,
common PHY are direct-sequence (DS), frequency-hopping
spread spectrum (FHSS), and orthogonal frequency-division
multiplexing (OFDM). Each modulation technique defines the
actual length of DIFS, SIFS, slot times, and other timing
characteristics. While our proposed work does not modify or
work directly at the physical layer of the 802.11 protocol, it
is necessary to know which PHY layer is being used in order
to perform the necessary calculations for backoff.

IV. PROPOSED SCHEME

Covert DCF is possible because of the random backoff that
is required to take place when sending new packets. By taking
control of this random backoff (DC F.qndom in Fig. 1), we are
able to encode different symbols using various backoff values
without drawing immediate attention to our channel since the
randomness helps disguise the channel.

High level view of Covert DCF

The sender and receiver agree on a pre-defined codebook
which maps symbols from the set C' = {s is a bit string
of length I(s)} to backoff values. For example, we may let
C = {0002, 0015,0104,...,1115} which sends three bits of
information at a time. Symbol 0002 may be associated with a
backoff of 100us and symbol 0102 with a backoff of 150us.
We describe how we choose the symbols in more detail in
Sections V and VI

Fig. 2 illustrates a high level view of a simple case
using our covert channel. In this example, we let C
{00002, ...,11115}. The sender chooses to send the phrase
BAD. The sender looks up the letters B, A, and D in the code-
book and combines the associated values to create a sequence.
From there, we intermix our sequence values with traffic-fitting
symbols, a process which is explained in more detail in Section
VI. This process allows us to fit our distribution to that of the
network in order to remain covert. Once the final sequence
is created, the sequence is converted into a series of backoffs
which are used in place of the random backoffs for each packet
transmission. The decoding steps simply perform the process
in reverse, as illustrated by the dashed arrows in Fig. 2.

In the design of Covert DCF, we focus on three important
characteristics to consider: throughput, accuracy, and covert-
ness.

Throughput determines how fast we can send data across the
channel, which in turn limits the time in which we perform
misbehavior thus lessening chances of detection. To increase
throughput, we could increase the baud rate (3, which is
the number of state changes that take place over any given
period of time. Each state change allows the encoding of
one symbol. In the context of this work, state changes occur
between packets, so the number of state changes is roughly the
number of packets per second. Alternatively, we can change
the cardinality of C, |C|, which represents the number of
symbols in C. If we let I(s) be the number of bits in element
seC, then throughput can be calculated as bps = (3 * I(s)
for our channel. Section V discusses optimizing throughput in
more detail.

Accuracy is another important aspect to consider. Without
high accuracy, the covert channel may not be very useful. We
consider accuracy in more detail in Section V, examining two

572

network topologies that could exist.

Finally, we must consider covertness. After all, it is covert-
ness which separates our channel from regular overt channels.
In addition to addressing throughput and accuracy, we present
several methods used to determine covertness in the next
section. Then, in Section VI we present our scheme for fitting
our traffic to any empirical distribution on a given network.

V. MAXIMIZING THROUGHPUT,
ACCURACY, AND COVERTNESS

In this section, we will analyze and discuss how we can
maximize throughput, accuracy, and covertness.

A. Throughput

In order to maximize throughput, we want to optimize both
B and |C|. At first glance, an increase in either should increase
the throughput.

We can increase (3, which can be represented by packets
per second, by minimizing the random backoffs chosen for
our symbols. Assume we are on a 54Mbps 802.11g network
sending an average payload size of 1125 bytes and we send
4 bit symbols (|C| = 16) for our covert channel. Also let bog
be the associated backoff for symbol sg, bo; be the associated
backoff for s1, and so on. We can maximize [by using boy =
0,001 = 1,bos = 2, ...,bo15 = 15 for each s;, resulting in an
average of 7.5 slots per backoff. By using the average payload
size (and header sizes), wireless data rate, and average number
of slots per backoff, we can approximate the number of packets
sent each second. Using the figures in this example, we find
B = 2160. Alternatively, assume we used bog = 0,bo; =
10, bos = 20, ..., bo15 = 150, with an average of 75 slots per
backoff. In this case 8 = 551. Since bps = 3 * I(s), the first
case leads to a higher throughput.

To optimize |C|, assume we choose to fix 5 to the optimum
value for each C' as described above. The specific value of 3
will vary depending on |C/, but the optimum value will always
be the one where our symbols are represented by the smallest
backoffs possible. We calculate the average backoff for each
set C as |C| increases for any given PHY. By dividing the
average backoff by [(s), we are able to determine how long
on average each bit takes to transmit, and in turn calculate the
bits per second.

More formally, let C = {s is a bit string of length [(s)}
be our symbol set. Furthermore, let our time values be in
us for all calculations. Then the average transmission time
avg_trans_timeys) can be calculated as

2l(s)

. Lo trans_timey,
avg_trans_timeys) = D) (1)
where
trans_timey, =DIFS + boy, + TxTime
+ SIFS + ACKTxTime)

for DIF'S, SIFS, and AC KTxTime fixed for any particular
PHY. T'xTime depends on the PHY along with payload size.

573

Finally, boy is the backoff as determined using the scheme
mentioned previously, and can be calculated as

bor, = k(slot_time) 3)

where k represents the k' symbol in C.

Note that we are only interested in symbol set sizes that
make full use of all bits for any /(s) length bit string. That is,
we define C' such that |C| = 2!(%).

Using the average transmission time, we conclude that the
time per bit ¢pb;(s) can be calculated as

avg_trans_timeys)

tpby(s) = I0s) 4
and thus bits per second bps;(s) is
1000000us
bpsys) = —————. 5)
i) tpbl(s)

12000
10000
8000
6000

4000

Bits Per Second

2000 >

2 4 8 10

6
Bits Per Symbol

Fig. 3. Theoretical throughput

In Fig. 3, we see an initial increase in throughput as we
increase |C|. However, we observe that it peaks around [(s) =
5 and then begins to drop. This decrease in throughput is due to
the fact that each additional bit we add to s doubles |C|. This
exponential increase in |C| leads to an exponential increase
in the average random backoff. On the other hand, we only
see a linear gain in number of bits sent with each additional
bit used in C. At approximately I(s) = 5 we find that the
throughput gains by sending a larger number of bits at a time
are outweighed by the significant increase in random backoff.

We find similar results for other PHY. The peak tends
to be located when 4 < [(s) < 6 depending on the PHY
characteristics and average packet size.

These results form curves similar to those seen in [13].

We can theoretically obtain bit rates far greater than in-
troduced in other covert timing channels. We must keep in
mind that we have created this scheme specifically to focus
on maximizing throughput without regard to the effects on
accuracy and covertness. However, as we will see later in the
paper, we can maintain high accuracy, covertness, and high
throughput at the same time in many cases.

B. Accuracy

When considering accuracy, we must consider how many
nodes are sending on the wireless network and how much
error we allot ourselves when calculating the number of slots
used during the backoff.

Since accuracy depends on the ability of the receiving node
to properly identify the correct IAT, the number of senders
plays an important role. If there is only one sender, the error
in decoding the IAT should be minimal since the sending node
always obtains the wireless medium when desired. However,
in the case of multiple senders, another node may choose a
shorter random backoff and access the medium before the
sending node. If this is the case, the sending node will have to
defer transmission until the medium is free again. These other
transmissions caused by other nodes can cause increases in
the IAT when examining two consecutive packets sent by the
sending node.

Case 1. single sender: In the first case, high accuracy is easy
to obtain. Since the sending node does not compete with other
nodes for the medium, there should be minimal delays.

Case 2. multiple senders: In this case, we must account for
the fact that other nodes may use the medium, thus causing
the sending node to delay transmission. Since wireless LANs
are essentially a broadcast network, the receiver can observe
all traffic on the wireless medium, either by positioning itself
near the AP or using a high-power 802.11 antenna. If the
receiver senses a frame sent by another node, then it can
simply disregard the information and adjust its IAT timer
accordingly.

Fig. 4 shows the two situations visually by marking where
nodes are located in each case.

Sender

Wireless Receiver ((é)) %

regular nodes

3

Case 2 Only

Server

IP Cloud

SR

Fig. 4. Diagram illustrating each case

We must also mention that the 802.11 DCF protocol by
default selects a random backoff in the range of [0, CW]. Thus,
if we continue to use the default scheme with our chosen CW
values, we will see overlap between symbols. For example, if
symbol s; is set to CW = 8 and s has CW = 3, then the
standard MAC protocol would select bo €[0, 8] and boze[0, 3].
This results in 44% chance that s; and s overlap in the range
of [0, 3]. Instead, we simply adjust and set our random backoff
to the CW value itself. This requires MAC misbehavior on the
sending node, but all other nodes remain untouched.

In addition to the number of sending nodes, we should
also consider how much error we allot the receiver node
when calculating the backoff slots. Earlier, we attempted to
maximize our throughput by optimizing 5. We set each symbol
to a single backoff, without any room for error. While this
does help improve our throughput on the sending node, it can

574

affect the accuracy on the receiving node. To increase accuracy
we let A = {C is a unique set of consecutive bit strings}.
As an example, rather than use the higher throughput values
boy = 0,boy = 1,bos = 2, and boys = 3 for symbols, we

could use bo; = 0 — 9,boy = 10 — 19,bo3 = 20 — 29, and
bos, = 30— 39.

It is also worth mentioning that the use of error-correcting
codes before sending a message is another option for improv-
ing accuracy [15]. While this may cause a slight performance
hit, it can lead to greater accuracy. Our channel can operate
on bits directly, so it is perfectly acceptable to feed it huffman
encoded data, compressed data, or use any other encoding
technique for that matter.

C. Covertness

Lastly, we want to maximize our covertness. There are
several angles from which we can analyze covertness includ-
ing: observe throughput degradation from several viewpoints,
utilize classic MAC misbehavior detection schemes, consider
techniques that seek to prevent covert channels, and consider
traditional wireless intrusion detection systems (WIDS). We
present a description of each below, and evade each to illustrate
the stealth of Covert DCF.

Covertness is often evaluated based on throughput or traffic
distribution. In [13], Sellke et al. demonstrate a covert channel
that models a Pareto distribution, similar to Telnet traffic, at the
sacrifice of a low throughput. Some channels introduce their
own traffic into the network, whereas others are more passive
such as PSUDP, which modifies pre-existing DNS queries to
embed a storage channel [16].

There are also some 802.11 specific detections that we wish
to avoid. Because we are performing MAC misbehavior on our
sending node, we need to avoid MAC misbehavior detection
schemes. Rong et al. [17] presented a method for detecting
MAC misbehavior by looking at throughput degradations ob-
served at normal stations. Similar methods for calculating the
traffic gain ratio and traffic degradation ratio were presented
in [18]. We presented a scheme using a Naive Bayes classifier
and the IAT in [19]. In [20], the authors present a scheme
that looks directly at the number of idle slots and the collision
probability calculated on each observed node to determine if
it is misbehaving or not.

Furthermore, there have also been some mitigation schemes
introduced that aim to prevent the use of covert channels
without requiring detection of them, as seen in [21], [22].
These schemes usually add some delay or padding to traffic
on the network, and they are usually situated on either the
kernel layer to mitigate covert channels created by processes,
or on routers or mitigation boxes somewhere along the route.
However, kernel layer mitigation techniques would not stop
Covert DCF since it is implemented at the MAC layer. Also,
adding a mitigation box is infeasible when working solely on
the wireless segment due to the broadcast nature of 802.11
networks.

Similarly, we need to be able to bypass wireless intrusion
detection systems (WIDS) and wireless intrusion prevention

systems (WIPS). Consider Motorola AirDefense Enterprise
[23], which is a popular commercial WIPS solution. Currently,
AirDefense Enterprise provides down to the minute granularity
with regards to traffic data point collection. Thus we need to
ensure that our sending node’s data points average out to match
those of regular traffic over any given 60 second window.
In this paper, we perform the following tests for covertness
as seen in previous academic works:
1) Throughput changes
a) sender throughput gain
b) legitimate node traffic degradation
¢) network throughput change
2) Visual distribution matching
3) Two-Sample Kolmogorov-Smirnov test
In all of the above cases, we use data and samples that fit a
60 second window in order to align our academic covert tests
with the capabilities of current industry WIDS / WIPS (this is
an adjustable parameter should the granularity change). These
tests allow us to assess our covert channel both visually and
quantitatively within the capabilities of WIDS / WIPS and
academic detection schemes. We present the details for this
process in the next section.

V1. CoveERT DCF PROTOCOL DESIGN

In this section, we will present our protocol used for sending
and receiving. In order to use Covert DCF, we must make the
following assumptions:

« sender and receiver both can obtain information on cur-
rent network status such as packet size distribution, traffic
distribution, average throughput, and PHY characteristics.
All of this can be calculated on-the-fly.

« sender and receiver have agreed upon a codebook (5 bit
symbols, 6 bit symbols, etc.) and traffic mix ratio.

e receiver can hear all communication on the wireless
network, either by positioning near the AP or using a
cheap high-gain antenna.

These assumptions will be mentioned in more detail as
we present the protocol and are in line with assumptions
made by other timing channels in that they also require prior
communication between sender and receiver.

A. Covert DCF Sending Protocol

Before we begin using Covert DCF, we must first do some
analysis on the network in order to help us increase our ac-
curacy and covertness. First, we capture traffic on the WLAN
in order to obtain average throughput, traffic distribution, and
packet size distribution. At a minimum, we must capture as
many packets as we intend to send in order to create our traffic-
fitting symbols properly. Note that both the receiver and the
sender must have this information.

We also need to know which PHY characteristics are being
used. We can obtain this information using the Radiotap
headers [24].

Next, the sender will take the bit sequence that represents
the covert message and encode it into the proper delay
sequence based on a pre-determined codebook.

575

Once the sender has the initial delay sequence, we must
ensure that it closely matches the traffic throughput and
distribution of other nodes. In order to do this, we rely on
traffic-fitting symbols. These are symbols that will be sent and
ignored, solely used for distribution matching. Algorithm 1
below presents our scheme for inserting traffic-fitting symbols.

Algorithm 1 Sequence Adjustment
1: for all windows do

2: t <= training_window

3: m <= message_window

4: for all v in t do

5: t_problv] <= %W

6: end for

7: n<m

8: while SIZE(n) < window_size do
9: for all v in n do

10: n_prob[v] <= %Jm
11: end for

12: largest_dif f < M AX (t_prob[v] — n_prob[v])
13: if largest_dif f > 0O then
14: PUSH n, 1d_value

15: else

16: for all p in n_prob do

17: if p > 0 then

18: PUSH n, p_value
19: end if

20: end for

21: end if

22: end while

23: end for

Our goal is to match the empirical cumulative distribution
function (eCDF) of the backoffs on our sending node to that
of backoffs from a legitimate node. To begin, we need training
data from legitimate traffic that contains at least as many data
points as our initial sequence of symbols we wish to send. We
then break both sets down into windows, which allows us to
match distributions within the entire set as well as the overall
eCDF.

For each window, we calculate the probabilities of each
backoff from our training data. That is, we may discover that a
value of 5 slot times occurs 15% of the time, and a value of 20
slot times only occurs 5% of the time. We then also calculate
the probabilities of our current sequence we intend to send -
this is initialized to the initial sequence and will grow as we
insert traffic-fitting symbols. Next, we adjust the probabilities
as needed, but we must note that we cannot remove symbols
from our new sequence, as we rely on them for our message.
We can only add to the sequence.

To step through Algorithm 1, let ¢ be initialized to the
training window from sample traffic and m to the message
window from the traffic we which to send. We also initialize
a new window, n, to the message window and will modify
this window as we progress through the algorithm. Let v
represent the individual values within the windows. First,
we calculate the probabilities from sample data and store
them in ¢_prob. Next, we loop through the new window in
it’s entirety, calcuating the current probabilities and storing
them in n_prob. We find the largest probability difference
between the new window and training window, storing it in

o
g

o
Iy
o

I our sequence I our sequence
02 [target 02 [Jtarget
z z
= 015 = 015
3 3
2 3
2 01 2 o1
=3 Q
0.05 m IH 0.05 m m h IH
0 I 0 I
1.2 3 4 5 6 7 8 12 3 4 5 6 7 8
symbol symbol
(a) original comparison (b) after two rounds
Fig. 5.

largest_dif f. If this is a positive value, then we must append
that largest difference value, Id_value, to the new window. If
negative, we append the other values associated with a positive
difference p, represented as p_value.

Fig. 5 demonstrates a simplified version of this process.
Initially, symbol s; has the largest percentage difference.
Our sequence has a larger probability than the target data.
Since we cannot remove symbols from our data, we increase
the population size by increasing the probabilities of other
symbols, thus decreasing the probability of s7. We only add
to symbols which have a lower probability than the target
probability. Fig. 5(b) shows the result after two rounds.

In round 4, sg has the largest probability difference. Here,
our sequence probability is lower than the target probability.
We can simply add more of sg to the population to adjust this.
Fig. 5(c) shows the result after four rounds.

This process continues, always adjusting the symbol with
the largest probability difference in each round. In this exam-
ple, our sequence is fairly close to the target sequence after
only 8 rounds of adjustments, as shown in Fig. 5(d).

When inserting our traffic fitting symbols, we do so using
a position based method. That is, we may send 1 message
symbol per 3 traffic-fitting symbols, resulting in a 25%
message:traffic-fitting symbol mix ratio. This ratio must be
known on both ends so that the proper packets will be thrown
out upon decoding. If the ratio needs to change due to a change
in network conditions, this would need to be communicated
to the receiver as well, either through the covert channel itself
or using a side channel.

Using this method, it allows us to match the eCDF of any
training data, regardless of if there is a known distribution
with an inverse that matches it, which is a method seen in
[13]. When performing our tests, we were unable to find
a good fit to a known distribution that also had an inverse
function for our training data. As mentioned earlier, current
WIDS implementations have a granularity of 60 seconds, so
they will also not be able to detect abnormalities within the
backoffs since we average them out over a 60 second window.

At this point, we should have a sequence that will have a
high throughput, accuracy, and covertness. A process on the
sending node uses this delay sequence for subsequent traffic.
The traffic can be destined for any location.

To send our newly created covert sequence, we step through
our sequence of delays sending them appropriately. If we are

probability

576

I our sequence
T Jrerget

0.1 0.1
0.05 IH 0.05
0 1 0

1.2 3 4 5 6 7 8
symbol

I v sequence
T Jtarget

A

1.2 3 4 5 6 7 8
symbol

probability

(c) after 4 rounds (d) after 8 rounds

Distribution fitting example using traffic-fitting symbols

resending a packet for any reason such as a collision, then we
resend it using the appropriate delay. Once the entire message
has been sent, we return to using the standard MAC protocol.

B. Covert DCF Receiving Protocol

The decoding node listens for all packets on the network
and can store them in a packet capture file using standard
tools such as Wireshark or Tcpdump. All calculations can be
performed against the capture file, thus no modification is typi-
cally needed of the decoding node. Knowing the MAC address
of the sending node, the decoder can properly choose when
to decode a symbol and when to wait until the appropriate
packet is processed to decode the symbol.

First, the receiver must calculate the IAT. Next, the receiver
calculates the backoff in terms of ps and from that obtains the
number of backoff slots used.

To obtain the backoff slot count, the decoder initializes
backoff time bo_time TAT. Next, the decoder subtracts
DIFS, SIFS, payload transmission time 7TxTime, and ACK
transmission time AC KTxT'ime. At the end of this process,
we can convert the bo_time to actual slots (thus symbols) by
dividing it by the slot_time for the given PHY. This process
can be seen in Algorithm 2.

Algorithm 2 Symbol Decoding

Require: prev_recv_time <= 0
Ensure: list of decoded symbols
1: for all packets received do

2: curr_recv_time <= NOW
3: IAT < curr_recv_time — prev_recv_time
4: bo_time <= I AT {initialize}
5: bo_time < bo_time — difs_time
6: bo_time <= bo_time — —cvdpksize _ fryTime)
X X rcvd_frame_drate
7. bo_time < bo_time — sifs_time
8: bo_time < bo_time — % {AckTxTime}
9: decoded_slots <= 7‘?"-”’.’16
. slot_time
10: if remote_addr = sender_addr then
11: decoded_slots <= decoded_slots + of fset
12: of fset <=0
13: print decoded_slots
14: else
15: of fset <= of fset + decoded_slots
16: end if
17: prev_recv_time <= curr_recv_time
18: end for

The receiver can compensate for other traffic on the network
to ensure the accuracy remains high regardless of other traffic.
To do so, if a packet is detected from a node other than the

sending node, then the receiver calculates the decoded_slots
as described above and adds the resulting value to of fset.
When a packet arrives from the sending node, the receiving
node adds of fset to the number of decoded slots and resets
of fset to 0. By using this offset, we are able to calculate the
correct backoff that was initially chosen by the sending node
even though there may have been other traffic on the network.

Once the receiver has obtained the set of symbols sent by
the sending node, the receiver looks these symbols up in the
pre-determined codebook to determine the values represented
by each symbol. If traffic-fitting symbols have been used, the
receiver ignores those symbols.

VII. EVALUATION OF COVERT DCF

To test Covert DCF, we used OPNET to simulate our covert
channel. Like other papers, we chose simulations over an ex-
periment due to the fact that currently most network interface
cards do not allow tuning of several MAC parameters' via
software, instead using firmware for these parameters [25].

Our simulation consisted of a wireless segment consisting of
our sending node, one receiving node, one access point, and 15
regular wireless nodes. The receiving node may be positioned
near the AP or use a cheap high-gain antenna in order to see
all traffic on the wireless segment, which would prevent the
hidden node problem from causing calculation errors due to
missed traffic. The AP was connected to a switch, which also
had connections to Ethernet servers and the IP cloud.

Sender

Wireless Receiver g

15 regular nodes

)

Server

, -

IP Cloud

B

Fig. 6. OPNET Network Layout

For our simulations, we chose to use the 802.11g PHY
characteristics, since it is both widely deployed and offers
54Mbps data rate. At the application layer, we used FTP as it
can provide many packets back to back which is necessary for
a high data rate covert timing channel. SFTP can also provide
the back to back traffic.

We modified the wlan_mac process model in OPNET in
order to test our channel. In addition, we made the neces-
sary changes to wlan_mac_dispatch, wlan_workstation, and
wlan_station. We added an option to “enable” or “disable”
covert channel functionality within each node. Using this
switch, we enabled the covert channel on our sending node

'MadWifi allows tuning of the CW_max and CW_min when setting
up the transmit queues, but requires a card level reset each time the value is
changed. It currently does not allow the user to change the floor value of the
random value generator selecting a number of slots to backoff, instead using
the value of O stored in firmware.

577

and receiving node and disabled it on all other nodes (thus
leaving the original configuration for those nodes).

Our sending node reads a message from a standard text
file, and using the steps as described in the previous section,
created the covert sequence. The receiving node was set to
packet capture mode for all packets and decoded the sequence
as we have previously discussed. We ran 100 trials for each
configuration of |C| up to I(s) = 12.

A. Throughput

Our simulations show that we are able to obtain high
throughput using our channel. Fig. 7 shows a comparison of
our theoretical throughput as presented in Section V, and the
simulated throughput from sending an ASCII file in DEFLATE
compressed and CASTS encrypted versions. We can see that
our channel performed similar to our expected performance.

15000

—%— theoretical
- —=— compressed message
c o encrypted message
§ 10000 - Wﬂ/,,,,,a,,,,,,j;i\
QL e A
& o0 7 \ 1
o0 \!\i\,
0
2 4 6 8 10 12
Bits Per Symbol
Fig. 7. Covert channel throughput comparison (ASCII text)

B. Covertness

As mentioned in Section V, we will analyze the covertness
of our channel by looking at throughput changes, backoff
distribution matching, and two-sample Kolmogorov-Smirnov
tests.

1) Throughput Changes: If we do not attempt to control
our covertness and aim solely for maximum throughput, we
will decrease network performance of other nodes, similar to
performing MAC misbehavior on the network. However, if
we are smart about our usage of the channel, we can make it
much more difficult to detect, as seen in Fig. 8. By embedding
some traffic-fitting symbols as seen in Section VI, or backoffs
that carry no meaning, within our covert message, we are
able to get a much closer fit. This does degrade Covert DCF
throughput in exchange for additional covertness. Using this
scheme, our throughput drops to roughly 2500bps from over
8000bps with 85% accuracy. We show how to raise accuracy
to 99% shortly. It is up to the user to determine how important
throughput, accuracy, and covertness are for the channel.

2) Backoff Distribution Matching: We can also compare
our traffic distribution to that of a legitimate node as seen
in [13]. If the distributions are similar, then it is possible
that the traffic was generated using the same method. Fig.
9 compares the empirical distributions of calculated backoffs
from our covert node to those from a legitimate node. We
compared traffic from a legitimate node, our covert sequence
with a 10% mix ratio (1 message symbol per 9 traffic-fitting
symbols), and our covert sequence with 100% mix ratio (raw

- = - 4bitsymbols - - - 4bitsymbols

°

overt

overt

cumulative probability

- - - abitsymbols

overt

cumulative probability

0 2 4 2 14 16 8 0 2 4

8 10
bits per symbol «10°

(a) Sending node throughput

Fig. 8.

2 e
Z 08 - J
©
Q =
S 06 \ ,
a
g -
2 E i H
& 04 . —w— |egitimate traffic
2 L 1 ——— 10% message symbols
£ 02 ¢
2 = = =100% message symbols
0 i i i i
0 10 20 30 40 50

slot count

(a) 4 bit symbol backoff

8 10
bits per second

(b) Legitimate node throughput

12 14 16 18 o 05 1 15 2 25
10 bits per symbol 10’

(c) Network throughput

Standard channel throughput variations for covert sender

>
E 081 —#— |egitimate traffic
'§ 06 - ——— 10% message symbols
s = = =100% message symbols
v
Z 04r [T
] .=
3 pamam
Eo02r Smemt J
> . — =
5] IR

ok—==" i ! i ;

0 10 20 30 40 50

slot count

(b) 7 bit symbol backoff

Fig. 9. Empirical CDF comparisons of backoff times

message without traffic fitting symbols) for both 4 bit symbols
and 7 bit symbols.

In Fig. 9(a), we can see that our covert sequence with a
10% mix ratio is nearly identical to that of legitimate traffic.
The 100% mix ratio traffic, while somewhat similar, is still
easily detected. This demonstrates that traffic-fitting symbols
are required in order to remain covert.

Fig. 9(b) shows that at the 10% ratio with 7 bit symbols,
the distributions are again similar. At the 100% mix ratio, the
distributions are quite different. This demonstrates that not
only does the mix ratio play an important role in distribution
matching, but |C| plays an important role as well. If the
backoffs generated from the codebook are naturally similar
to those of legitimate traffic, then it is much easier to fit
the distribution than if they are naturally quite dissimilar. The
optimum value for |C| will vary depending on each specific
network.

3) Two-Sample Kolmogorov-Smirnov Test: To further our
analysis, we then perform a Kolmogorov-Smirnov (K-S) test
to determine if it is possible if the two sets of data come from
the same distribution. While we can compare the distributions
visually, performing a K-S test allows us to obtain quantitative
results and automate the process. The K-S test generates a test
statistic representing the distance between two distributions
and allows one to accept or reject a null hypothesis based
on the results. For the K-S test, we use a significance level
of @« = 0.05 with the null hypothesis being that the two
samples are from the same distribution. If « is greater than
p, the probability that the two curves come from the same
distribution, then we reject the null hypothesis.

If we run a K-S test comparing the legitimate traffic vs.
10% message symbol traffic and legitimate traffic vs. 100%
message symbol traffic, we obtain the p-values 0.6 and 0.001
respectively. Similarly, the K-S test statistics for these were

578

0.04 and 0.13. Thus at the 10% rate, we cannot reject the null
hypothesis, but we do reject it if we do not include traffic-
fitting symbols.

However, as we increase the number of bits sent per symbol,
it becomes more difficult to fit the distribution. We must
insert many more traffic-fitting symbols to align the two
distributions. While viewing the eCDF graphs, we may or may
not have accepted the 7 bit symbol sequence with a 10% mix
ratio. A K-S test quantifies this comparison, and in both cases,
we must reject the null hypothesis at the 5% significance level.

In this sample network traffic, it was possible to remain
covert with 4 bit symbols at the 10% and 25% rates using o =
0.05. On a network with more congestion, the distributions of
5, 6, or 7 bit symbols may align with legitimate traffic backoffs
more closely, thus allowing those to be used as well.

We must note that as we increase the number of traffic-
fitting symbols, we do lose throughput since we must send
more symbols. At 10%, the length of our covert sequence is 10
times longer than it would be without traffic-fitting symbols,
and we obtained throughput of 1367 bps. Similarly, at the 25%
rate, the covert sequence will be 4 times longer than without
traffic fitting-symbols, obtaining 1890 bps.

C. Accuracy

To maximize throughput, we chose to separate our symbols
by a single slot time in order to increase (3 as described earlier.
Using this scheme, we found that we were able to achieve 85%
accuracy while the network was under heavy load by adjusting
the offset value for traffic generated by other nodes. However,
further inspection showed that many of the values that were
decoded incorrectly were only off by one slot time.

Thus, by allowing each symbol to cover a range of values
(as few as two) rather than a single backoff value, we could
easily increase the accuracy. In this case, we let each symbol

occupy two backoff slot positions. In doing so, our accuracy
went from 85% to over 99% for the same message. We must
note that this adjustment can also decrease [and thus the
throughput. Our high throughput dropped from an average
of 8600bps to an average of 5500bps without traffic-fitting
symbols. We could achieve 1890bps with 99% accuracy with
traffic-fitting symbols.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a scheme to implement a covert
timing channel that is applicable for wireless networks that
make use of random backoff in order to avoid collisions. We
provided an analysis of aspects resulting in a good covert
channel. We demonstrated our channel using the 802.11g
wireless protocol through analysis and simulation.

Thus far, we have shown that it is possible to obtain
throughput for our covert timing channel far greater than that
of previous covert timing channels. Our channel also maintains
good accuracy and can operate covertly as well. We were able
to obtain over 8000 bps throughput with approximately 85%
accuracy, or by slightly modifying our coding we were able to
increase accuracy to over 99% while maintaining a throughput
over 5000 bps. Adding in covertness drops our throughput
down to 1800bps, but we are still able to maintain over 99%
accuracy at this rate while operating in a more covert fashion.
In all cases, the network was under moderate load from regular
nodes as well.

In comparison with other covert channels, Covert DCF
offers a good alternative when the covert channel is to be
used on the wireless LAN.

In the future, we intend to perform additional investigations
of methods to increase the covertness of Covert DCF and
additional analysis for the detection of Covert DCF. Covert
channels will continue to be an interesting area of research
in the foreseeable future, and methods of increasing the
covertness of our channel and other covert channels will be
exciting to explore.

ACKNOWLEDGEMENTS

This work was partially supported by NSF Grant No.
CAREER-CNS-844144.

REFERENCES

“Common methodology for information technology security evaluation,”
July 2009, http://www.commoncriteriaportal.org.

P. Akritidis, W. Y. Chin, V. T. Lam, S. Sidiroglou, and K. G. Anagnos-
takis, “Proximity breeds danger: Emerging threats in metro-area wireless
networks,” in In Proceedings of the 16 th USENIX Security Symposium,
2007, pp. 323-338.

T. Calhoun, R. Newman, and R. Beyah, “Authentication in 802.11 lans
using a covert side channel,” in IEEE International Conference on
Communications (ICC)., jun. 2009, pp. 1 6.

P. Kyasanur and N. Vaidya, “Detection and handling of mac layer
misbehavior in wireless networks,” in IEEE International Conference
on Dependable Systems and Networks (DSN)., jun. 2003, pp. 173 —
182.

L. Ji, H. Liang, Y. Song, and X. Niu, “A normal-traffic network covert
channel,” in International Conference on Computational Intelligence and
Security (CIS)., vol. 1, dec. 2009, pp. 499 —-503.

(2]

(3]

(5]

579

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24
[25

H. Khan, Y. Javed, F. Mirza, and S. Khayam, “Embedding a covert chan-
nel in active network connections,” in IEEE Global Telecommunications
Conference (GLOBECOM)., nov. 2009, pp. 1 —6.

L. Ji, Y. Fan, and C. Ma, “Covert channel for local area network,” in
IEEE International Conference on Wireless Communications, Network-
ing and Information Security (WCNIS)., jun. 2010, pp. 316 -319.

H. Zhao, Y. Q. Shi, and N. Ansari, “Hiding data in multimedia streaming
over networks,” in Eighth Annual Communication Networks and Services
Research Conference (CNSR)., may. 2010, pp. 50 -55.

T. Calhoun, X. Cao, Y. Li, and R. Beyah, “An 802.11 mac layer covert
channel,” Wireless Communications and Mobile Computing.

L. Frikha, Z. Trabelsi, and W. El-Hajj, “Implementation of a covert
channel in the 802.11 header,” Wireless Communications and Mobile
Computing, 2008.

S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert timing channels:
design and detection,” in CCS ’'04: Proceedings of the 11th ACM
conference on Computer and communications security. New York,
NY, USA: ACM, 2004, pp. 178-187.

S. Cabuk, C. Brodley, and C. Shields, “Ip covert channel detection,”
ACM Trans. Inf. Syst. Secur., vol. 12, no. 4, pp. 1-29, 2009.

S. Sellke, C.-C. Wang, S. Bagchi, and N. Shroff, “Tcp/ip timing
channels: Theory to implementation,” in INFOCOM 2009, IEEE, April
2009, pp. 2204-2212.

“IEEE Std 802.11-2007,” 2007.

J. Wu, Y. Wang, L. Ding, and X. Liao, “Improving performance of net-
work covert timing channel through huffman coding,” Mathematical and
Computer Modelling, vol. In Press, Corrected Proof, pp. —, 2011. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6VOV-
526MS25-1/2/b3178658ce252356baba2311768c9834

K. Born, “Psudp: A passive approach to network-wide covert commu-
nication,” in Black Hat USA, 2010.

Y. Rong, S.-K. Lee, and H.-A. Choi, “Detecting stations cheating on
backoff rules in 802.11 networks using sequential analysis,” in 25th
IEEE International Conference on Computer Communications (INFO-
COM)., apr. 2006, pp. 1 —13.

Z. Lu, C. Wang, and W. Wang, “On the impact of backoff misbehaving
nodes in ieee 802.11 networks,” in IEEE International Conference on
Communications (ICC)., may. 2010, pp. 1 -5.

A. Venkatarama, C. Corbett, and R. Beyah, “A wired-side approach
to mac misbehavior detection,” in IEEE International Conference on
Communications (ICC)., may. 2010, pp. 1 —6.

A. Toledo and X. Wang, “Robust detection of selfish misbehavior in
wireless networks,” IEEE Journal on Selected Areas in Communica-
tions., vol. 25, no. 6, pp. 1124 —1134, aug. 2007.

Y. Wang, P. Chen, Y. Ge, B. Mao, and L. Xie, “Traffic controller: A
practical approach to block network covert timing channel,” in Interna-
tional Conference on Availability, Reliability and Security (ARES)., mar.
2009, pp. 349 -354.

A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-box mitiga-
tion of timing channels,” in Proceedings of the 17th ACM conference on
Computer and Communications Security (CCS). New York, NY, USA:
ACM, 2010, pp. 297-307.
“Motorola airdefense
http://www.airdefense.net.
“Radiotap,” March 2010, http://www.radiotap.org.

J. Choi, A. W. Min, and K. G. Shin, “A lightweight passive online detec-
tion method for pinpointing misbehavior in wlans,” IEEE Transactions
on Mobile Computing, vol. 99, no. PrePrints, 2010.

enterprise,” 2010,

