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Abstract
The popularity of cloud hosting services also brings in new security
challenges: it has been reported that these services are increas-
ingly utilized by miscreants for their malicious online activities.
Mitigating this emerging threat, posed by such “bad repositories”
(simply Bar), is challenging due to the different hosting strategy
to traditional hosting service, the lack of direct observations of the
repositories by those outside the cloud, the reluctance of the cloud
provider to scan its customers’ repositories without their consent,
and the unique evasion strategies employed by the adversary. In this
paper, we took the first step toward understanding and detecting this
emerging threat. Using a small set of “seeds” (i.e., confirmed Bars),
we identified a set of collective features from the websites they
serve (e.g., attempts to hide Bars), which uniquely characterize the
Bars. These features were utilized to build a scanner that detected
over 600 Bars on leading cloud platforms like Amazon, Google,
and 150K sites, including popular ones like groupon.com, using
them. Highlights of our study include the pivotal roles played by
these repositories on malicious infrastructures and other important
discoveries include how the adversary exploited legitimate cloud
repositories and why the adversary uses Bars in the first place that
has never been reported. These findings bring such malicious ser-
vices to the spotlight and contribute to a better understanding and
ultimately eliminating this new threat.

1. INTRODUCTION
Cloud hosting service today is serving over a billion users world-

wide, providing them stable, low-cost, reliable, high-speed and
globally available resource access. For example, Amazon Simple
Storage Service (S3) is reported to store over 2 trillion objects for
web and image hosting, system backup, etc. In addition to storing
data, these services are moving toward a more active role in sup-
porting their customers’ computing missions, through sharing the
repositories (a.k.a. bucket for Google Cloud [?]) hosting various
dynamic content and programming tools. A prominent example
is Google’s Hosted Libraries [?], a content distribution network
(CDN) for disseminating the most popular, open-source JavaScript
resources, which web developers can easily incorporate into their
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websites through a simple code snippet. In addition to benign users,
the popularity of these services has also attracted cybercriminals.
Compared with dedicated underground hosting services, reposito-
ries on legitimate commercial clouds are more reliable and harder
to blacklist. They are also much cheaper: for example, it is reported
that 15 GB on the dark net is sold at $15 per month [?], which
is actually offered for free by Google to every Google Driver user.
Indeed, it has been reported [?] that malware distributors are increas-
ingly using the commercial clouds to process and deploy malicious
content.
Understanding bad cloud repositories: challenges. Although
there have been indications of cloud hosting misuse, understand-
ing how such services are abused is challenging. For the service
providers, who are bound by their privacy commitments and ethical
concerns, they tend to avoid inspecting the content of their cus-
tomers’ repositories in the absence of proper consent. Even when
the providers are willing to do so, determining whether a repository
involves malicious content is by no means trivial: nuts and bolts
for malicious activities could appear perfectly innocent before they
are assembled into an attack machine; examples include image files
for Spam and Phishing as shown in Figure 1. Actually, even for
the repository confirmed to serve malicious content like malware,
today’s cloud providers tend to only remove that specific content,
instead of terminating the whole account, to avoid collateral damage
(e.g., compromised legitimate repositories). Exploring the issue
becomes even more difficult for the third party, who does not have
the ability to directly observe the repositories and can only access
them through the websites or sources that utilize the storage ser-
vices. Further adding to the complexity of finding such a repository
is the diverse roles it may play in attack infrastructures (e.g., serving
malware for one attack and serving Phishing content for another),
due to the mixed content a single repository may host: e.g., malware
together with Phishing images. As a result, existing techniques
(e.g., those for detecting dedicated malicious services [?][?]) cannot
be directly applied to capture the repository, simply because their
original targets often contain more homogeneous content (e.g., just
malware) and contribute to different campaigns in the same way. So
far, little has been done to understand the scope and magnitude of
malicious or compromised repositories on legitimate clouds (called
Bad Repository or simply Bar in our research) and the technical
details about their services to the adversary, not to mention any
effort to mitigate the threat they pose.
Finding “Bars” online. In this paper, we present the first system-
atic study on the abuses of cloud repositories on the legitimate cloud
platforms as a malicious service, which was found to be highly
pervasive, acting as a backbone for large-scale malicious web cam-
paigns (Section 4). Our study was bootstrapped by a set of “seeds”:
100 confirmed malicious or compromised buckets [?], each of which

1541

groupon.com
http://dx.doi.org/10.1145/2976749.2978349


Figure 1: Example of deceptive images in Amazon S3 bucket
cicloudfront used for malvertising. The image was shown at the bot-
tom of a webpage as an update notification to lure visitors to download
malware.

is a cloud resource repository with stored objects (often of different
types) organized under a unique identification key. These buck-
ets were collected from Spam messages or the malicious URLs
cached by a popular malware scanner. Comparing them with those
known to be legitimate, we found that despite various roles each
bucket plays in different types of attacks (due to the diversity in
the content it serves), still the websites connecting to those buckets
exhibit prominent common features (see Section 3.1), particularly,
the presence of “gatekeeper” sites that cover the Bars (a valuable
asset for the adversary) and remarkably homogeneous redirection
behavior (i.e., fetching repository resources indirectly through other
sites’ references) and sometimes similar content organizations, due
to the same attack payload the compromised sites upload from their
backend (i.e., the Bars), or the templates the bucket provides to the
adversary for quick deployment of her attack sites. By comparison,
a legitimate bucket (e.g., reputable jQuery repository) tends to be
directly accessed by the websites with highly diverse content.

Based on this observation, we developed BarFinder, a scanner
that automatically detects Bars through inspecting the topological
relations between websites and the cloud bucket they use, in an
attempt to capture Bars based on the external features of the web-
sites they serve. More specifically, for all the sites connecting to
a repository, our approach correlates the domains and URLs (par-
ticular those related to cloud repositories) across their redirection
chains and content features across their DOM structures to identify
the presence of gatekeepers and evading behavior, and also measure
the diversity of their content organization. A set of new collective
features generated in this way, including bucket usage similarity,
connection ratio, landing similarity and others (Section 3.1), are fur-
ther utilized by a classifier to find out suspicious buckets. Running
the scanner over all the data collected by the Common Crawl [?],
which indexed five billion web pages, for those associated with all
major cloud storage providers (including Amazon S3, Cloudfront,
Google Drive, etc.), we found around 1 million sites utilizing 6,885
repositories hosted on these clouds. Among them, BarFinder identi-
fied 694 malicious or compromised repositories, involving millions
of files, with a precision of 95% and a coverage of 90% against our
ground-truth set.
Our discoveries. Looking into the Bars identified by our scanner,
we are surprised by the scope and the magnitude of the threat. These
buckets are hosted by the most reputable cloud service providers.
For example, 13.7% of Amazon S3 repositories and 5.5% of Google
repositories that we inspected turned out to be either compromised
or completely malicious1. Among those compromised are popular
cloud repositories such as Groupon’s official bucket. Altogether,
472 such legitimate repositories were considered to be contaminated,
due to a misconfiguration flaw never reported before, which allows
arbitrary content to be uploaded and existing data to be modified
without proper authorization. The impact of these Bars is significant,
infecting 1,306 legitimate websites, including Alexa top 300 sites
like groupon.com, Alexa top 5,000 sites like space.com, etc. We
reported our findings to Amazon and leading organizations affected
by the infections. Groupon has already confirmed the compromise
we discovered and awarded us for our help.

1We have manually examined and confirmed all those instances.

When it comes to malicious buckets, our study brings to light
new insights into this new wave of repository based cyber-attacks,
including the importance of Bars to malicious web activities and
the challenges in defending against this new threat. More specifi-
cally, we found that on average, one Bar serves 152 malicious or
compromised sites. In one of the large campaigns discovered in our
research, the Bar cloudfront_file.enjin.com hosts a malicious script
that was injected into at least 1,020 websites (Section 4.1). These
Bars sit right at the center of the attack infrastructure, supporting and
coordinating other malicious actors’ operations at different stages of
a campaign. Interestingly, we found that they could be strategically
placed on different cloud platforms, making them hard to block (due
to the popularity of their hosting clouds like Google) and detect
(scattered across different providers), and easy to share across multi-
ple campaigns. As an example, the Potentially Unwanted Programs
(PUP) campaign we found first loads a redirection script from a
Bar on Akamaihd (the world’s largest CDN platform) to lead the
victim to the attack website, then fetches Phishing pictures from an
Amazon S3 Bar, and finally delivers the malware stored on Cloud-
front to the target systems (Section 4.4). In the presence of such
meticulously planned attacks, the cloud service providers apparently
are inadequately prepared, possibly due to the privacy constraints
in touching their customers’ repositories. We found that many Bars
remain active during our study, and survive a much longer lifetime
than that of the malicious content hosted on websites (Section 4.3).
Further complicating the mission of Bar identification are other eva-
sion techniques the adversary employs, including code obfuscation
and use of a redirection chain and cloaking techniques to avoid
exposing malicious payloads to a malware scanner.
Contributions. The contributions of the paper are as follows:
• New understanding. We performed the first systematic study on
cloud repositories as a malicious service, an emerging security threat.
For the first time, our study reveals the scope and magnitude of the
threat and its significant impact, particularly on the infrastructures
of illicit web activities. These findings bring to the spotlight this im-
portant yet understudied problem and lead to a better understanding
of the techniques the adversary employs and their weaknesses. This
will contribute to better defense against and ultimate elimination of
the threat.
• New technique. Based on our understanding of bad cloud repos-
itories, we take a first step toward automatically detecting them.
The technique we developed relies on the topological relationship
between a cloud repository and the websites it serves, which are dif-
ficult to change and effective at capturing malicious or compromised
buckets. Our evaluation over a large number of popular websites
demonstrates the potential of the technique, which could be utilized
by both cloud providers and third parties to identify the threats posed
by Bars.
Roadmap. The rest of the paper is organized as follows: Section 2
provides the background information and adversary model for our
research; Section 3 describes our findings from the ground-truth
dataset and the design and implementation of BarFinder; Section 4
provides the details of the discoveries made in our large-scale mea-
surement study; Section 5 discusses the limitations of our work and
possible future research; Section 6 compares our work with related
prior research and Section 7 concludes the paper.

2. BACKGROUND
Cloud hosting. Cloud hosting is a type of infrastructure as a service
(IaaS), which is rented by the cloud user to host her web assets (e.g.,
HTML, JavaScript, CSS, and image files). These web assets are orga-
nized into cloud repositories referred to as buckets which are identi-
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Figure 2: Overview of the cloud hosting process.

fied by unique2, user-assigned keys, that are mapped as sub-domains.
For example, the subdomain aws-publicdatasets.s3.amazonaws.com
identifies Amazon S3 as the cloud platform and aws-publicdatasets
as the user’s cloud bucket and repository. Such name assignment
is labeled as s3.amazonaws.com_aws-publicdatasets throughout
this paper. Also, each bucket is protected by an access control list
configured by the user to authorize requests for her resources.

In recent years, we have seen an increase in popularity of these
services. A key feature of cloud hosting is built-in site publishing
[?], where the web assets in the bucket can be served directly to
users via file names in a relative path in the bucket (i.e., cloud URL).
For instance, JavaScript files hosted in the cloud bucket can be
directly run in the browser. Also, the pay-as-you-go hosting is well
received as an economic and flexible computing solution. As an
example, Google Drive today offers a free web hosting service with
15GB of storage, and an additional 100GB for $1.99/month, and
GoDaddy’s web hosting starts at $1/month for 100GB.

Besides such front-end websites, mainstream cloud providers
today (Amazon S3, Microsoft Azure, Google Drive, etc.) all allow
their customers to store different kinds of web content and other re-
sources in their cloud buckets, serving as back-end repositories that
can be easily accessed by front-end applications (like the website)
and shared across different parties. Figure 2 illustrates an example,
in which the resource owner creates a bucket on the cloud hosting
platform and uploads a script there (¬); this resource (i.e., the script)
is made public through a cloud URL, which can be embedded into
any website (); whenever the site is visited (®), requests will be
generated for fetching the script (¯) and delivering it to the visitor’s
browser (°). The bucket in the example is typical of a service repos-
itory, whose resources can be fetched and updated through a cloud
URL: for example, the visitor statistics of a website can be collected
through a link (s3.amazonaws.com/trk.cetrk.com/t.js), which down-
loads a tracking script from s3.amazonaws.com_trk.cetrk.com, a
bucket owned by the tracking website Crazy Egg. This is different
from a “self-serving” bucket, whose resources can only be accessed
by the bucket owner’s sites. Note that our study focuses on abuses
of this type of cloud repositories, regardless of the additional func-
tionalities they may have (e.g., CDNs, DDoS protection, etc.), since
these functionalities do not affect the way the repositories are used
by either legitimate or malicious parties.
Adversary model. In our research, we consider the adversary who
tries to use cloud buckets on legitimate cloud platforms as service
repositories for illicit activities. For this purpose, the attacker could
build her own malicious bucket or compromise legitimate ones,
and store various attack vectors there, including Spam, Phishing,
2The terms repositories and buckets are used interchangeably throughout this paper.

malware, click-hijacking and others. These buckets are connected
to front-end websites, which could be malicious, compromised or
legitimate ones contaminated only by the Bar.

3. FINDING BARS ONLINE
In this section, we elaborate on our analysis of a set of known

Bars (the seed set) and the features identified for differentiating
benign repositories and Bars. These features are utilized in our
research to build a simple web scanner, BarFinder, for detecting
other malicious or compromised high-profile, previously-unknown
repositories and the malicious campaigns in which they serve.

3.1 Features of Bad Repositories
Our study is based on a small set of confirmed good and bad

repositories and their related domains, which we analyzed to find
out how Bars (bad repositories) differ from legitimate repositories.
In the absence of direct access to these buckets, good or bad, all
we can do is to infer their legitimacy from who use them and how
they are used (by different domains), that is, the features of the
domains and their interactivities on the redirection paths leading
to the cloud repository. Of particular interest here are a set of
collective properties identified from the resource fetching chains
(a.k.a., redirection chains) for serving the content of Bars, which is
hard to change by the adversary, compared with the content features
of individual Bars. Below, we elaborate on the way such data was
collected and the salient features discovered in our research, which
describe how the adversary attempts to hide Bars or use them to
cover other attack assets, a redirection pattern never observed on
legitimate repositories.
Data collection. To build the seed set, we collected a set of con-
firmed malicious or compromised buckets (called Badset) and legiti-
mate buckets (called Goodset) as well as their related domains, as
illustrated in Table 1.
• Badset. We utilized two feeds as the ground truth for gathering
bad cloud buckets: the Spamtrap feed and the CleanMX feed [?].
The former comes from a Spam honeypot we constructed [?] that
receives around 10K Spam emails per day, from which cloud URLs
promoted by the emails were extracted which may include spam
resources such as HTML, images, and scripts. The latter includes
the historical data of CleanMX, a popular domain scanning engine,
from which cloud-related URLs were collected. For both feeds, we
further validate them by VirusTotal [?] and manual inspections (e.g.,
looking for Phishing content) to ensure that they were indeed bad
(to avoid contaminating the dataset with legitimate buckets used
in malicious activities). Using the collected set of malicious cloud
URLs from both feeds, we extracted their repositories, which led to
100 confirmed Bars.
• Goodset. The good buckets were gathered from the Alexa top
3K websites, which are considered to be mostly clean. To this end,
we visited each website using a crawler (as a Firefox add-on) to
record the HTTP traffic triggered by the visit, including network
requests, responses, browser events, etc. From the collected traffic,
we extracted the HTTP cloud request URLs corresponding to 300
cloud buckets hosted on 20 leading cloud hosting services like
Amazon S3, Google Drive, etc. (see Appendix Table 7 for the
complete list). Note that even though some of them provide CDN
service or DDOS protection, they are all provided hosting service to
act as cloud repository.
• Bucket-served sites and their HTTP traffic. We collected HTTP
traffic using the crawler mentioned above to visit a list of websites
using buckets for feature extraction. Rather than blindly crawling
the web to find those sites, we adopted a more targeted strategy by
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Table 1: Summary results of the seed dataset.

# of
buckets

# of
linked

websites

# of
average
linked

website

# of
redirection

paths

Badset 100 12,468 133 468,480
Goodset 300 128,681 864 2,659,304

crawling the sites found to contain links to the cloud in the past.
We built the site list with the help of Common Crawl [?], a public
big data project that crawls about 5 billion webpages each month
through a large-scale Hadoop-based crawler and maintains lists
of the crawled websites and their embedded links. Searching the
Common Crawl [?] dataset, collected in February 2015, for the
websites loading content from the 400 clean and malicious buckets
identified above, we found 141,149 websites, were used by our
crawler.

Topological features. We first inspected the topology of the redi-
rection infrastructure associated with a specific bucket. Such an
infrastructure is a collection of redirection paths, with each node
being a Fully Qualified Domain Name (FQDN). On each path, the
bucket is either a node when it directly participates in a redirec-
tion (e.g., its cloud URL delivers a redirection script to the visitor’s
browser) or simply a passive repository providing resources like pic-
tures to other domains. Figure 3 illustrates examples of redirection
paths leading to two real-world repositories, one for a legitimate
bucket cloudfront.net_d24n15hnbwhuhn and the other for a Bar
s3.amazonaws.com_cicloudfront.

A key observation from our study is that the redirection infras-
tructure leading to a Bar tends to include the features for protecting
the Bar from being detected by web scanners, presumably due to
the fact that the repository is often considered to be a valuable as-
set for the adversary. Specifically, we found that typically, there
are a few gatekeeper nodes sitting in front of a Bar, serving as
an intermediary to proxy the attempts to get resources from the
Bar. Examples of the gatekeepers include fp125.mediaoptout.com
and its downstream nodes in Figure 3(b). On the topology of such
an infrastructure, these gatekeepers are the hubs receiving a lot of
resource-access connections from entry sites (the first node on a redi-
rection path, see Figure 3). Also interestingly, our research shows
that some gatekeepers can access the Bar through multiple paths.
For example, in Figure 3(b), krd.semantichelper.com can either go
straight to s3.amazonaws.com_cicloudfront or take a detour through
p306.atemada.com. This structure could be caused by the cloaking
of the gatekeeper for hiding the Bar, or constructed to maintain ac-
cess to the repository even when nodes (like 1.semantichelper.com)
are down (detected, cleaned, etc.). Note that such a protection struc-
ture does not exist on the paths to a benign repository (Figure 3(a)):
normally, the resources hosted in a repository (e.g., jQuery) is di-
rectly fetched by the website using it, without going through any
redirection; even in the presence of redirections, there will not be
any gatekeeper, not to mention attempts to cloak or build a backup
path.

To identify this unique “protection” structure, we utilize two
collective features: bucket usage similarity (BUS) that captures the
topology involving hubs (gatekeepers) and connection ratio (CR)
that measures the interactivities across different redirection paths
(which point to the existence of cloaking behavior or the attempts
to maintain back-up paths to the Bar). Specifically, consider a
redirection graph G = (V,E) (as illustrated in Figure 3), where V
is the set of nodes (the FQDNs involved in a redirection) and E is
a set of edges from one node to the next one on individual paths:
E = {ei,j |node i precedes node j on a path}. The BUS is

measured by 1− i
s

, where i is the number of immediate predecessor
nodes to a repository (the domains connecting to the repository)
and s is the total number of entries of the repository’s redirection
graph. To find out the CR, we first remove the bucket b and all
the edges to which it is attached (if they exist) to get another graph
G′ = G − Gb, where Gb = ({b}, Eb) and Eb = {eb,j}. Note
that each graph G′ is associated with one bucket. Then, from G′,
we find out the number of connected components n and calculate
CR = 1− n

|V | (see Figure 3 for an example).
Both collective features were found to be discriminative in our

research. Figure 4(a) and 4(b) compare the cumulative distributions
(CDF) of the ratios between Bad and Good sets. As we can see from
the figures, Bars tend to have higher ratios than benign ones: the
average BUS is 0.87 for the Bars and 0.79 for the legitimate reposito-
ries and the CR is 0.85 for the bad repositories and 0.67 for the good
one. As mentioned earlier, this is caused by the fact that a small set
of gatekeepers nodes are often placed there for protecting the Bars
while the redirection chains towards the good repositories are much
more direct and independent: different organizations typically do
not go through an intermediary to indirectly access the public repos-
itory like jQuery, and even within the same organization, use of such
a resource is often direct. Although there can be exceptions, our
measurement study shows that in general, the structural differences
between malicious and legitimate repositories are stark.

Also, we found that occasionally, a Bar itself may serve as a
gatekeeper, running scripts to hide more valuable attack assets, such
as the attack server or other malicious landing sites. When this
happens, almost always the Bar leads to a small set of successors
on redirection paths (e.g., attack servers, land sites). This is very
different from the redirection performed by the script from a benign
repository, for example, cloudfront.net_d24n15hnbwhuhn. In such
cases, the targets of redirections are often very diverse. Based on this
observation, we further measure the landing similarity, LS = 1− l

s
,

where l is the number of the unique last nodes on the redirection
paths associated with a repository. Again, as illustrated in Fig-
ure 4(c), our study shows that redirection paths involving Bars share
fewer end nodes than legitimate ones, and therefore, the related
redirection graphs (for Bars) have a higher landing similarity (0.94
vs 0.88).
Content and network features. In addition to their distinctive
topological features, we found that the nodes on the redirection
paths attached to a Bar often exhibit remarkable homogeneity in
their content and network properties. Particularly, for the websites
directly connecting to the repository, we found that they typically
use a small set of templates (like WordPress) to build up their web
pages, include similar DOM positions for script injection, carrying
similar IP addresses or even having the same content management
system (CMS) vulnerabilities, etc. These properties turn out to be
very diverse among those utilizing a legitimate cloud repository.
For example, all websites linking to a Google Drive Bar have their
malicious cloud URL (for injecting a script) placed at the bottom
of the DOM of each website. In another example, we found that
the front-end sites using a Cloudfront Bar actually all include a
vulnerable JCE Joomla extension.

To better understand the diversity of such websites, we try to
compare them according to a set of content and network properties.
In our research, we utilized the properties extracted by WhatWeb [?],
a popular webpage scanner. WhatWeb is designed to identify the
web technologies deployed, including those related to web content
and communication: e.g., CMS, blogging platforms, statistic/ana-
lytics packages, JavaScript libraries, social media plugins, etc. For
example, from the content
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Figure 3: Example of the redirection infrastructure leading to the legitimate bucket cloudfront.net_d24n15hnbwhuhn (a) and the
Bar s3.amazonaws.com_cicloudfront (b), which are in RED color.

(a) Cumulative distribution of bucket us-
age similarity per cloud bucket.

(b) Cumulative distribution of con-
nected ratio per cloud bucket.

(c) Cumulative distribution of landing
similarity per cloud bucket.

Figure 4: Bars show smaller topological diversity.

<link rel="search"
type="application/opensearchdescription+xml"
href="https://wordpress.com/opensearch.xml"
title="WordPress.com" />
we obtain the property p as a key-value pair p = (k, v) =

(wordpress, opensearch), which indicates the website using word-
press plugin opensearch.

From our seed dataset, the scanner automatically extracted 372
keys of 1,596,379 properties, and then we clustered the keys into 15
classes such as Analytics and tracking, CMS and plugin, Meta-data
information, etc., following the categories used by BuiltWith, a web
technology search engine [?]. Some examples of these properties
are presented in Table 2. In addition to these properties extracted
by WhatWeb, we added the following properties to characterize
cloud URLs, including the position of the URL, the order in which
different buckets appear in the web content and the number of cloud
platforms used in a page.

Based on these properties, again we utilized a topological metric
to measure the overall similarity across sites. Specifically, the rela-
tions among all the sites (connecting to the same bucket) in the same
category (Analytics and tracking, CMS and plugin, etc.) are mod-
eled as a graph G′ = (V ′, E′, P ), where V ′ is the set of the web-
sites, which are characterized by a collection of properties P , and

E′ is the set of edges: E′ = {ei,j |website i and j share p ∈ P},
that is, both sites having a common property. Over this graph, the
site similarity is calculated as SiS = 1− n

|V ′| . Here n is the number
of connected components in the graph.

In our research, we computed SiS across all the categories summa-
rized from the seed dataset, and compared those with Bars against
those with the legitimate buckets. Again, the sites using Bars are
found to share many more properties and therefore achieve a much
higher similarity value than those linking to a good bucket. This is
likely caused by mass-production of malicious sites using the same
resources (templates, pictures, etc.) provided by a Bar or utilization
of the same exploit tool stored in a Bar for compromising the sites
with the same vulnerabilities. Therefore, such similarity is inherent
to the attack strategies and can be hard to change.

3.2 BarFinder
Design. The design of BarFinder includes a web crawler, a fea-
ture analyzer, and a detector. The crawler automatically scans the
web for cloud buckets (embedded in web content) and then clus-
ters websites according to the buckets they use. From each cluster,
the analyzer constructs a redirection graph and a content graph as
described earlier (Section 3.1), on which it further calculates the
values for a set of collective features including disconnection ratio

1545



Table 2: Examples of content and network features.

Category Feature Example

Content

CMS platform information
and their plugin

(wordpress, all in one
SEO pack)

Meta-data information (metagenerator,
drupal7)

CloudURL information (position, bottom)

Advertising (adsense,
asynchronous)

Javascript library (JQuery, 1.9.1)

Analytics and tracking (Google-Analytics,
UA-2410076-31)

Widget (addthis, welcome
bar)

DocInfo technologies (open graph protocol,
null)

Network

Identity (IP, 216.58.216.78)

Cookie (Cookie,
harbor.session)

Server framework version (Apache, 2.4.12)

Custom HTTP header (X-hacker, If
youâĂŹre..)

(D), bucket usage similarity (B), landing similarity (L) and a series
of content property/network property similarities (S1 · · ·Sn) for n
web-technology categories (e.g., analytics and tracking, CMS and
plugin, meta-data information, etc.). The output of this feature anal-
ysis is then passed to the detector, which maintains a model (trained
on the seed dataset) to determine whether a bucket is malicious,
based on its collective features.

Specifically, the crawler visits each website, inspecting its con-
tent, triggering events, recording the redirection paths it observes
and parsing URLs encountered using the patterns of known cloud
platforms to recognize cloud buckets. For example, the reposi-
tory on Amazon S3 is accessed through the URL formatted as
w + .s3{−w+}[?].amazonaws.com, and Amazon CloudFront
produces resource URLs in the form of w + .cloudfront.net. In
our research, 20 cloud platforms were examined to identify the
buckets they host. At the feature-analysis stage, for each bucket,
BarFinder inspects all its redirection paths, converts every node into
an FQDN to compute their topological features, and then connects
different nodes according to their content and network properties to
find out their site similarities, as described in Section 3.1.

Next, each cloud bucket i is uniquely characterized by a vector:
〈Di, Bi, Li, Si,1 · · ·Si,n〉, with each element a collective feature.
Individual features have different power in differentiating good and
bad buckets, which we measured using the F-Score [?] (see Table 3).
Note that the feature with a large score can better classify these
vectors than the one with a small value. Therefore, a binary classifier
with a model for weighing the features and other parameters can
be used to classify the vector set and determine whether individual
buckets are legitimate or not. Such a model is learned from the
seed dataset. In our research, we utilized a Support Vector Machine
(SVM) as the classifier, which showed the best performance among
other classification algorithms (see Table 4). Its classification model
is built upon the F-Scores for the collective features (D, B, etc.) and
a threshold set according to the false positive and negative discovery
expected to achieve. For each bucket classified, the SVM can also
report the confidence of the classification.
Implementation. This simple design was implemented in our study
into a prototype system. The web crawler was built as a Firefox add-
on. In total, 20 such crawlers were deployed. We further developed a
tool in Python to recover cloud URLs from the web content gathered
by Common Crawl. The feature analyzer includes around 500 lines
of Python code for processing the data collected by the crawler and

Table 3: F-score of features.

Feature Label Metric F-score
Connection ratio D 1− n

|V | 0.084

Bucket usage similarity B 1− i
s

0.076
Landing similarity L 1− l

s
0.072

CMS information S1 1− n
|V ′| 0.037

Meta-data information S2 1− n
|V ′| 0.033

Analytics and tracking S3 1− n
|V ′| 0.032

Widget S4 1− n
|V ′| 0.031

CloudURL information S5 1− n
|V ′| 0.024

Table 4: Performance comparison under five-fold cross valida-
tion.

Classifier Precision Recall
SVM 0.94 0.89

Decision Tree 0.9 0.83
Logistic Regression 0.91 0.87

Naive Bayes 0.9 0.79
Random Forest 0.85 0.82

computing the collective features (Section 3.1). Each feature in the
vector is normalized using the L1 norm before passed to the SVM
classifier. In our system, we incorporated the SVM provided by the
scikit-learn open-source machine learning library [?].

3.3 Evaluation
Here we report our evaluation of BarFinder on both the ground

truth and the Unknown sets. All the experiments were conducted
within an Amazon EC2 C4.8xlarge instance equipped with Intel
Xeon E5-2666 36 vCPU and 60GiB of memory.
Evaluation on the seed set. We tested the effectiveness of BarFinder
over our ground-truth dataset (i.e., the seed set) through the standard
five-fold cross validation: that is, 4/5 of the data was used for train-
ing the SVM and the remaining 1/5 for evaluating the accuracy of
Bar detection. Specifically, we randomly chose 80 Bars (out of 100)
from the Badset and 240 (out of 300) legitimate buckets from the
Goodset, together with the related websites (out of 141,149). These
data were first processed by our prototype to adjust the weights and
other parameters for its model. Then we tested the model on the
remaining dataset (20 Bars, 60 legitimate buckets). The process
is then repeated 5 times. BarFinder achieved both a low false dis-
covery rate (FDR: 1- precision) and a high recall in detection: only
5.6% of reported Bars turned out to be legitimate (i.e., 1.6% of false
positive rate), and over 89.3% of the Bars were detected. We fur-
ther show the Area Under Curve (AUC) of the Receiver Operating
Characteristics (ROC) graph, which comes very close to 1 (0.96),
demonstrating the good balance we strike between the FD rate and
the coverage. This preliminary analysis shows that the collective
features of the sites connecting to cloud repositories are promising
in detecting Bars.
Evaluation on the Unknown set. We now use BarFinder to scan
an unknown set. This unknown set contains HTTP traffic collected
using a crawler as described in Section 3.1 to visit a list of websites.
This list of websites is also extracted from common crawl [?] by
searching for websites that have loaded some content in the past
from the cloud platforms listed in Table 7. As a result, the unknown
data set contained HTTP traffic generated from dynamically visiting
1M websites loading content from 20 cloud platforms and 6,885
cloud buckets.

To validate our evaluation results, we employ a methodology
that combines anti-virus (AV) scanning, blacklist checking, and
manual analysis. Specifically, for the Bars flagged by our system,
we first scan their cloud URLs with VirusTotal for malware and
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Figure 5: Top 10 cloud platforms with most Bars, compared
with their total number of cloud buckets in our dataset.

check them against the list of suspicious cloud URLs collected
from our Spamtrap honeypot for Spam, Phishing, blackhat Search
Engine Optimization (SEO), etc. In the case of VirusTotal, a URL
is considered to be suspicious if at least two scanners raise the
alarm. All such suspicious URLs (from either VirusTotal or the
Spamtrap list) are cross-checked against the blacklist of CleanMX.
Only those also found there are reported to be a true positive. Once
a URL is confirmed malicious, its corresponding bucket is labeled
as bad. Those unlabeled but flagged (by BarFinder) buckets are
further validated manually.

In the experiment, BarFinder reported a total of 730 Bars, about
10.6% of the 6,885 buckets. Among them, the AV scanning and
blacklist verification confirmed that 502 buckets were indeed bad.
The remaining 228 were manually analyzed through, e.g., inspecting
the resources in the buckets for phishing or scam content, running
scripts in the VM to capture binary code download. This validation
further confirmed 192 Bars. The FDR was found to be at most 5%
(assuming those not confirmed to be legitimate), in line with the
finding from the seed set.

4. MEASUREMENT AND DISCOVERIES
Based on the discoveries made by BarFinder, we further con-

ducted a measurement study to better understand the fundamental
issues about Bar-based malicious services, particularly how the
cloud repositories help facilitate malicious activities, how the adver-
sary exploited legitimate cloud buckets and why the adversary uses
Bars in the first place. Our research shows that on the infrastructure,
Bars play a pivotal role, compared with the content kept on other
malicious or compromised sites, possibly because they are hosted on
popular cloud services, and therefore hard to blacklist and also easy
to share across different campaigns. Also, in a malicious campaign,
the adversary may take advantage of multiple Bars, at different at-
tack stages, to construct a complicated infrastructure that supports
her mission (Section 4.1). More importantly, we discovered that the
adversary effectively exploited misconfigured legitimate buckets to
infect a large number of their front-end web services (Section 4.2),
and the cloud providers have not done much to counteract the threat,
often leaving Bars there for a long time (Section 4.3), possibly due to
the privacy constraints and limited means to detect individual com-
ponents of a malicious activity. Such observations, together with
the challenge in blocking Bars, offer insights into the motivation for
moving toward this new trend of repository-based attacks.

4.1 Bar-based Malicious Web Infrastructure
Landscape. As mentioned earlier, BarFinder reported 730 suspi-
cious repositories from 6885 cloud buckets over 20 cloud platforms.
Among them, we utilized 694 confirmed Bars (through AV/blacklist
scanning or manual validation, see Section 3.3) for the measurement
study. These Bars were found to directly serve 156,608 domains

Figure 6: Impact of Bars’ front-end websites around the globe.

(i.e., front-end websites), through which they are further attached to
6,513,519 redirection paths involving 166,772 domains. Figure 5
illustrates the number of Bars we found on different cloud platforms.
Among them, Amazon S3 is the most popular one in our dataset,
hosting the most Bars (45%), which is followed by CloudFront
(Amazon’s CDN) 25.1% and Akamaihd 9.3%. Note that of these 20
clouds, seven of them provide free storage services (e.g., 15GB free
space on Google Drive, 5GB for Amazon S3), and therefore easily
become the ideal platforms for low-budget miscreants to distribute
their illicit content. Also, eleven of them support HTTPS, on which
malicious activities are difficult to catch by existing signature-based
intrusion detection systems like snort and Shadow[?][?]. Interest-
ingly, on some of the most prominent platforms, the miscreants
are found to take advantage of the cloud providers’ reputations to
make their Phishing campaigns look more credible: for example,
we found that the adversary continuously spoofed Gmail’s login
page on Google Drive, and the software download page for Amazon
FireTV in an Amazon S3 bucket.

Figure 6 shows the distribution of Bars’ frontend websites across
81 countries, as determined by the geolocations of the sites. The
number of Bars’ frontend sites in each country is ranked and de-
scribed with different levels of darkness in the figure. We observe
that most of these frontends stay in United States (14%), followed
by Germany (7%) and United Kingdom (5%).
Role in attack infrastructures. Actually, most nodes on a mali-
cious infrastructure are the malicious websites with newly registered
domains and those that are compromised. To better understand the
critical roles of Bars, we compared those nodes with the bad cloud
buckets. Specifically, we first identified both types of nodes from
the redirection paths and then analyzed the number of unique paths
each member in either category is associated with and the position
of the member on the path. Figure 7(a) presents the cumulative dis-
tribution of the paths going through a Bar and that of a compromised
or malicious site. As seen in the figure, compared with other nodes
on the infrastructure, Bars clearly sit on much more paths (47.4 on
average vs. 8.6), indicating their importance.

Further, Figure 7(b) shows the histogram of position distributions
(again, Bars vs. bad sites). The observation is that more Bars (41%,
11%) show up at the beginnings and the ends of the paths than bad
websites (22%, 5%), which demonstrates that they often act as first-
hop redirectors or attack-payload repositories. For example, in our
three-month-long monitoring of the campaign based on the Spyware
distribution Bar akamaihd.net_rvar-a, we found that besides the
Bar, 320 newly-registered websites participated in the attack; here
the Bar acted very much like a dispatcher: providing JavaScript
that identified the victim’s geolocation and then using an iframe to
redirect her to a selected bad site.
Content sharing. Our research reveals that Bars have been ex-
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Table 5: Top 10 most popular Bars.

Rank Cloud bucket # of front-end sites Avg path len Popularity
1 s3.amazonaws.com_content.sitezoogle.com 4,429 2.9 2.8%
2 cloudfront.net_d3n8a8pro7vhmx 1,829 3.3 1.4%
3 s3.amazonaws.com_assets.ngin.com 1,643 3.2 1.2%
4 s3.amazonaws.com_publisher_configurations.shareaholic 1,434 2.7 0.9%
5 cloudfront.net_d2e48ltfsb5exy 1,340 4.0 0.9%
6 cloudfront.net_d1t3gia0in9tdj 1,297 3.2 0.9%
7 cloudfront.net_d2i2wahzwrm1n5 1,249 2.5 0.8%
8 cloudfront.net_d202m5krfqbpi5 1,062 2.8 0.8%
9 s3.amazonaws.com_files.enjin.com 1,020 7.1 0.7%

10 akamaihd.net_cdncache3-a 976 6.4 0.6%

(a) Cumulative distribution of degrees
per sites.

(b) Percentage of Bars in each posi-
tion of redirection path (Ignoring those
traces with length of 2).

(c) Cumulative distribution of number
of in-degrees per Bar.

Figure 7: Bars play critical roles in attack infrastructures.

tensively shared among malicious or compromised websites, also
across different positions on malicious redirection chains. Fig-
ure 7(c) illustrates the cumulative distribution of Bars’ in-degrees in
their individual redirection graphs: that is, the number of the sites
utilizing these Bars. On average, each Bar shows up on 252 sites
and 12% of them are used by more than 200 websites. Table 5 lists
the 10 most popular Bars we found. Among them, eight, including
s3.amazonaws.com_content.sitezoogle.com, s3.amazonaws.com_
publisher_configurations.shareaholic, etc., host services for website
generation, blackhat SEO or Spam. Particularly, akamaihd.net_
cdncache3-a turns out to be a distributor of Adware, whose scripts
are loaded into the victim’s browser to redirect it to other sites for
downloading different Adware. Also, we found that another Bar
s3.amazonaws.com_files.enjin.com hosts exploits utilized by 1,020
bad sites. Finding Bars can help to effectively detect more sites with
malicious contents.

Another interesting observation is that malicious content is also
extensively shared across different Bars. To understand such content
reuse, we grouped the malicious programs retrieved from different
Bars based on the similarity of their code in terms of edit distance.
Specifically, we removed the spaces within the programs and ran
the Python library scipy.cluster.hierarchy.linkage [?] to hierarchi-
cally cluster them (now in the form of strings) according to their
Jaro scores [?]. In this way, we were able to discover three types
of content sharing: intra-bucket sharing, cross-bucket sharing, and
cross-platform sharing. Specifically, within the Amazon bucket
akamaihd.net_asrv-a, we found that many of its cloud URLs are
in the form of http://asrv-a.akamaihd.net/sd/[num]/[num].js. The
JavaScript code turns out to be all identical, except that each script
redirects the visitor to a different website. The similar code also
appears in another Amazon bucket akamaihd.net_cdncache-a. As
another example, we discovered the same malicious JavaScript
(JS.ExploitBlacole.zm) from the Bars on CloudFront and Qiniudn re-
spectively, even under the same path (i.e., media/system/js/modal.js).
Moreover, we found that attackers used sub-domain generation al-
gorithm to automatically generate sub-domain for Bars, then further

reused the same malicious contents for these Bars. Specifically, we
found that 28 content sharing Bars on Akamaihd have the same
format in their names. Attackers utilized a word bank based sub-
domain generation algorithms [?], which concatenates fixed terms
and a series of domain names (remove dot), then truncates the string
if its length is over 13, e.g., apismarterpoweru-a (truncated from
smarterpowerunite.com). The common patterns of Bars indicate the
potential of developing an accurate detection procedure.
Correlation. We further studied the relationships between different
Bars, fetched by the same websites. From our dataset, 11,442
(3.5%) websites are found to access at least two Bars. Among
them, 8,283 were served as front-end websites, and 3,159 other
sites on redirection chains. Also, 60.9% of these sites link to the
repositories on the same cloud platforms and 39.1% use those on
different platforms. In some cases, two buckets are often used
together. For example, we found that a click-hijacking program was
separated into the code part and the configuration part: the former is
kept on CloudFront while the latter is on Akamaihd; the two buckets
always show up together on redirection chains. Such a separation
seems to be done deliberately, in an attempt to evade detection.
Also we saw that Bars carrying the same attack vectors are often
used together, which are apparently deliberately put there to serve
parties of the same interests: as another example, a compromised
website was observed to access four different Bars on different cloud
platforms, redirecting its visitors to different places for downloading
Adware to the visitor’s system. Our findings show that Bars are
widely deployed in attacks and serve in a complex infrastructure.

4.2 Bucket Pollution
Polluted repositories. To find polluted buckets, we searched the
Alexa top 20K websites for the Bars in our dataset and 276 Bars were
found. When a legitimate site links to a Bar, the reason might be
either the website or the repository is hacked. Differentiating these
two situations with certainty is hard, and in some cases, it may not
be possible. All we could do is to get an idea about the prevalence of
such bucket pollution, based on the intuition that if a website is less
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(a) Cumulative distribution of Alexa
global ranks per Bars’ front-end sites.

(b) Cumulative distribution of Alexa
bounce rate per Bar’s front-end sites.

(c) Cumulative distribution of traffic in-
crease rate per Bar’s front-end sites.

Figure 8: Alexa global rank, bounce rate and traffic increase rate of Bar’s front-end websites.

GET /?delimiter=/ HTTP/1.1
Host: (bucket-name).s3.amazonaws.com
Accept-Encoding: identity
content-length: 0
Authorization: AWS (access key):(secret key)

Figure 9: Constructed request header.

vulnerable, then it is less likely to be compromised. To this end, we
ran WhatWeb, a powerful web vulnerability scanner, on these sites
and found 134 Bar’s front-end websites contain various flaws, such
as using CMS in vulnerable version (e.g. wordpress 3.9), vulnerable
plugins (e.g., JCE Extension 2.0.10) and vulnerable software (e.g.,
Apache 2.2). The remaining 142 Bar’s front-end websites look
pretty solid in web protection and therefore it is likely that the Bars
they include were polluted. This set of potentially compromised
buckets takes 19% of all the Bars flagged by BarFinder. These
buckets, together with the additional 30 randomly sampled from the
set, went through a manual analysis, which shows that indeed they
were legitimate buckets contaminated with malicious content.
Misconfiguration and impact. It is even more challenging to deter-
mine how these buckets were compromised, which could be caused
by exploiting either the cloud platform vulnerabilities or the bucket
misconfigurations. Without an extensive test on the cloud platform
and the repositories, which requires at least direct access to them, a
comprehensive study on the issue is impossible. Nevertheless, we
were able to identify a misconfiguration problem widely existing in
popular buckets. This flaw has never been reported before but was
likely known to the underground community and has already been
utilized to exploit these repositories. We reported the flaws to the
vendors and they confirmed our finding.

Specifically, on Amazon S3, one can configure the access policies
for her bucket to defines which AWS accounts or groups are granted
access and the type of access (i.e., list, upload/modify, delete and
download): this can be done through specifying access control
list on the AWS Management Console. Once this happens, the
cloud verifies the content of the authorization field within
the client’s HTTP request header before the requested access is
allowed to go through. However, we found that by default, the
policy is not in place, and in this case, the cloud only checks whether
the authorization key (i.e., access key and secret key) belongs to
an S3 user, not the authorized party for this specific bucket: in
other words, anyone, as long as she is a legitimate user of the S3,
has the right to upload/modify, delete and list the resources in the
bucket and download the content. Note that this does not mean
that the bucket can be directly touched through the browser, since
it does not put anything into the authorization field. However, the

adversary can easily build his own HTTP header, filling in his own
S3 key, as illustrated in Figure 9, to gain access to the misconfigured
repository. In our research, we verified that all such operations can
be performed on any repositories with the configuration flaw, which
suggests that site operators need to take more caution when setting
the configuration rules.

To understand the impact of this problem, we developed a simple
web testing tool, which checked a bucket’s configuration using our
own S3 key. By scanning all 6,885 repositories (including both
Bars and legitimate buckets), we discovered that 472 are vulnerable,
which were associated with 1,306 front-end websites. The Alexa
global ranks and the bounce rates of their front-end websites are
illustrated in Figure 8(a) and Figure 8(b). 63% of them have bounce
rates from 20% to 60%; 9 sites are ranked within Alexa top 5000
(e.g., groupon.com, space.com).

Focusing on the 104 bad buckets with the flaws, we further manu-
ally sampled 50 and confirmed that these buckets were indeed legiti-
mate, including high-profile ones like s3.amazonaws.com_groupon.
Further, looking into the these buckets’ file uploading time (retrieved
from the buckets through the flaw), we found that in some cases,
the attack has been there for six years. Particularly the Amazon
bucket s3.amazonaws.com_groupon, Groupon’s official bucket, was
apparently compromised five times between 2012 and 2015 (see
Section 4.4 for details), according to the changes to the bucket
we observed from the bucket historical dataset we collected from
archive.org. We also estimated the volume of traffic to those Bar-
related sites using a PassiveDNS dataset [?], which contains DNS
lookups recorded by the Security Information Exchange. Figure 8(c)
illustrates the traffic of the websites during the time period when
their buckets were compromised, which was increased significantly
compared with what those sites received before their compromise,
indicating that they likely received a lot of visits. This provides
evidence that the impact of such compromised buckets is indeed
significant.

4.3 Lifetime and Evasion
In the presence of the severe threat from Bars, we found that

cloud providers’ responses, however, are far from adequate. This is
highlighted by the relatively long lifetimes of malicious repositories
we observed.
Lifetime. To understand the duration of Bars’ impacts, we con-
tinuously crawled the front-end bad sites every five days to check
whether they were still using the same set of Bars, and also mali-
cious cloud URLs to find out whether the repositories were still alive.
Figure 10(a) illustrates the distributions of such bad repositories’
life spans within those front-end sites and on cloud platforms. As
can be seen in the figure, on average, the references of these Bars on
the websites were removed much faster than their cloud URLs and
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(a) Distributions of Bars’ life
spans on front-end sites and
on cloud platforms.

(b) Percentage of Bars re-
moved within 5 days in top
5 cloud platforms with most
Bars.

Figure 10: Lifetime of Bars.

ultimately their accounts on the cloud platforms. Apparently, the
cloud providers are less aggressive, relative to the website owners,
in addressing Bar-related infections. In Figure 10(b), we further
compare Bars’ life spans on different platforms: interestingly, with
more bad buckets on its servers, Amazon AWS acted more promptly
than other clouds; Google, however, moved much slower: for exam-
ple, on Google Drive, a repository hosting malware-serving pages,
googledrive.com_0B8D1eUrPT_z3OVpBTVJ3LUg2UEk, stayed
there for over 150 days, longer than the average duration of other
exploit servers (non-cloud) reported by the prior work [?][?] (2.5
hours). The observation indicates that cloud providers have noticed
such problem, but a likely lack of effective methods to identify and
clean Bars.
Evasion. Such a long lifetime could be related to a spectrum of
evading techniques the adversary deploys to protect his cloud assets,
which are described as follows:
• Content separation. Apparently, the adversary tends to break
his attack assets into pieces and store them at different places. As
mentioned earlier, we found that malware’s code and configuration
files were placed in different buckets. Also, we discovered in this
study that there are 32 Bars that host nothing but images used in
various attacks, Phishing and Fake AV campaigns in particular.
Since the images themselves do not contain any malicious code,
these repositories typically stay on the clouds for a long time, >30
days on average.
• Content change. Another interesting observation is that the mali-
cious content within Bars changes over time, in an attempt to avoid
being linked to blacklisted malicious websites. Specifically, looking
into the history of the content (from archive.org) retrieved from
the Bar through the same cloud URL, we found that part of the
content (e.g., the destination of a redirection) changes frequently,
moving quickly away from known malicious sites.
• Redirect cloaking. Like malicious or compromised websites, Bars
are also found to leverage cloaking techniques (rendering different
content based on the visitor’ cookie, IP, user agent, etc.) to avoid
detection. However, different from websites, cloud hosting services
typically do not support server-side scripting. As a result, Bars
have to run the cloaking code on the client (browser) side, which
makes the evasion less stealthy. To make up for this weakness, the
adversary was observed to place redirection websites in front of
Bars, running cloaking techniques there to hide the repositories.
• Obfuscation. We found that the attack payloads in the repositories
were often obfuscated. Various kinds of obfuscation techniques
were found from simply Base64 encoding to online obfuscation
tools (e.g., api.myobfuscate.com). Actually, even the links to refer

Table 6: Comparison of Bars’ lifetime under different evasion
techniques.

Evasion technique # of Bars
# of

front-end
sites

Avg. life
span

Content separation 10 743 25-30 days
Content change 10 1045 > 30 days

Redirect cloaking 10 1220 10-15 days
Obfuscation 10 1032 10-15 days

None 10 984 5-10 days

to Bars within front-end websites were obfuscated in some cases,
apparently, for the purpose of protecting the repositories.

Further, our study shows that these techniques were also utilized
together to make identification of Bars even harder. Specifically,
we manually choose 10 Bars with each evasion technique (40 in
total), combined with 10 Bars without evasion technique, and then
compare their life spans. It is clear that evasion techniques do allow
Bars to hide longer, as illustrated in Table 6.

4.4 Case Studies
In this section, we discuss two prominent examples.

PUP campaign. Our study reveals a malicious web campaign
dubbed Potentially Unwanted Programs (PUP) distribution: the
attack redirects the victim to an attack page, which shows her fake
system diagnosis results or patch requirements through the images
fetched from a Bar, in an attempt to cheat the victim into download-
ing “unwanted programs” such as Spyware, Adware or a virus. This
campaign was first discovered in our dataset. Altogether, at least 11
Bars from 3 different cloud platforms and 772 websites (not hosted
on the cloud) were involved in.

Through analyzing the redirection traces of the campaign, we
found that two Akamai Bars, akamaid.net_cdncache3-a and akamaihd_
asrv-a, frequently inject scripts into compromised websites, which
serve as first-hop redirectors to move a visitor down the redirection
chain before hitting malicious landing pages (that serve malicious
content). Interestingly, all the follow-up redirectors are compro-
mised or malicious websites that are not hosted on the cloud. The
scripts in the Bars were found to change over time, redirecting the
visitor to different next-hop sites (also redirectors). On average,
the life span of such sites is only 120 hours, but the Bar was still
alive when we submitted this paper. Such redirections end at at
least 216 malicious landing sites, which all retrieve deceptive im-
ages from an Amazon S3 bucket s3.amazonaws.com_cicloudfront
(a Bar never reported before and is still alive). An example is a
system update warning, as shown in Figure 1. From the reposi-
tory, we collected 134 images, including those for free software
installation, updates on all mainstream OSes, browsers and some
popular applications. If she clicks and downloads the program pro-
moted on the site, the code will be fetched from multiple Bars, such
as s3.amazonaws.com_wbt_media where the PUP puts a Bitcoin
miner on the victim’s system, and cloudfront.net_d12mrm7igk59vq,
whose program modifies Chrome’s security setting.
Groupon Bar. We discovered that a misconfigured Amazon S3
bucket s3.amazonaws.com_groupon belongs to Groupon (Alexa
global rank 265), a global e-commerce marketplace serving 48.1
million customers worldwide. The bucket was used as the resource
repository for Groupon’s official website (i.e., groupon.com) as
well as its marketing sites (12 websites observed in our dataset).
When tracking its historical content from archive.org, we were sur-
prised to see that the Groupon S3 bucket has been compromised at
least eight times in the past five years (e.g., 2015/08/06, 2014/12/18,
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2014/06/25, 2014/01/27, 2014/02/26, 2013/06/23, 2011/11/08, 2010/
09/28). These attacks caused different types of malicious payloads
to be uploaded to their repository, including Adware, Trojan, virus
and others. Even though the bucket owner changed the access con-
trol policy in 2012 to prevent the unauthorized party from directly
listing the bucket content through browser, it remained accessible
by our tool mentioned in Section 4.2, which constructs an Autho-
rization field in HTTP header, and unauthorized listing, upload and
even modification can still occur.

5. DISCUSSION
Limitations of BarFinder. As mentioned earlier, Bar detection is
hard, since cloud repositories cannot be directly accessed by the
parties outside the cloud. Therefore, the goal of BarFinder is to
leverage the sites served by Bars to find suspicious repositories. For
this purpose, we chose to utilize the collective features of these
sites, such as their topological relations, content shared across sites,
etc. This strategy could make the approach more robust, as the
collective features are more difficult to evade compared with those
from individual sites. On the other hand, it requires that the party
running the system first makes efforts to gather the sites using cloud
buckets, the more the better. Further, there are repositories that only
serve a small set of front-end sites: e.g., we found that among the
Alexa top 3K sites, 67 sites are connecting to the cloud buckets
only used by themselves. Those “self-serving” buckets are rather
popular in reputable websites such as appspot.com_android-site
only used by android.com, s3.amazonaws.com_ttv-backgroundart
only used by twitch.tv, etc. This fact makes the bad apples among
them hard to catch by BarFinder simply because not enough sites
using them are out there to allow us to differentiate these two types
of repositories. Detection techniques covering this type of Bars need
to be developed in the follow-up research.
Other defenses against Bars. Besides the detection effort made
by the third party, as BarFinder does, more can be done to mitigate
the threats posed by Bars, from the ends of the website owner, the
bucket owner and the service provider. The website owner could
perform integrity checks on the resources her website retrieves
from the bucket, making sure that it is not compromised. The
cloud bucket owner should carefully configure her cloud bucket to
avoid the issue we found and other misconfiguration flaws. In this
case, an automatic configuration checker could be helpful. Most
importantly, the cloud provider does have the responsibility to move
more aggressively on detecting and removal of Bars from their
systems. This, however, is non-trivial, given the privacy concern
and the fact that some Bars can only be considered to be malicious
by looking at the malicious activities they are involved in, such as
those hosting Phishing pictures. Further research is needed to better
understand what the provider can do to address the issue.
Ethical issues. Most findings of the paper were made through an-
alyzing the data crawled from the public domain. Regarding the
study on the misconfiguration problem we found, our scanner was
designed to minimize the privacy impacts on vulnerable reposito-
ries: specifically, it only tried out the functionality like file listing,
uploading and downloading. The impact of such operations are
very much in line with those of running online web testing tools
(e.g., Sucuri [?]) on others’ websites. Most importantly, we did
this with the full intention to protect such repositories from future
exploits, and also carefully avoided changing any existing content
there and deleted from our system all the files downloaded. Further,
we have already contacted the major vendors such as Groupon and
the cloud providers like Amazon about those security breaches, and
will continue to notify others and help them fix the configuration

problem. So far, Groupon has acknowledged the importance of our
findings and expressed gratitude for our help.

6. RELATED WORK
Bad site detection. Malicious web activities have been extensively
studied [?][?][?][?]. Most related to our work here is the use of
HTML content and redirection paths to detect malicious or com-
promised websites. Examples for the content-based detection in-
clude a DOM-based clustering systems for monitoring Scam web-
sites [?], classification of websites for predicting whether some of
them will turn bad based on the features extracted from HTML
sources, and a monitoring mechanism [?] (called Delta) to keep
track of the changes made to the content of a website for detecting
script-injection campaigns. For those using malicious redirection
paths, prominent prior approaches use short redirection sequences
to capture bad sites [?], unique properties of malicious infrastruc-
ture (its density) for detecting drive-by downloads [?] or malware
distribution [?] and a trace-back mechanism that goes through the
redirection paths [?] for labeling malware download sites. Com-
pared with those prior studies, which all rely on the properties of the
targets they try to capture, BarFinder utilizes the features found from
the front-end websites using cloud buckets, as those repositories
may not be directly accessible. Also, our approach leverages a set
of unique collective features, based on the connected components
of a graph, which, to our knowledge, has never been used before.
Cloud security. Previous studies on security and privacy issues
in cloud storage primarily focus on the confidentiality of the data
stored in the cloud or the attacks targeting the cloud computing
infrastructure. Examples include the study on co-locating attack
virtual machines (VM) with the target one on Amazon EC2 [?],
which enables a cache-based side-channel attack to infer sensitive
user information from the target [?], and the work on controlled-
channel attacks on multi-user cloud hosting environment [?], which
allows an untrusted VM to extract sensitive information from pro-
tected applications. More recently, attention has moved to abuse of
cloud-based services for fraudulent activities. For example, prior
research [?] analyzed Dropbox client software and discovered that
it can be exploited to hide files with unlimited storage capacity. Ad-
ditionally, [?] studied the use of the Amazon EC2 to host malicious
domains acting as command and control centers, exploit servers by
downloading malware samples and executing them in sandbox envi-
ronments to analyze their interactions with the cloud. [?] studied
the long-tail SEO spam on cloud platforms and measured its effec-
tiveness. Our study differs from these works by proposing BarFinder
to identify malicious cloud repositories and provide an in-depth anal-
ysis of the use of cloud repositories in malicious campaigns and how
they correlate with the websites they serve.

In another study, researchers [?] inspected the fraudulent traffic
to cloud-hosted pages for the purpose of squandering the user’s
resources and raising her cloud-usage cost. They also proposed
detection methods based on the consistency of the requests. Unlike
these works, our research investigated the abuse of cloud bucket as
a malicious service, an emerging new cloud-based security threat
that has never been studied before.

7. CONCLUSION
The emergence of using cloud repositories as a malicious service

presents a new challenge to web security. This new threat, how-
ever, has not been extensively studied and little is known about its
scope and magnitude and the techniques the adversary employs. In
this paper, we report the first systematic study on malicious and
compromised cloud repositories and the illicit online activities built
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around them. We collected a small set of seeding Bars and iden-
tified a set of collective features from the websites connecting to
them. These features describe the effort made by the adversary to
protect Bars and utilize them to quickly build up a large campaign.
Using these features, we developed a new scanner that detected
over 600 Bars on top-of-the-line cloud platforms, including Google,
Amazon, and others. Over these Bars, we performed a large-scale
measurement study that led to surprising findings of such attacks.
Examples include the central roles those buckets play at each stage
of a web attack (redirection, displaying Phishing content, exploits,
attack payload delivery, etc.), the strategy to separate malware code
and configuration files to avoid detection, and a configuration flaw
never reported before that was likely exploited to compromise many
cloud buckets. Our findings made an important step toward better
understanding and effective mitigating of this new security threat.
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Appendices
A List of cloud hosting platforms

Table 7: List of cloud hosting platforms.

Cloud Platform Domain
heroku herokuapp.com

amazon S3 s3.amazonaws.com
cloudfront cloudfront.net

windowsnet windows.net
azure azurewebsites.net

google googledrive.com
appspot appspot.com
msecdn msecdn.net

bitbucket bitbucket.org
github github.io
sina sinaapp.com

olympe olympe.in
rackcdn rackcdn.com

baiduyun duapp.com
qiniu qiniucdn.com

akamaihd akamaihd.net
yahoo hostingprod.com
sogo sogoucdn.com

go2cloud go2cloud.org
aliyun aliyuncs.com
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