
Acing the IOC Game: Toward Automatic Discovery and
Analysis of Open-Source Cyber Threat Intelligence

Xiaojing Liao1∗, Kan Yuan2∗, XiaoFeng Wang2, Zhou Li3, Luyi Xing2, Raheem Beyah1

1Georgia Institute of Technology, 2Indiana University Bloomington, 3ACM member
{xliao, rbeyah}@gatech.edu, {kanyuan, xw7, luyixing}@indiana.edu, lzcarl@gmail.com

ABSTRACT
To adapt to the rapidly evolving landscape of cyber threats, secu-
rity professionals are actively exchanging Indicators of Compro-
mise (IOC) (e.g., malware signatures, botnet IPs) through public
sources (e.g. blogs, forums, tweets, etc.). Such information, of-
ten presented in articles, posts, white papers etc., can be converted
into a machine-readable OpenIOC format for automatic analysis
and quick deployment to various security mechanisms like an in-
trusion detection system. With hundreds of thousands of sources
in the wild, the IOC data are produced at a high volume and veloc-
ity today, which becomes increasingly hard to manage by humans.
Efforts to automatically gather such information from unstructured
text, however, is impeded by the limitations of today’s Natural Lan-
guage Processing (NLP) techniques, which cannot meet the high
standard (in terms of accuracy and coverage) expected from the
IOCs that could serve as direct input to a defense system.

In this paper, we present iACE, an innovation solution for fully
automated IOC extraction. Our approach is based on the obser-
vation that the IOCs in technical articles are often described in a
predictable way: being connected to a set of context terms (e.g.,
“download”) through stable grammatical relations. Leveraging this
observation, iACE is designed to automatically locate a putative
IOC token (e.g., a zip file) and its context (e.g., “malware”, “down-
load”) within the sentences in a technical article, and further an-
alyze their relations through a novel application of graph mining
techniques. Once the grammatical connection between the tokens
is found to be in line with the way that the IOC is commonly pre-
sented, these tokens are extracted to generate an OpenIOC item
that describes not only the indicator (e.g., a malicious zip file) but
also its context (e.g., download from an external source). Running
on 71,000 articles collected from 45 leading technical blogs, this
new approach demonstrates a remarkable performance: it gener-
ated 900K OpenIOC items with a precision of 95% and a coverage
over 90%, which is way beyond what the state-of-the-art NLP tech-
nique and industry IOC tool can achieve, at a speed of thousands of
articles per hour. Further, by correlating the IOCs mined from the
articles published over a 13-year span, our study sheds new light on

1The two lead authors are ordered alphabetically.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24-28, 2016, Vienna, Austria

c© 2016 ACM. ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978315

<?xml version='1.0' encoding='UTF-8'?>
<OpenIOC xmlns:xsi= … … >
<description>This IOC detects ...</description>
<authored_by>@iocbucket</authored_by>
<authored_date>2014-02-07T14:35:14</authored_date>
<definition>
<Indicator id="1a0ee12e-dc16-4ae9-b508-d7728df81a5e" operator="OR">

<IndicatorItem id="ac152ab7-370a-48cb-ad7a-042e9bdf4bc2"
condition="contains" preserve-case="false" negate="false">

<Context document="RegistryItem" search="RegistryItem/KeyPath"
type="mir"/>

<Content type="string">Windows\CurrentVersion\Run</Content>
</IndicatorItem>
… …

</Indicator>
… …

</definition>
</OpenIOC>

H
eader

D
efinition

“Alina makes use of the HKCU\Software\Microsoft
\Windows\CurrentVersion\Run registry key”

Figure 1: Example of OpenIOC schema.

the links across hundreds of seemingly unrelated attack instances,
particularly their shared infrastructure resources, as well as the im-
pacts of such open-source threat intelligence on security protection
and evolution of attack strategies.

1. INTRODUCTION
According to Gartner, Cyber Threat Intelligence (CTI) is defined

as “evidence-based knowledge, including context, mechanisms, in-
dicators, implications and actionable advice, about an existing or
emerging menace or hazard to assets that can be used to inform
decisions regarding the subject’s response to that menace or haz-
ard” [42]. Such knowledge is essential for an organization to gain
visibility into the fast-evolving threat landscape, timely identify
early signs of an attack and the adversary’s strategies, tactics and
techniques, and effectively contain the attack with proper means.
Given its importance, CTI has been aggressively collected and in-
creasingly exchanged across organizations, often in the form of In-
dicators of Compromise (IOC) [35], which are forensic artifacts
of an intrusion such as virus signatures, IPs/domains of botnets,
MD5 hashes of attack files, etc. Once collected, these IOCs can
be automatically transformed and fed into various defense mecha-
nisms (e.g., intrusion detection systems) when they are formatted
in accordance with a threat information sharing standard, such as
OpenIOC [9], that enables characterization of sophisticated attacks
like drive-by downloads. The challenge, however, comes from the
effective gathering of such information, which entails significant
burdens for timely analyzing a large amount of data.

Finding IOCs online: challenges. While IOCs can be extracted
from traditional blacklists, like CleanMX [22] and PhishTank [37],
the information delivered by such IOCs is rather thin: only a small
number of IOC classes are covered (URL, domain, IP and MD5),
the relation between IOCs is not revealed and no context informa-
tion is provided (e.g., the criminal group behind malfeasance). An-
alyzing the cyber-attack campaigns and triaging incident responses
become quite difficult when relying on such information. Instead,
IOCs from articles in technical blogs and posts in forums are more
favorable to security practitioners and extensively harvested, since
comprehensive descriptions of the attack are often found there. Such

755

descriptions are typically informal, in natural languages, and need
to be analyzed semantically to recover related attack indicators, be-
fore they can be converted into the standard IOC format such as
OpenIOC, as illustrated in Figure 1. For years, this has been done
manually by security analysts. Increasingly, however, the volume
and velocity of the information generated from these sources be-
come hard to manage by humans in a cost-effective way. As an
example, in our research, we studied over 71,000 articles from
45 technical blogs extensively used by security professionals and
found that the number of articles posted here has grown from merely
a handful back 10 years ago to over 1,000 every month since last
year (see Section 4.1). Note that these blogs are just a drop in the
bucket: for example, Recorded Future is reported to utilize over
650,000 open web sources in 7 languages to harvest IOCs [41].
With the huge amount of information produced by those sources,
new technologies are in dire need to automate the identification and
extraction of valuable CTI involved.

Automatic collection of IOCs from natural-language texts is chal-
lenging. Simple approaches like finding IP, MD5 and other IOC-
like strings in an article, as today’s IOC providers (AlienVault,
Recorded Future) do, does not work well in practice, which eas-
ily brings in false positives, mistaking non-IOCs for IOCs: e.g., as
illustrated in Figure 2, although three zip files show up in attack-
related articles, MSMSv25-Patch1.zip is clearly not an IOC
while the other two are. Further, even for a confirmed IOC, we need
to know its context, e.g., whether it is linked to drive-by download
(ok.zip in the figure) or Phishing (clickme.zip), in order to
convert it to the IOC format and help an organization determine its
response. This can only be done by establishing a relation between
the IOC token and other content in the article, such as the terms
“downloads”, “attachment” in the example.

Identifying semantic elements (called Named Entity Recognition
or NER [33]) and extracting relations between them (called Rela-
tion Extraction, or RE [18]) have been extensively studied in the
Natural Language Processing (NLP) community. However, ex-
isting NLP techniques cannot be directly applied for IOC and its
context discovery. NER systems are known to be brittle, highly
domain-specific — those designed for one domain hardly work
well on the other domain [45]. So far, we are not aware of any
NER techniques developed specifically for recognizing IOCs and a
direct use of the state-of-the-art tools like Stanford NER [26] leads
to low precision (around 70%) and recall (less than 50%) (see Sec-
tion 4). Further, the current study on RE focuses on the relation
between two known entities, which are typically nominals [24],
whereas the relations between an IOC and the terms describing
its context (which we call context terms) are way more compli-
cated: e.g., “downloads” and ok.zip has a verb-noun relation.
Also important, the accuracy and coverage offered by the existing
RE tools are typically low. For example, the classic tree kernel ap-
proach [24] reports a precision between 50 and around 90% and a
recall between 10 and 50%. As another example, a recent proposal
for extracting events among genes and proteins from biomedical
literature [45] has a precision and recall around 50%. This level of
performance cannot meet the demand for high-quality IOCs, which
could go straight to a security system to offer immediate protection
for an organization.

iACE. A key observation from the open intelligence sources pro-
ducing high-quality IOCs is that technical articles and posts tend to
describe IOCs in a simple and straightforward manner, using a fixed
set of context terms (e.g., “download”, “attachment”, “PE”, “Reg-
istry”, etc.), which are related to the iocterms used in OpenIOC to
label the types of IOCs [9]. Further, the grammatical connections
between such terms and their corresponding IOCs are also quite

IOC token

Context term

✓ The Trojan downloads a file ok.zip from the server.

det nsubj det

dobj

compound

case

det

nmod:from

✓ All e-mails collected have had attachments clickme.zip.

✓ It contains a shellcode at offset 3344 that downloads and execute a PE32 file from the server.

• It’s available as a Free 30 day trial download.

• Microsoft has already released an out-of-band patch MSMSv25-Patch1.zip

• The malware does not modify AndroidManifest.xml in such a way.

Figure 2: Examples of sentences with/without IOC.
stable: e.g., the verb “downloads” followed by the nouns “file” and
ok.zip (the IOC) with a compound relation; “attachments” and
clickme.zip also with the compound relation. This allows us
to leverage such relations to identify an IOC and its context tokens,
combining the NER and RE steps together. To this end, we devel-
oped a new approach, called iACE (IOC Automatic Extractor), in
our research, which tailors NLP techniques to the unique features
of IOC discovery. More specifically, after preprocessing articles
(using topic-term classification to find those likely involving IOCs
and converting figures to text), iACE utilizes a set of regular expres-
sions (regex) and common context terms extracted from iocterms to
locate the sentences within the articles that contain putative IOC to-
kens, such as IP, MD5-like string. Within each of such sentences,
our approach attempts to establish a relation between the IOC token
and the context term: it converts the sentence into a Dependency
Graph (DG) to describe its grammatical structure and extracts the
shortest paths linking each pair of a context token and the putative
IOC token; over each path, a graph mining technique is applied to
analyze the relation between the tokens, which cannot be handled
by existing RE techniques, for the purpose of determining whether
they indeed include an IOC and its context.

This simple approach leverages the known “anchors” (context
and regex terms) to locate potential IOC-carrying sentences and
the predictable relations among them to capture IOCs, avoiding the
complexity of direct application of existing NLP techniques, which
needs to solve the NER first to identify an IOC token before ad-
dressing the RE problem to find its context. Our evaluations on a
prototype we built show that this new technique is very effective in
practice: it achieved a precision of 95% at a coverage over 90%. In
the meantime, our system is also highly efficient, capable of ana-
lyzing four articles per second even with a single process.

Our discoveries. Running on all 71,000 articles collected from the
45 blogs (including AlienVault, Malwarebytes, Webroot, etc.) in
the past 13 years (from 2003/01 to 2016/04), iACE automatically
extracted 900K IOC tokens together with their context. By inspect-
ing these items and correlating them across different blogs over
the long time frame, we were able to gain an unprecedented un-
derstanding of the relations between different attacks reported, the
impact of open-source threat intelligence on attack evolutions, the
defense responses it triggered, as well as the qualities of these blogs
and effectiveness of the IOCs they document. More specifically, we
found that some apparently unrelated attack instances were actually
connected, sharing the same attack assets and infrastructures such
as command and control (C&C) hosts. Particularly, by linking to-
gether 396 articles and more than 7,000 IOCs, our study reveals that
a C&C campaign continued to evolve over a four-year span, chang-
ing the targets of exploits from one vulnerability (CVE-2010-1885)
to another (CVE-2013-0422). Also interestingly, we observed that
the attackers might adjust their strategies in response to the release
of IOCs: e.g., we found that the IOCs receiving intensive reports
tend to be short-lived, typically disappearing after a month.

On the other hand, organizations do not seem to react quickly to
the release of IOCs: it could take around 2 days for AV scanners to

756

include the hash of new malware and over 12 days for web scanners
to update their domain and IP blacklists, after related information
was made public by the blogs. Also, we found that a buffer over-
flow vulnerability CVE-2012-0158 was first reported by AlienVault
in April, 2012 for APT attacks on the military and aerospace indus-
try and then showed up again in an article on TrendMicro, Septem-
ber 2012, for an attack on political organizations; later the same
vulnerability was found in malware distribution (2013) and Spear
Phishing campaigns on the film industry (2014) and banks (2015),
indicating that such a long-standing IOC was not adopted timely.

In terms of the qualities of open-source intelligence, we found
that Hexacorn and Naked Security often provide timely and com-
prehensive information about new attacks. For example, articles
from Naked Security first reported three malicious name servers
m.sea.sy, mod.sea.sy and sea.sy under the control of the Syrian
Electronic Army for DNS hijacking. Also, some IOCs apparently
are more predictive than others. An example is the name server
“132.248.49.112”, which was reported by 19 blogs for the multiple-
theme Spear Phishing attack and remained unchanged for 140 days.

Contributions. The contributions of the paper are as follows:
• Novel IOC discovery technique. We present iACE, the first fully-
automated technique for generating OpenIOC compatible, semantic-
rich intelligence, which addresses the emerging challenge in the
effective analysis of massive open-source data for timely CTI gath-
ering. Our approach leverages the unique features of IOCs and the
way they are described in mainstream technical articles to come up
with a specialized, scalable information extraction technique that
achieves high accuracy and coverage. Our evaluation shows that
iACE can effectively recover valuable attack indicators from popu-
lar technical blogs and convert it into industry-standard, machine-
readable threat intelligence, which cannot be done by any existing
techniques, to the best of our knowledge.
• New findings. Running iACE on over 71,000 articles from 45
most popular technical blogs across 13 years, our study sheds new
light on the effectiveness of such open-source intelligence exchange,
and the impact that it may have on the security industry and the
adversary’s strategies. The new understandings are invaluable for
improving the IOC release, discovery and utilization process, con-
tributing to the better protection of organizations’ information as-
sets.

2. BACKGROUND
2.1 Cyber Threat Intelligence
CTI gathering. As mentioned earlier, CTI is a collection of infor-
mation that details the current and emerging security threats, which
enables an organization to determine its responses at the strategic,
operational and tactical levels [42]. At the center of CTI are IOCs,
which elaborate the forensic artifacts of an attack and can therefore
be used to analyze the attack once it happens or counter it during
its execution. An IOC includes not only individual data fingerprints
involved in a specific attack, such as an attack domain, the MD5 of
the malware delivered, but also the context of the attack and an
analysis of the adversary’s behavior, like the type of the attack or
the specific technique deployed (e.g., change to the Windows Reg-
istry). To find out such information, CTI gathering includes identi-
fication of the adversary’s tools, techniques and attack procedures,
which, together with the fingerprints, helps an organization’s secu-
rity team to understand their security posture, detect early signs of
threats and continuously improve their security controls.

The sources of CTI can be closed, e.g., a corporation’s internal
network traces, or public, such as technical blogs or online forums.
Examples of public sources include the blogs of AlienVault, Fire-

Table 1: Examples of iocterms and their corresponding general
type and context terms.

General
type iocterms context terms

IP Email/ReceivedFromIP, PortItem/remoteIP email, IP, received,
remote, port

Hash ServiceItem/serviceDLLsha1sum,
FileItem/Md5sum

service, dll, sha1,
md5

Datetime Email/Date, EventLogItem/genTime email, date, event,
log, generation

Eye, Malwarebytes and Webroot. With the surge of cyber attacks in
recent years, a large number of attack artifacts have emerged, which
has been extensively reported by the public online sources and ag-
gressively collected by different organizations. To bootstrap this
research, we reached out to a security company and obtained a list
of 45 blogs which were operated by renowned organizations and
practitioners. These blogs altogether covered major security inci-
dents in the world and were consistently publishing verified IOCs.

We monitored these 45 blogs and were able to download as many
as 71,000 articles. Also noteworthy is that the number of IOC-
related articles there continued to grow in the past 13 years (2003/01
to 2016/04), from 20 to 1,000 per month, with an increased rate of
500% (see Figure 5a). While the volume of articles we have col-
lected is substantial, it only constitutes a small piece of the IOC
landscape. Rapidly collecting and sharing such information, and
deploying it to various security systems is the key to quickly detect-
ing, responding and containing different kinds of security threats
organizations face, which requires the descriptions of IOCs to be
standardized and machine digestible. To this end, multiple IOC
frameworks have been proposed, including OpenIOC [9], STIX [8]
and yara [12], with each format easily convertible to the others.
In our research, we utilized OpenIOC for automatic extraction of
CTIs from technical articles.

OpenIOC framework. OpenIOC is an extensible XML schema
created by Mandiant to record technical characteristics that iden-
tify a known threat, an attacker’s methodology, or other evidence
of a compromise. As an example, Figure 1 shows how to use the
OpenIOC format to describe a family of POS malware, Alina [30].
Such a description includes two components, a header and a def-
inition. The header part has a summary of the attack (under the
description tag) and the source of the information (under au
thored_by and authored_date). The definition contains a
set of indicator items (under Indicator Item), each represent-
ing an IOC (Content) and its context (Context). Two such
items are illustrated in Figure 1. In each of them, the document
attribute under Context gives the main category of an IOC (e.g.,
process, event, file, registry, etc.) and search elaborates on its
subcategory using an iocterm, essentially a concatenation of com-
mon terminologies (e.g., process, name, etc.) security profession-
als use to describe the IOC. The OpenIOC standard provides 600
such iocterms, covering various types of artifacts left by differ-
ent attacks, such as cookie history, DNS entry, Email informa-
tion, Hook items and others. The examples of iocterms related
to IP, hash and datetime are shown in Table 1. For example, In
the case of IP, its iocterms describe 15 different contexts, such
as spammer’s IP (Email/ReceivedFromIP), IP in malicious infras-
tructure (RouteEntryItem/Destination), or C&C attack’s remote IP
(ProcessItem/PortList/PortItem/remoteIP).

In Figure 1, the two indicator items record the registry change
made by the Alina malware: the first shows the location where
the change happens, i.e., the path Windows\CurrentVersion\Run
with the context RegistryItem/KeyPath, and the second identifies
the name of the code dropped there, i.e., ALINA.

757

2.2 Information Extraction
To collect IOCs automatically, we leveraged a set of NLP tools.

Also, due to the unique characteristics of this open problem, the
generic information extraction techniques cannot achieve good per-
formance for our tasks, and therefore we also applied graph mining
techniques to analyze relations between context terms and IOC an-
chors. These techniques are briefly introduced here.

Dependency parsing. Dependency parsing is an NLP technique
for describing grammatical relations between words in a sentence.
Such relations include direct object, determinant, noun compound
modifier and others. Also, the content of a relative clause is fur-
ther analyzed to identify the dependencies between the words it in-
cludes. For example, the sentence in Figure 2 is parsed into depen-
dency relations, such as the determinant relation between “trojan”
and “the”, det(Trojan-2, the-1) (where the number shows
the position of the word in the sentence), and the nominal-subject
relation between “trojan” and “download”, nsubj(downloads-3,
Trojan-2). Each of the formulae represents a binary relation be-
tween a governor (the first term) and a dependent (the second one).

Such dependency relations within a sentence form a directed and
weighted graph (V,E,W), where each token is a vertex in V , and
the relation between them is represented by a set of edges in E.
Each arc connecting two tokens can also be assigned a weight W
to differentiate the relation between them from others. Figure 2
further illustrates the dependency graph for the example sentence.
The state-of-the-art dependency parser (e.g., Stanford’s typed de-
pendencies system [20]) can achieve a 92.2% unlabeled attachment
score (UAS) in discovering the grammatical relations in a sentence.
In our research, we utilized the relations discovered by the parser
to capture the semantic links between context terms and an IOC to-
ken. For example, the dependency of clickme.zip on “attach-
ments” in the sentence “all e-mails collected have had attachments
clickme.zip” reveals a compound relation between the terms (the
content of the “attachment” is clickme.zip), which falls in line
with the descriptions typically explaining the security issues related
to email attachments.

Content term extraction. Another set of techniques extensively
utilized in information extraction is content term extraction, which
automatically determines important terms within a given piece of
text. It includes parts-of-speech (POS) tagging that labels a word
corresponding to a particular part of speech (such as nouns and
verbs), and phrase parsing that divides sentences into phrases logi-
cally belonging together. Specifically, after parsing phrases from
the given content, a POS tagger labels its terminological candi-
dates, such as syntactically plausible terminological noun phrases.
Then, these candidates are analyzed using statistical approaches
(e.g., point-wise mutual information) to find out important terms.

Graph mining. Our approach tailors graph mining techniques to
analyze the dependency graphs constructed from sentences of in-
terest. Graph mining is a structural data mining problem with the
purpose of identifying distinguishing characteristics (such as com-
mon subgraph) of graphs. The problem can be stated as follows.
Given a dataset of graphs Gi ∈ D, with i = 1...N , each graph
Gi = (Vi, Ei) is a collection of vertices Vi = {vi1, · · · , vin} and
edges Ei = {(va, vb)|va, vb ∈ Vi}. Gi may also have labels on
its nodes and edges, which are drawn from a common label set of
the whole dataset D. Also, each graph Gi is in a class with a label
ci ∈ C. The goal of the graph classification problem is to learn a
model f : D → C that predicts the class label for any graph, that
is, classifying the graph to a class based on its similarity to other
graphs as measured by various graph kernel methods, such as di-

��� ��#��
����$���

���� ����������� ����

����������������������

����!�� ���� �� ������� �����

	
�������� �� �	��

	
������!��
�� �����

� ���������#��#�
�&#!��#�!����

���#�����
� ��##�!

������#�&#
��!�" ����#�!

������� ��
��� �����

�� ������'�
��!"�!

�!� ����!���

��"�	
�����
��� �# � ����

����� ���
	
� �����	����!�

����!�#�!

������#����
����!�#�!

���������������

� ��#��
���#�!

�� ���
���""����!

���#��#�
����#�(���

�����
�!���$��
�!�%��!

����������
����

�� �����

�������""����!

Figure 3: The architecture of iACE.
rect product kernel [27] and subtree kernel [39]. In our research,
we utilize graph mining to determine whether a sentence involving
context terms and an IOC token indeed contains IOC.

3. IACE: DESIGN AND IMPLEMENTATION
Although the generic problem of information extraction from

natural language text is hard, particularly when high accuracy and
coverage are required (see Section 7), articles documenting IOCs
tend to utilize common technical terminologies (e.g., IP, process,
etc.) and present the artifacts and their context in a predictable
way (e.g., utilizing compound dependency, see the example in Fig-
ure 2), thereby making identification of IOCs more manageable.
These unique features were fully leveraged in the design of iACE,
which utilizes high-confidence context terms from iocterms and a
set of regexes to locate the sentences likely containing IOCs. Then
iACE analyzed the relations just between those anchors (the con-
text terms and the putative IOC token) against a model learned off-
line to accurately and efficiently capture IOCs. Below we present
the high-level design of this technique and explicate how it works
through an example.

Architecture. Figure 3 illustrates the architecture of iACE, in-
cluding a blog scraper (BS), a blog preprocessor (BP), a relevant-
content picker (RCP), a relation checker (RC) and an IOC generator
(IG). The BS first automatically collects (“scrapes”) technical arti-
cles from different technical blogs, removing irrelevant information
(e.g., advertisements) from individual blog pages. These articles
are then inspected by the BP, using NLP techniques to filter out
those unlikely to contain IOCs. For each article considered to be
IOC-relevant, the RCP converts all its content, including pictures,
to text when possible, breaks the content into sentences and other
special content elements (tables and lists) and then searches among
the sentences for those likely involving IOCs with a set of context
terms and regexes, which describe the formats of IOCs such as IP
addresses (Section 3.1). The context terms here are automatically
extracted from iocterms and can also come from other manually
labeled sources, and the regex is built specifically for each IOC
type and its consistency with the content terms is first checked be-
fore the sentence is selected. For each sentence, the RC analyzes
its grammatical structure connecting the context anchors (context
terms) and the IOC anchor (the string matched by the regex), using
a learned model to determine whether the latter is indeed an IOC,
and if so, mark the IOC and the context terms (Section 3.2). Using
such labeled content, the IG automatically creates the header and
the definition components, including the indicator items for all the
IOCs identified, according to the OpenIOC standard.

An example. Here, we use the excerpts of an article posted on
Trustwave (Figure 1) to go through the whole IOC extraction proce-
dure. From the title and other keywords identified from the article,

758

using content term extraction (an NLP technique), iACE detects
that the article is likely to contain IOCs for a malware infection,
and then marks the link content and summarizes the article using
TextRank [32] to construct the header component. After that, it
converts the figures in the article into text using Tesseract [6], and
searches for the context terms and IOC token on each sentence.

Among all the sentences captured, the following one is found
to include a string fitting the description of a key path of registry,
along with the context terms “registry” and “path”: “It includes the
addition of the registry value on the path HKCU\Software\Microsoft\
Windows\CurrentVersion\Run that virus use to maintain persistence.”
This sentence is then analyzed against the IOC recognition model
built through relation analysis, which confirms that the connec-
tion across the terms and the IOC anchor here (“HKCU\Software\
Microsoft\Windows\CurrentVersion\Run”) is indeed commonly used
to describe the key path of an injected registry item. As a result,
these terms and the IOC are labeled. From such content, the tech-
nical details of the attack reported by the article are automatically
extracted and presented in the OpenIOC format (Figure 1).

Assumptions. The current design of our system is for analyzing
technical blogs, under the assumptions that the blog writers present
their findings in a professional fashion. Such assumption is rea-
sonable intuitively, as the blogs are written by security profession-
als and their purpose is to quickly share technical details to their
peers1. It was also confirmed by our analysis of the labeled dataset
DS-Labeled (see Section 4.1 for description). All their descrip-
tions of IOCs were found to be in line with our assumptions (Sec-
tion 3.1), involving professional terms and predictable grammatical
structures. On the other hand, the effectiveness of the technique on
other types of IOC open sources like online forums needs to be
further studied (Section 6).

3.1 Relevant Content Identification
As mentioned earlier, to automatically extract IOCs from tech-

nical blogs, we first need to scrape related web pages from blog
sites, pre-process their content and remove noise, before filtering
out those irrelevant and identifying from the remaining articles the
sentences that may carry IOCs for the follow-up relationship check
and IOC extraction. Here we elaborate on these individual steps.

Blog scraping and pre-processing. Our blog scraper is essentially
a crawler designed to continuously monitor a list of technical blogs
to collect their articles. For each blog site, the BS first scraps all its
existing articles before it is set to monitoring mode to look for new
ones. Specifically, the scraper performs breadth-first crawling on
the blog, starting from its homepage to explore each link it discov-
ers, until no new link can be found. A problem here is that the web
pages gathered in this way may not all be articles, and may also
contain login pages, contact pages, and others. To automatically
remove these unrelated pages, we leverage two unique observa-
tions: the articles posted on the blog are all framed within the same
HTML template, which is very different from those used by other
pages such as login, contact, and others; also, on any blog site, more
article pages are hosted than other types of pages. Based on the ob-
servations, the BS compares each page’s DOM tree with those of
others to find out a small set of pages framed over the templates
unlike the ones used by the majority of the pages. These pages
are considered to be outliers and dropped from the dataset scraped

1Note that asking those professionals to directly post formalized IOCs may
not be realistic in the near future, due to the complexity of manually creating
the content and their intent to get humans involved in the discussion. As a
supporting evidence, we examined all 45 blog sites and found only one of
them export IOCs in some articles (AlienVault).

from the blog site. In our implementation, the BS uses the python
library beautifulsoup [2] to extract from each page its HTML
template (with tags and attributes but no content) and groups the
pages using their templates’ hash values to identify those unrelated
to articles (the ones outside the group).

Even on those indeed relevant web pages, there still is content
unrelated to the technical articles, such as blog contributors’ pic-
tures, advertisements, featured content, etc. Such content needs
to be removed before the pages can be used for IOC identifica-
tion. This purpose is served by another pre-processing step the
BS takes to get rid of such non-UGC (user-generated-content) data
from each page. Specifically, our approach compares all pages’
DOM trees to find out the nodes with the non-UGC, character-
ized by their largely unchanged content across these pages (e.g.,
blog contributors’ photos will be the same across different arti-
cles). This is different from the article content generated by the
user, which varies significantly between pages. Such a difference
is captured by an information-theoretic metric called composite im-
portance (CI) [47] that is used by the BS to measure the uniqueness
of each node on each page’s DOM tree with regards to other pages:
the nodes found to be less unique (rather common across different
pages) are discovered and dropped from the DOM tree, using an
algorithm proposed in the prior research [47].

Under such a “sanitized” DOM tree, still some content cannot
be directly analyzed by our text-based approach, including images
and embedded PDF files. So, the last pre-processing step is to con-
vert such content into text, if it indeed involves text information.
To this end, we incorporated into our implementation of an optical
character recognition engine Tesseract. Tesseract [6] is capable of
discovering texts within an image with an accuracy of 99% in gen-
eral. However, for the images collected from blogs, we found that
the accuracy went down to merely 70%, due to the low quality of
the images and the non-dictionary words they often have. To ad-
dress this issue, we used Gimp [4] to resize the blog image a for
better image quality, and add to Tesseract the new words (e.g., IP,
MD5, HTTP) discovered from the text of an article. We tested this
approach on 100 randomly sampled images from 10 blogs, which
was found to push the accuracy of Tesseract to above 95%.

Topic filtering. Once all the article pages have been selected and
pre-processed, we start looking into their content, first removing
those not including any IOCs. Examples of such articles are those
for product promotion, news or software update, which we call non-
IOC articles. To separate the non-IOC articles from those with
IOCs (called IOC articles), iACE runs the TC, a classifier using a
set of features as described below:
• Topic words: Intuitively, an IOC article focuses on security risks
and vulnerabilities, whose theme is reflected by its topic terms (e.g.,
malware, exploit). These terms are less likely to appear in a non-
IOC article. Topic term extraction is an extensively studied NLP
technique. In our implementation, we utilized an open-source tool
topia.termextract [10] to collect the terms within each ar-
ticle. The top 20 terms discovered, together with their frequencies,
are part of the features for the classification.
• Article length: Since the blog sites are meant to be the channels
for IOC exchanges, the IOC article it contains tends to be longer,
including detailed descriptions of IOCs and their context, while
non-IOC articles in technical blogs are often news and digests, and
hence tend to be shorter.
• Dictionary-word density: Compared with non-IOC articles, IOC
articles tend to have a lower dictionary-word density, because most
IOCs are non-dictionary words (e.g., IP, hash values, file path). Our
implementation employs the enchant library [15] to find dictio-

759

Table 2: Examples of regexes.
General type Regex

IPv4 (?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.)\{3\}(?:25[0-5]
|2[0-4][0-9]|[01]?[0-9][0-9]?)(/([0-2][0-9]|3[0-2]|[0-9]))?

hash \b[a-fA-F\d]{32}\b|\b[a-fA-F\d]{40}\b|\b[a-fA-F\d]{64}\b
int number ((?<=[\s([\s\(\[\{:\+\-=\\])|^)(\+|-)?\d+(?!([a-zA-Z0-9]|\.\S))

float number ((?<=[\s\(\[\{:
\+\-=\\])|^)(\+|-)?(\d+)?\.(\d+)(?!([a-zA-Z0-9]|\.\S))

nary words in an article. Then, its density within the article is cal-
culated as the ratio of the dictionary words with regards to all the
words the article contains.

Using these features, we ran a support vector machine (SVM)
to train a classification model over DS-Labeled, including 150
IOC articles and 300 non-IOC articles. The model was evaluated
through a 10-fold cross validation, and found to achieve a precision
of 98% and a recall of approximate 100%. We further used this TC
to analyze all 71,000 articles from the unknown set DS-Unknown
(described in Section 4.1) and manually validated 500 instances
randomly selected from the classified results (Section 4.2). The
validation shows that the classifier had a high accuracy (96%) and
coverage (99%).

IOC sentence identification. From each IOC article, the relevant
content picker identifies the sentences, tables, and lists likely to in-
clude IOCs before they are further evaluated by the relation checker
(Section 3.2). Such content is selected from the article based on
the anchors they contain, i.e., context terms and putative IOC to-
kens. Specifically, the RCP parses the HTML content of each arti-
cle, breaking the text into sentences and detecting tables and lists.
From each sentence, we look for the presence of both the string
matched by the regex and its compatible context terms: e.g., “hash”
goes with an MD5 checksum. From tables and lists, we increase the
search scope for context terms also to table headers, captions and
the nearest sentences (see supplementary material). Figure 2 shows
an example.

The OpenIOC standard specifies 600 categories of IOCs using a
list of iocterms [9]. We further summarized these IOCs into 19 dif-
ferent data types, including IP, hash, int, float, and others.
The regex for each of these categories was manually constructed
and carefully examined. As we can see here, such expressions
could introduce false positives (e.g., the string type matching many
IOC strings, even though oftentimes, we only seek non-dictionary
words), if we do not also look at the context terms and the rela-
tions between identified tokens. These terms are automatically col-
lected from the 600 iocterms through tokenizing dictionary-word
elements within each iocterm and by removing common terms like
“item” . We further used Semanticlink [14] to recover other seman-
tic related terms, e.g., “portable executable” (related to PE).

Altogether, we gathered 5,283 context terms in our research,
which were found to indeed provide good coverage of the com-
mon terminologies used by technical blogs. In our research, we
gathered 80 public IOC files and their corresponding blog articles
(according to their description tags) from labeled dataset. By man-
ually inspecting the sentences carrying the IOCs, we found that all
such sentences also contain at least one context term and all such
terms are on the list we created.

3.2 Relation Checking and IOC Creation
Although context terms and regexes can find us the sentences

likely involving IOCs, they are insufficient for detecting true IOCs
with high accuracy. For example, Figure 2 shows four sentence
pairs collected from two articles posted on AlienVault. As we can
see, each pair contains both context terms, like “download”, and the
strings fitting the descriptions of their corresponding IOCs, such as
“3344”; however, the fifth one does not include any real IOC while

the third one does. Fundamentally, the coincidence of relevant to-
kens (context term and IOC token) does not necessarily indicate
the presence of an IOC-related description. Most important here
is the consistency between the relation of these tokens and what is
expected from the narrative of IOCs: in the above example, 3344
is supposed to be the offset, not the PE file. Actually, in the case
that such a relation is incorrect, even when the IOC extracted is in-
deed an attack indicator, its context can be wrong and as a result,
the OpenIOC record created can be erroneous. The third sentence
in the figure is such an example.

As mentioned earlier, identifying IOCs is essentially an NER
problem and connecting them to their context is an RE issue. In the
NLP community, solutions to the problems are pipelined: individ-
ual name entities within a sentence are first recognized (i.e., NER)
and then their relation is established (i.e., RE). For our problem,
however, this pipeline becomes unnecessary, since the putative to-
kens for an IOC and its context are already located in a sentence,
and all we need to do is check the consistency of their relation with
what is expected to happen between them. In other words, we are in
the position to address both the NER and RE together. On the other
hand, existing RE techniques are inapplicable here, because they
are designed to work on the nominal relation between two nouns,
whereas the links between an IOC and its context terms are more
diverse, including nominal, verb and adjective (e.g., “attachment”,
“download” and “injected”). To handle such diverse relations, we
came up with an idea that models the analysis on the grammatical
connection between the IOC candidate and its context as a graph
mining problem [23]. This allows us to apply graph similarity
comparisons to detect the presence of the desired relation, which
achieves both a high accuracy (95%) and a high coverage (above
90%) that the more generic RE techniques cannot attain [24]. Be-
low we present how the approach works.

Relation representation. To analyze the relation between an IOC
candidate and a context term, our approach first uses a dependency
parser to transform a sentence into a dependency graph (DG). A
DG describes the grammatical connections between different lin-
guistic tokens, with verbs being the structural center of a clause and
other tokens directly or indirectly depending on the center. Such a
dependency describes the grammatical connection among tokens
such as direct object, determinant, noun compound modifier, etc.
Formally, a DG is a directed and weighted graph g = (V,E,W),
where words in the sentence are nodes V , two related nodes are
connected by an edge E and the specific grammatical relation link-
ing them together is modeled as an edge weightW . In our research,
the DG was constructed using the Stanford dependency parser [20],
the state-of-the-art open-source tool that converts text to simplified
grammatical patterns suitable for relations extraction.

Unlike the more generic RE techniques, which work on the DG
of the whole sentence, our approach takes advantage of the known
anchors to focus on the smallest dependency graph gni,nc connect-
ing an IOC candidate ni and a context term nc together. This is
because the information carried by this subgraph (called core) is
most relevant to the understanding of the relations between the an-
chors, which is all we care about (see an example in Figure 4).
Note that we also add negation dependencies as child nodes or sib-
ling nodes of the nodes on the core to capture IOC-related negative
descriptions. As an example, in the fourth sentence in Figure 2,
the relation between the context term “modify” and the IOC token
“AndroidManifest.xml” is affected by the word “not”, which
adds a negation dependency on the verb “modify”.
Similarity comparison. Over a dependency subgraph gni,nc mod-
eling the relation between a context term and an IOC candidate, we

760

! ", $% ,! ", $% , … , !(", $%)

The	Trojan	downloads a	file	
ok.zip from	the	server.

2.	Extract	
Shortest	Path

1.	Generate	
Dependency	

Graph

!($%,$%) !($%, $)) …
!($), $%) !($), $)) …

⋮ ⋮ ⋱

!($%, $,)
!($), $,)

⋮
!($,, $%) !($,, $%) … !($,, $,)

3.	Generate	
Kernel	Matrices

-./
0123345467

v

• IOC:	ok.zip
• Context	term:	

downloads

Positive

Negative

Training
Model

4.	Predicting

Direct	Product	Kernel

Predictive	Matrix

k(g1, g2) =
X

i,j

[(I � �A)�1]i,j

Figure 4: Workflow of the relation checker (RC).

want to find out whether another subgraph is similar, which indi-
cates that the same relation also exists between its anchors. This
similarity comparison is important, since it is the foundation for
classifying a sentence, determining whether IOC relations are in-
deed there to bind anchors or they are not. Given the fact that
now we only need to work on simple subgraphs with a few labeled
nodes (see Figure 4), the focus is to compare the paths linking cor-
responding nodes (with identical labels) across the subgraphs. For
this purpose, we customize a well-known graph mining technique,
called direct product kernel, a function that measures the similar-
ity of two graphs by counting the number of all possible pairs of
arbitrarily long random walks with identical label sequences [27].

Specifically, let g1 = (V1, E1,W1) and g2 = (V2, E2,W2) be
directed weighted graphs. The direct product between g1 and g2 is
a directed weighted graph G = g1 × g2 = (V,E,W), where

V = {(v1, v2) ∈ V1 × V2}
E = {(u1, u2), (v1, v2) ∈ V × V : (u1, v1) ∈ E1, (u2, v2) ∈ E2}

W =

{
1, if W1(u1, v1) =W2(u2, v2)

0, otherwise

In other words, for each pair of nodes (u1, u2) and (v1, v2) in
the new graph G, they are adjacent (connected by a directed edge)
if and only if an edge with the same direction and weight exists
both between u1 and v1 in g1 and between u2 and v2 in g2. It
is important to note that we bring the weights into the product to
compare the type of the grammatical relation between two nodes
(words): only when the adjacent word pairs in two sentences have
the same grammatical relation, will that relation be preserved in
the new graph. Usually, it takes O(|V |4) to compute this direct
product. However, all the subgraphs we consider are just “paths”
(after removing the directions) between a context term and an IOC
candidate, whose direct product can be computed in O(|V |2).

Over the direct-product graph G, we calculate the similarity be-
tween the two subgraph g1 and g2 as follows:

k(g1, g2) =
∑

i,j

[

∞∑

l=0

λlAl]i,j =
∑

i,j

[(I − λA)−1]i,j

where each entry of Al is the number of the walks of length l from
vi to vj in the direct product graph G = g1 × g2, hence Al can
be calculated as the l-th power of the adjacency matrix of G; λ
is the decay constant and λ ≤ 1

min(di,do)
with di, do being the

maximum in-degree and out-degree of G, representatively. In our
research, we set λ = 1

min(di,do)
.

Classification. Based on our customized direct-product kernel, we
run a classifier (the relation checker) to determine the presence of
IOC relations between a context term and an IOC candidate within
a sentence. The classifier is trained over DS-Labeled with 1500
positive instances and 3000 negative instances. From the dataset, a
model is learned to work on a kernel vector generated from the fea-
tures of a subgraph gi: (m1, · · · ,mj , · · ·), where mj = k(gi, tj)

and tj is the subgraph for the jth instance in the training set. In
other words, each new instance gi is classified into the positive set
(with the IOC relation) or the negative set (without the relation)
based on its similarity with every instance in the labeled set. This
classification is executed efficiently with multi-threading in our im-
plementation.

The classifier can be trained with different kinds of machine
learning algorithms. Our implementation utilizes logistic regres-
sion, since the algorithm works well on a small labeled dataset.
More specifically, it optimizes the log likelihood function to deter-
mine a probability that is a logistic function of a linear combination
of the training dataset, and every training point has a certain influ-
ence on the estimated logistic regression function. In our research,
we compared the recall and precision of five classification models
on the labeled dataset through a 5-fold cross-validation. With the
regularization parameter set to 3.0, our logistic regression classifier
yielded the best results. On unknown set DS-Unknown , this clas-
sification model achieved a high accuracy (with a precision of 95%
and recall of 90%).

IOC creation. After identifying the IOC and its corresponding
context terms, our IOC generator can automatically convert the
CTI content of a technical blog to the OpenIOC record. Specifi-
cally, each indicator item in the record is created by filling in the
search attribute in the Context tag with a context term and the
Content tag with its corresponding IOC. The content of other
fields on the item can be derived from these two fields. For exam-
ple, the type attribute of the Content tag and the document
attribute of the Context tag are actually the iocterms of the IOC
discovered.

For the header of the record, the IG generates the content for the
Description tag using the open-source automatic summariza-
tion tool TextRank to create a summary for the blog article. Also,
the original blog link address is used to fill the link tag, and the
content of authored_by and authored_date tag are set to
our prototype name and the file generation time.

4. EVALUATION
4.1 Settings

In our study, we ran our implementation of iACE to automati-
cally analyze 71,000 real-world technical articles, on an R730xd
server with 40 of Intel Xeon E5-2650 v3 2.3GHz, 25M Cache
CPUs and 16 of 16GB memories. Here we explain the datasets
used in the study and the parameter settings of the system.
Datasets. We utilized two datasets in our study: a labeled set for
training our topic classifier (Section 3.1) and relation checker (Sec-
tion 3.2), and an unknown set for evaluating our technique.
• Labeled dataset (DS-Labeled). The dataset contains 80 IOC
files and their corresponding blog articles. These IOC files were
collected in our research from two public feeds, iocbucket [29] and
openiocdb [1], both providing threat intelligence through OpenIOC

761

items. Under the description tags of these items, we found
the links pointing to these items’ sources and recovered 150 arti-
cles from 22 blogs, including their HTML pages and image files.
Also, we manually gathered, from the same blogs, 300 other arti-
cles. Each of them was manually checked to ensure that they do
not have any IOCs but contain some IOC-like strings (e.g., IP ad-
dresses, MD5, etc.). Most of them are technical news or articles for
product promotion.

From these articles, we further extracted two kinds of sentences,
those with IOCs (true IOC sentences) and those without but involv-
ing IOC-like strings (false IOC sentences). More specifically, the
1,500 true IOC sentences were identified using the context terms
and IOC tokens specified in the OpenIOC items we collected, and
further manually inspected to ensure their correctness. The 3,000
false IOC sentences were those matched by the regular expressions
and context terms used by iACE (Section 3.1) but did not include
any IOCs, as confirmed by a manual check.
• Unknown set (DS-Unknown). As mentioned earlier, the dataset
used for evaluating our system was gathered from 45 security-related
technical blogs. These blogs are well recognized to be the leading
sources for CTI collection, which includes AlienVault, Malware-
bytes, and others (see supplementary material for the full list). On
these blogs, we ran a crawler that scraped 71K articles posted there
between 2003/04 and 2016/05. Figure 5a shows the increase of the
number of the articles per month on these blogs over 13 years.
Parameter settings. In the experiments, the parameters of our pro-
totype system were set as follow:
• Kernel decay constant (λ). The decay constant is a parameter
for calculating a direct product when the impact of a long random
walk needs to be discounted (Section 3.2). It was set according
to the convention of evaluating the kernel function: λ = 0.9 if

1
min(di,do)

= 1 and λ = 1
min(di,do)

otherwise.
• Inverse of regularization strength (C). Regularization is a param-
eter for reducing the over-fitting to the labeled data when we built
the relation models using logistical regression. In our implemen-
tation, we utilized a C = 3.0, which gave the best performance
among other C values from 0.3 to 15.
• Threshold of sentence length (l). The current dependency parser
is limited by its capability to process long sentences. When a sen-
tence grows longer, the accuracy of parsing goes down and its over-
head goes up. In our implementation, we set the maximum length
of the sentence to 200 words. Given IOCs may exist in sentence
length larger than 200 words, we directly extract IOCs from sen-
tences longer than 200 words without building dependency graphs.
In our implementation, we directly extract the IOCs from sentences
longer than 200 words if the sentence has two continuous IOC to-
kens or has more than five IOC tokens which were split by short
terms (less than 5 characters) (see supplementary material).

4.2 Results
Accuracy and coverage. In our study, we first evaluated the topic
classifier (i.e., TC) over the 450 IOC and non-IOC articles, and
the relevant content picker and the relation checker (i.e., RCP/RC)
over 1,500 true IOC sentences and 3,000 false IOC sentences in
DS-Labeled, both using a five-fold cross-validation. Our proto-
type achieved a precision of 98% and a recall of 100% in finding
IOC articles, and a precision of 98% and a recall of 92% in identi-
fying true IOCs and its context. Figure 5b illustrates the ROC curve
of the RCP and RC.

Further, we ran our system over DS-Unknown across all 71K
articles. Altogether, iACE automatically extracted IOC tokens and
their context terms, and further converted them into OpenIOC items.
To understand the accuracy and coverage of the information ex-

(a) The number of the articles per
month.

(b) ROC curve of iACE.

Figure 5: The increase in the number of articles over 13 years
and the effectiveness of iACE.
tracted, we sampled the unknown set using two different methods:
we first grouped the articles in the unknown set according to their
publication time (4 consecutive months per group), and then their
publishers (45 blogs), and in each case, we randomly picked up a
few articles from each group. Altogether, in this validation step,
we manually inspected 820 articles and in total, 25K reported sen-
tences, and concluded that iACE achieved a precision of 95% (23K
out of 25K reported IOCs were correct), and a recall of 90% (across
the articles, 90% of IOCs were reported).

Table 3: The number of samples and average accuracy and re-
call in each method.

Method # of Groups Samples per Group Precision Recall
Time span 39 10 93% 92%

Blog 45 10 96% 91%

To compare our approach with state-of-the-art alternatives, we
ran iACE against the top-of-the-line NER tool Stanford NER [26]
and the commercial IOC identifier integrated within AlienVault
OTX [17]. Note that none of them (actually none of the existing
systems we are aware of) can also identify the context for an IOC
and therefore generate machine-readable OpenIOC items. In our
experiment, Stanford NER was trained on our labeled true/false
IOC sentences as describe in Section 4.1 (the same set for training
iACE). For AlienVault OTX, we utilized its API to submit articles
to their web service and retrieve the IOC tokens identified. This
study shows that our relation-based approach is indeed much more
effective. Specifically, we ran all three systems on 500 randomly
selected articles from 25 blogs in DS-Unknown and compared
their findings: iACE extracted the IOC items across 427 OpenIOC
categories, such as FileDownload HistoryItem/FileName,
Email/ReceivedFromIP, with a precision of 98% and a re-
call of 93%, while OTX could only find the IOCs in 8 categories
(IP, hash value, domain, etc.) with a precision of 72% and a recall
of 56%, a performance mirrored by Stanford NER. Both OTX and
Stanford NER tend to introduce a lot of false positives: for exam-
ple, OTX treated the reference links of articles as malicious URLs.
Table 4 summarizes the result of this study.

Table 4: Accuracy and coverage comparison of iACE, Alien-
Vault OTX and self-trained Stanford NER.

Tool Precision Recall
iACE 98% 93%

AlienVault OTX 72% 56%
Stanford NER 71% 47%

Performance. To understand the performance of iACE, we mea-
sured the time it spent on each real-world article in the unknown
set and the breakdowns of the overhead in each analysis stage, BP,
RCP, RC, and IG. In the experiment, our prototype was running on
our R730xd server, using 40 threads. On average, it took around
0.25 second to inspect one article, as illustrated in Table 5. This

762

result provides strong evidence that iACE can easily scale to the
level expected for processing a massive amount of CTI generated
every day.

Table 5: Running time at different stages.
Stage average time (ms/article) Std Deviation (ms)

BP 5 -
RCP 20 2.5
RC 252.5 37.5
IG 2.5 -

total 278.6 -

In the meantime, considering the DG parser is largely affected by
sentence length, we measure the performance of the RC model in
different sentence lengths. Figure 6 illustrates the average running
time on sentences of different lengths. We found that the running
time of iACE gradually increases when sentence length increases.
This is because iACE only extracts the shortest paths linking each
pair of a context token and the IOC token, which mitigates the im-
pact of sentence length .

Figure 6: Average running time on the sentences in different
lengths.

5. MEASUREMENT AND ANALYSIS
The IOCs automatically extracted from the 71,000 articles on

45 blogs present to us a comprehensive view of the cyber threats
that the world has been facing in the past 13 years. By analyzing
these IOCs, looking at their relations and evolution over a large
time frame, across thousands of articles, our study brings to light
new findings of attacks’ strategies and evolution, as well as new
insights into the impact of open-source intelligence. Particularly,
we found that hundreds of apparently independent attacks were ac-
tually related, sharing unique IOCs such as IP address, register’s
email and domain, etc. Among them, a set of command and control
(C&C) servers were reported by 396 articles (with little reference
among them) and linked to over 7,000 unique IOCs over a four-
year span, indicating that these separate attacks could all be part of
a massive, previously unknown campaign. Further, through corre-
lating different articles, we observe that the same vulnerability has
been continuously utilized for a long period of time. Also, the IOCs
intensively reported tend to be short-lived, demonstrating the possi-
ble impacts of the CTI on the adversaries. On the defender side, the
response to the IOCs seems less timely than one hopes, taking days
to get IOCs into malware scanners, blacklists etc. Also, our study
reveals the quality of the IOCs reported by different blogs and the
ways these blogs react to emerging threats, which helps better un-
derstand the effectiveness of such intelligence sources. Below we
elaborate on the details of this study.

5.1 Landscape
Our study shows that these technical blogs are indeed a gold

mine for threat intelligence gathering: altogether, 900K IOCs and
their context were recovered from 71,000 articles (20K IOC arti-
cles), including 20K exploit hash values, 55K registry key, 58K
malicious IPs, 180K FQDNs etc. Table 6 presents the 10 IOC

(a) Cumulative distributions for
the numbers of IOCs and iocterms
per article.

(b) Cumulative distribution of the
numbers of articles and reference
per cluster.

Figure 7: Distribution of IOCs across different articles and
clusters across different blogs.

types (described by their corresponding iocterms) with the most
instances found by iACE. We observe the largest amount of IOCs
with the type PortItem/remoteIP, which was related to the popu-
larity of drive-by-download, Phishing and other web attacks in the
wild.

Table 6: Top-10 iocterms with the largest number of IOCs.
iocterm # of

IOCs
general

type
PortItem/remoteIP 18,243 IP

RegistryItem/ValueName 12,572 string
UrlHistoryItem/HostName 12,020 URL

RegistryItem/Path 11, 777 string
FileDownloadHistoryItem/SourceURL 10,324 URL

ServiceItem/serviceDLLmd5sum 9,908 hash
PortItem/remotePort 9,831 int

FileDownloadHistoryItem/FileName 8,720 string
Email/ReceivedFromIP 8,225 IP
FileItem/FileExtension 8,100 string

We looked into the distribution of IOCs across different arti-
cles and blogs, as illustrated by the cumulative distributions for the
numbers of IOCs and iocterms displayed in Figure 7a. On average,
each article contains 52 IOCs and 70% of the articles have more
than 10 IOCs. Particularly, the blog hpHost has 350 IOCs per arti-
cle, the largest one among the blogs we inspected. Also, an article
on CyberCrime talking about a Google redirection Spam reported
3,417 IOCs. When it comes to the diversity of IOC context, we
found that on average, each article includes 6 different iocterms
and 30% of articles have more than 10 different iocterms. Also
interestingly, the blog with more IOCs does not necessarily come
with more diverse IOC types: for example, even though hpHost
has the largest number of IOC per article, each article only has 8
iocterms.

5.2 Understanding Threats
Through mining the IOCs across articles and blogs, we gained

new insights into reported attacks and discovered connections never
known before. Such connections shed new light on the way the
adversaries organize their campaigns and adapt their techniques.
Further linking the reported IOCs to auxiliary data sources reveals
the impact of such CTI on the responses to emerging threats.

Correlation analysis. To understand the relations across differ-
ent attack campaigns reported by articles, we studied the sharing
of critical attack resources in these campaigns, through measuring
their common infrastructure-related IOCs, including IP, register’s
email and domain. Specifically, using these IOCs, we were able
to group all the articles into 527 clusters (each group with more
than three articles): two articles were put in the same cluster if they
share at least one IOC IP, email or domain. Note that we removed
IP addresses in the private address ranges (10.*.*.*, 172.16.*.*,
192.168.*.*). To find out whether those in the same cluster ac-

763

tually refer to a common source, so they essentially talk about the
same attack instance, we also looked at the URLs in each of the
articles to identify those pointing to the 45 blogs and other well-
known intelligent sources. Figure 7b illustrates the distribution of
the clusters with various percentages of the articles involving such
references. It turns out that many clusters (including thousands of
articles) have low reference percentages: in other words, the au-
thors of these articles apparently did not realize that the attacks
they were documenting were related to other instances.

We further picked out 5 clusters with at least 25 articles but
at most 5% of them include references to others. None of such
reference-carrying articles were found to mention the relations among
the attack instances reported by other articles in the same clusters.
Also, a sampling of these articles did not show any references to
other blogs not on our list. This indicates that the infrastructure re-
lations linking all these attacks together have never been reported
before, which was confirmed by our additional search for related
literature across the Internet. Table 7 provides the information
about those clusters. Most interestingly, we found that for the IOC
“132.248.49.112”, a shared IP reported by 19 blogs, turned out to
point to a C&C campaign’s name server. We believe that all the
independently documented attacks actually belonged to a massive
campaign whose scale was not known before. Note that this corre-
lation effort is highly important because it informs us of the critical
resources attackers share, which are likely to be their weakest link.

Table 7: The 5 Clusters.
Cluster # of articles # of IOCs of

mal. infra. # of IOCs of total # of
references

1 396 7,363 10,533 21
2 178 4,271 8,110 3
3 30 215 960 0
4 28 897 1,302 0
5 25 897 1,222 0

Evolution. Looking into the C&C campaign reported by 396 arti-
cles and related to 7,000+ unique IOCs, we were surprised to find
that it lasted for a long time (2009-2013), and continued to adapt
its attack strategies and techniques. Specifically, it distributed mal-
ware by sending Spam emails to users, compromising legitimate
websites, and others, and the vulnerabilities it exploited evolved
from CVE-2010-1885 to CVE-2013-0422. In the meantime, the
campaign utilized a small set of IPs for its C&C servers, and some
of them share the same register email “gkook@checkjemail.nl”.
Apparently, taking down these servers could significantly affect the
effectiveness of this long lasting, large-scale attack.

Another step we took to correlate the attacks reported by differ-
ent articles was to cluster them according to the indicators of their
attack vectors, including malware hash, vulnerability CVE and the
content of the registries. The purpose is to understand the evolu-
tion of the vectors with regard to the releases of related IOCs. To
this end, we looked at the shortest period of time, in terms of the
number of consecutive months, during which a specific IOC (e.g.,
132.248.49.112) was continuously covered by new articles. This
period, which we call “decay time”, demonstrates how long the at-
tack instances related to the IOC continue to pop up before they can
be stopped (at least temporarily). As illustrated in Table 8, in gen-
eral, we found that the IOCs reported by a large number of articles
tend to disappear quickly, indicating that either the related prob-
lems were quickly fixed or the adversaries reacted to the reports
to change their strategies. However, there are long-lasting IOCs
even though they are well known: as a prominent example, a buffer
overflow vulnerability CVE-2012-0158 kept showing up in blog ar-
ticles for four months, and after a few recesses, continues to appear
in other attacks over a four year period! Specifically, it was used
in APT attacks on the military and aerospace industry (2012/04),

(a) Distributions of the duration
after an IOC was released and be-
fore it was uploaded for a scan.

(b) Cumulative distributions for
the numbers of first-reported blog
per cluster.

Figure 8: IOC impacts and timeliness of blog.

and then on political organizations (2012/09), generic malware dis-
tribution (2013), and more recently Spear Phishing attacks on the
film industry (2014) and banks (2015). This clearly shows that or-
ganizations have not done their due diligence to adequately respond
to the problem.

Table 8: Decay time of IOCs.
Decay time (month) Avg. # of articles

per month % of total IOCs.

0-1 68 92%
1-2 23 5%
2-3 8 1%
3-4 6 1%
>4 3 1%

IOC impacts. Further, we studied the impact of such open-source
intelligence on security protection: whether the security industry
(e.g., anti-virus service providers) quickly responded to the reports
of IOCs. To this end, we estimated the possible time intervals be-
tween the first release of the IOCs and their adoption by anti-virus
(AV) tools and web scanners. In our research, we submitted a set
of IOCs, including IPs and domains of malicious sources, and the
hashes of malware to VirusTotal [11], a platform that hosts 56 main-
stream AV scanners and CleanMX [22], an IP/URL scanner. From
VirusTotal, we collected the time stamps for the first time when the
submitted IOCs were seen by at least one of the AV systems. For
CleanMX, we fetched its IP/URL blacklist database archived from
2009/01 to 2015/04. We found that 47% of the IOCs were updated
to these systems before they were reported by the blogs. For the
rest of them, Figure 8a shows the distributions of the duration after
such an IOC was released and before it was first used for a scan.
We observed days of delay before the IOCs were put in place for
protection, if indeed the uploading time (or the time when the IOCs
were first used for a scan) was close to the moment when the IOCs
(IP, domains, hashes) were added to the systems. Particularly, for
IPs and domains, the whole process often took more than 12 days.
On the other hand, the malware hashes were often quickly added,
in most cases within 2 days.

5.3 Understanding Intelligence Sources
The availability of the longitudinal data (the IOCs collected over

a span of 13 years) also enables us to investigate the qualities of
the indicators produced by different sources and their timeliness
against new threats, as reported below.

Timeliness. Using the aforementioned attack clusters (see Table 7),
we analyzed the distribution of the articles first reporting the at-
tacks over different blogs, as shown in Figure 8b. We found that 10
blogs were responsible for the first report of 60% the clusters (each
cluster likely to be a campaign). For example, the blog Dancho
Danchev first report 12 clusters, each time involving 45 IOCs on
average, which later also showed up on other blogs.

764

Table 9: Quality of selected intelligence sources (10 out of 45)

Blog
% of

covered
IOCs

% of
covered
iocterms

% of
timely
IOCs

% of
robust
IOCs

Dancho Danchev 42% 62% 14% 84%
Naked Security 43% 55% 54% 45%

THN 38% 38% 41% 51%
Webroot 54% 79% 13% 84%

ThreatPost 26% 37% 52% 29%
TaoSecurity 57% 61% 31% 68%

Sucuri 34% 35% 43% 52%
PaloAlto 39% 44% 15% 87%

Malwarebytes 32% 48% 26% 72%
Hexacorn 49% 57% 59% 76%

Table 9 shows the average percentage of IOCs first reported among
all the IOCs finally discovered from a cluster (i.e., the number of
first-reported IOCs and those only reported once vs. the total num-
ber of IOCs in a cluster). We found that most IOCs reported first by
Hexacorn and Naked Security were also mentioned by other blogs
later. Also, they provide a large amount of IOCs not documented
by other blogs. We observed that even though Webroot only has
an average of 13% of the earliest-reported IOCs for the clusters we
monitored, 84% of its IOCs were not reported by other sources.

Completeness. On the other hand, the early reports often only
contain a small portion of IOCs. In our study, we measured the
percentages of the IOC tokens and their iocterms for different at-
tack clusters that were included in the first report: 6 blogs reported
more than 40% of the IOC tokens and 9 blogs covered more than
50% of iocterms (related to attack behavior) per cluster. We further
checked the blogs whose articles give the most complete descrip-
tions of attack clusters. Altogether, TaoSecurity were found to have
the largest number of such articles.

Robustness. In our research, we compared the robustness of differ-
ent IOC tokens, in terms of their stability across the whole period
of an attack cluster (the clusters in Table 7). From the data men-
tioned above, we found that the name server, C&C server, registry
email are the most robust indicators, which remained unchanged in
10 to 30 percent of the clusters we analyzed (see Table 9). Using
such information, we further measured the blogs likely to report
these tokens: the top blogs providing most of such tokens (i.e., the
number of robust IOCs vs. the number of total IOCs in a cluster)
are in Table 9. Interestingly, looking into the IPs of these servers,
we found that many of them actually shared the same IP prefixes,
which makes us believe that they might all come from a small set
of malicious Autonomous Systems.

6. DISCUSSION
Our study shows that iACE makes an important step toward fully

automated cyber threat intelligence gathering. This is significant
not only for the convenient collection of information, but also for
effective analysis of such information, as demonstrated by our mea-
surement study. With a large amount of IOCs automatically recov-
ered from the wild and converted into a machine-readable form,
their intrinsic relations can be quickly discovered and effectively
utilized to counter emerging threats. For example, knowing the
sharing of C&C servers across multiple attack instances could en-
able the defender to disable or block the servers to stop the attacks.
On the other hand, our current design is still preliminary. Here,
we discuss the limitations of our systems and potential follow-up
research.

Error/missing analysis. Our study shows that iACE has a high ac-
curacy and coverage, well beyond what standard NLP techniques
can achieve. However, still our technique introduces some false

discoveries and misses some IOCs. These problems mostly come
from the limitations of underlying tools we use and abnormal ways
of presentation. Specifically, Tesseract, the optical character recog-
nizer, is less than perfect, and its accuracy affects the outcome of
our analysis. Also, the state-of-the-art dependency parser still can-
not maintain its accuracy when sentences become too long. Even
though iACE only works on the shortest path between an IOC and
its context token, which mitigates the problem, still there are sen-
tences too long for the parser to understand the dependencies be-
tween words correctly. Also, adding to the complication are typos:
as an example, in the case that one forgets to put a space after the
period, a sentence becomes stuck with the follow-up one, which
could cause an error in IOC sentence identification. Another in-
teresting observation is that in some articles, authors deliberately
misspell URLs to prevent the readers from inadvertently clicking
on them: e.g., changing “http” to “hxxp” or add “[]” among dot
in a URL. iACE includes a list of typical obfuscation tricks to rec-
ognize such transfers. However, there are always approaches we do
not recognize, making IOC tokens fall through the cracks. Further-
more, a large amount of polluted original contents of articles might
also lead to false discoveries. For example, an active attacker can
compromise the blog websites and inject fake IOCs into the arti-
cles, so as to trigger iACE to report false IOCs. Further effort is
needed to better address these issues.

Other intelligence sources and standards. The current design
of iACE is for gathering threat intelligence from technical blogs,
based on the unique ways that IOCs are described. We believe that
it will also work well on other equally or more formal sources,
such as white papers and other technical articles (e.g., research pa-
pers), though further study is certainly needed here. What is less
clear is the technique’s effectiveness on less formal sources, like
technical forums (e.g., Google groups [5], SecurityFocus [7]). The
writing styles there are bit different, particularly, the use of more
diverse context terms and the sentences with irregular grammat-
ical structures. Extending iACE to this setting needs further ef-
fort. Also, the intelligence sources we use to feed iACE are all
English articles. Considering the intelligence sources of other lan-
guages, iACE should import new modules for language translation
of context terms and re-trained dependency parser of different lan-
guages. Further, as mentioned earlier, iACE is meant to support
the OpenIOC CTI model. Although there are other models such
as STIX [8] and yara [12], tools exist to convert the information
across these standards.

7. RELATED WORK
Threat intelligence exchange. To help the organizations and se-
curity community defend against the fast-evolving cyber attacks,
there have been great efforts on threat intelligence sharing. Face-
book ThreatExchange [25] and Defense Industrial Base voluntary
information sharing program (dibnet) [3] are platforms developed
for exchanging IOCs between certified participants. Meanwhile,
AlienVault OTX [17], OpenIOC DB [1] and IOC Bucket [29] are
established to share public (unclassified) IOCs. Regardless of the
type of platform, public sources like blogs still contribute a big por-
tion of IOCs. Our approach, iACE, will contribute to the establish-
ment of a fast tunnel between these public sources and exchange
platforms and help the participated organizations receive IOC up-
dates timely. As far as we know, AlienVault [17] and Recorded
Future [13] are the only two IOC providers that support automatic
IOC extraction. Even though Recorded Future (which does not
provide public services) utilized NER techniques [40], both tools
are simply looking for IOC entities without linking them to at-
tack context, and therefore cannot generate machine-readable Ope-

765

nIOC items. Instead, iACE customized graph mining techniques to
capture the relation between entities, which produces high-quality
IOCs and their attack context with high accuracy. IOC extraction
from other sources were also studied recently. Catakoglu et al. [19]
demonstrated a framework to extract external components (web
IOCs) from web pages served in honeypots, which compared with
our approach, is more in line with the work on automatic signature
generation. Sabottke et al. [43] developed a warning system to alert
the user of the ongoing attacks reported by tweets (i.e., looking for
the tweets with “CVE”). This is different from our work, which
aims at generating machine-readable IOCs from attack reports.

NER/RE. NER today mainly relies on a sequence of words to iden-
tify the presence of pre-defined entities (such as PERSON, LOCA-
TION). For example, Stanford NER [26] utilize a Hidden Markov
model to find the most likely sequence of entities from unstructured
text. Other examples include Illinois NER [21] (based on super-
vised learning) and LIPI [16] (based on n-gram character language
models, etc.). When it comes to RE, today’s approaches use the
tree kernel with SVM [24], heuristic matches with self-supervised
learning [46], open pattern templates [44] and other techniques to
detect specific relations between two known entities. By compar-
ison, iACE leverages the unique features of IOC-related articles,
using the relation detection to help identify true IOCs and their
context. This combines both NER and RE steps together, which
has never been done before. Our customized graph mining algo-
rithm also enriches the RE techniques.

NLP for security and privacy. Compared with its application in
other areas (e.g., bioinformatics), NLP has only been recently used
for security and privacy research. Prior work utilized NLP for ana-
lyzing web privacy policies (by extracting its key terms) [49], gen-
erating privacy policies for Android apps [48], analyzing app de-
scriptions to infer required permissions by Android apps [38, 36],
detecting compromised websites [31] and identifying sensitive user
input from apps [28, 34]. Our work showcases a new application
of NLP, demonstrating that innovative NLP techniques need to be
developed to address real-world security challenges.

8. CONCLUSION
In this paper, we present iACE, a novel technique for automatic

extraction of IOCs from unstructured text. iACE is designed to spe-
cialize NLP techniques to threat intelligence gathering, combining
the NER and RE steps together based on the unique features of
IOCs and the technical articles describing them. By anchoring a
sentence with putative IOC tokens and context terms, our approach
can efficiently validate the correctness of these elements using their
relations, through a novel application of graph similarity compari-
son. This simple technique is found to be highly effective, vastly
outperforming the top-of-the-line industry IOC analyzer and NER
tool in terms of precision and coverage. Our evaluation of over
71,000 articles released in the past 13 years further reveals intrin-
sic connections across hundreds of seemingly unrelated attack in-
stances and the impacts of open-source IOCs on the defense against
emerging threats, which highlights the significance of this first step
toward fully automated cyber threat intelligence gathering.

9. ACKNOWLEDGMENT
This work was supported in part by the National Science Founda-

tion (grants CNS-1223477, 1223495, 1527141 and 1618493). We
thank our anonymous reviewers for their useful comments.

10. REFERENCES
[1] A community OpenIOC resource. https://openiocdb.com/.
[2] Beautiful Soup. https://www.crummy.com/software/BeautifulSoup/.

[3] Defense Industrial Base Cybersecurity Information Sharing Program.
http://dibnet.dod.mil/.

[4] GIMP. https://www.gimp.org/downloads/.
[5] Google groups. https://groups.google.com/.
[6] Open Source OCR Engine. https://github.com/tesseract-ocr/tesseract.
[7] SecurityFocus. www.securityfocus.com/.
[8] Structured Threat Information eXpression. https://stixproject.github.io.
[9] The OpenIOC Framework. http://www.openioc.org.

[10] topia.termextract 1.1.0. https://pypi.python.org/pypi/topia.termextract.
[11] Virustotal. https://www.virustotal.com/.
[12] YARA. http://plusvic.github.io/yara/.
[13] Real-Time Threat Intelligence. https://www.recordedfuture.com/, 2016.
[14] Semantic Link: find related words. http://semantic-link.com/, 2016.
[15] Abiword. Enchant. http://www.abisource.com/projects/enchant/, 2010.
[16] Alias-i. Lingpipe 4.1.0. http://alias-i.com/lingpipe, 2008.
[17] AlienVault. Open Threat Intelligence. https://otx.alienvault.com/, 2016.
[18] N. Bach and S. Badaskar. A review of relation extraction. Literature review for

Language and Statistics II, 2007.
[19] O. Catakoglu, M. Balduzzi, and D. Balzarotti. Automatic extraction of

indicators of compromise for web applications. In WWW 2016, 2016.
[20] D. Chen and C. D. Manning. A fast and accurate dependency parser using

neural networks. In EMNLP, pages 740–750, 2014.
[21] J. Clarke, V. Srikumar, M. Sammons, and D. Roth. An nlp curator (or: How i

learned to stop worrying and love nlp pipelines). In LREC, 5 2012.
[22] CleanMX. http://lists.clean-mx.com/cgi-bin/mailman/listinfo/viruswatch/.
[23] D. J. Cook and L. B. Holder. Mining graph data. John Wiley & Sons, 2006.
[24] A. Culotta and J. Sorensen. Dependency tree kernels for relation extraction. In

Proceedings of ACL’04.
[25] Facebook. https://developers.facebook.com/products/threat-exchange.
[26] J. R. Finkel, T. Grenager, et al. Incorporating non-local information into

information extraction systems by gibbs sampling. In Proceedings of ACL’05.
[27] T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and

efficient alternatives. In Learning Theory and Kernel Machines. 2003.
[28] J. Huang, Z. Li, and X. Xiao. Supor: Precise and scalable sensitive user input

detection for android apps. In USENIX Security’15.
[29] IOCbucket. IOCbucket. https://www.iocbucket.com/, 2016.
[30] Josh Grunzweig. Alina: Casting a Shadow on POS. https://www.trustwave.com/

Resources/SpiderLabs-Blog/Alina--Casting-a-Shadow-on-POS/, 2013.
[31] X. Liao, K. Yuan, X. Wang, et al. Seeking nonsense, looking for trouble:

Efficient promotional-infection detection through semantic inconsistency
search. In Proceedings of S&P’16.

[32] R. Mihalcea and P. Tarau. Textrank: Bringing order into texts. Association for
Computational Linguistics, 2004.

[33] D. Nadeau and S. Sekine. A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[34] Y. Nan, M. Yang, Z. Yang, et al. Uipicker: User-input privacy identification in
mobile applications. In USENIX Security’15.

[35] L. Obrst, P. Chase, and R. Markeloff. Developing an ontology of the cyber
security domain. In STIDS, pages 49–56, 2012.

[36] R. Pandita, X. Xiao, et al. Whyper: Towards automating risk assessment of
mobile applications. In USENIX Security’13.

[37] PhishTank. https://www.phishtank.com/.
[38] Z. Qu, V. Rastogi, and X. Zhang. Autocog: Measuring the

description-to-permission fidelity in android applications. CCS ’14.
[39] J. Ramon and T. Gärtner. Expressivity versus efficiency of graph kernels. In

First international workshop on mining graphs, trees and sequences, pages
65–74. Citeseer, 2003.

[40] Recorded Future. http://info.recordedfuture.com/Portals/252628/resources/
cyber-anatomy-white-paper.pdf.

[41] Recorded Future. Recorded Future at SITA. https://go.recordedfuture.com/
hs-fs/hub/252628/file-2607572540-pdf/case-studies/sita.pdf, 2015.

[42] Rob McMillan. Open Threat Intelligence.
https://www.gartner.com/doc/2487216/definition-threat-intelligence, 2013.

[43] C. Sabottke, O. Suciu, et al. Vulnerability disclosure in the age of social media:
Exploiting twitter for predicting real-world exploits. In USENIX Security’15.

[44] M. Schmitz, R. Bart, S. Soderland, et al. Open language learning for
information extraction. In Proceedings of the JCEMNLP’12.

[45] B. Settles. Abner: an open source tool for automatically tagging genes, proteins
and other entity names in text. Bioinformatics, 21(14):3191–3192, 2005.

[46] F. Wu and D. S. Weld. Open information extraction using wikipedia. In
Proceedings of ACL’10.

[47] L. Yi, B. Liu, and X. Li. Eliminating noisy information in web pages for data
mining. In Proceedings of ACM SIGKDD’03.

[48] L. Yu, T. Zhang, X. Luo, and L. Xue. Autoppg: Towards automatic generation
of privacy policy for android applications. SPSM ’15, 2015.

[49] S. Zimmeck and S. M. Bellovin. Privee: An architecture for automatically
analyzing web privacy policies. In USENIX Security 14, 2014.

766

