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Abstract—In this paper, we propose a structural importance-
aware approach to quantify the vulnerability/de-anonymizability
of graph data to structure-based De-Anonymization (DA) attacks
[1][2][3][4]. Specifically, we quantify both the seed-based and the
seed-free Relative De-anonymizability (RD) of graph data for both
perfect DA (successfully de-anonymizing all the target users)
and partial DA (where some DA error is tolerated) under a
general data model. In our relative quantification, instead of
treating all the users in graph data as structurally equivalent,
we adaptively quantify their RD in terms of their structural
importance. Leveraging 15 real world graph datasets, we validate
the accuracy of our relative quantifications and compare them
with state-of-the-art seed-based and seed-free quantification tech-
niques. The results demonstrate that our structural importance-
aware relative quantifications are more sound and precise when
measuring graph data’s real vulnerability/de-anonymizability.

I. INTRODUCTION

Graph data (e.g., social network data, contact data, health-
care data) are critical for academic research, government ap-
plications, commercial collaborations, healthcare applications,
and other data mining tasks [1][5][6][7]. Therefore, graph
data are frequently shared with researchers, government agen-
cies, commercial parters, and other individuals/organizations
[1][5][6][7]. One of the most notable characteristics of graph
data is that the data items are structurally correlated with each
other in addition to the semantic information they carried
[1][5][6][7]. For instance, a user of a social network is
correlated with other users in the network in addition to the
profile information associated with him/her. On one hand,
the correlations carried by graph data make the data useful
for comprehensive analysis and meaningful applications (e.g.,
commercial and healthcare data mining and analysis tasks [1]).
On the other hand, these correlations allow graph data to suffer
security and privacy threats since adversaries can leverage
them to infer private information about the users/systems
who generated the graph data. As shown by recent research,
anonymized graph data can be successfully de-anonymized in
large-scale by structure-based De-Anonymization (DA) attacks
[1][5][6][7].

To understand “the underlying reason for the success of
existing structure-based DA attacks”, recently, the concept of
graph data de-anonymizability quantification has garnered sig-
nificant research [5][8][9][10][11], where researchers study the
following: based on graph data’s structural information, why
graph data can be de-anonymized, what are the DA conditions,

and how many users are de-anonymizable, i.e., graph data de-
anonymizability quantification can quantitatively examine how
vulnerable/de-anonymizable any (anonymized) graph dataset
is given its structure. Therefore, graph data de-anonymizability
quantification techniques can be employed to examine the the-
oretically achievable vulnerability of both raw and anonymized
graph data, and can thus evaluate the effectiveness of an
anonymization scheme. Furthermore, the quantification results
can serve as auxiliary information that is useful for future
anonymization technique design and DA attack evaluation.

However, existing de-anonymizability quantifications
[5][8][9][10][11] are limited due to some of the following
reasons. First, most existing quantification techniques are
either fully based on seed information, e.g., [8][10][11], or
do not consider seed information at all, e.g., [5][9], which
is an incomplete approach to graph data de-anonymizability
analysis. Second, most existing quantification techniques are
based on an impractical data model (e.g., the Erdös-Rényi
(ER) model) and/or make impractical assumptions (e.g.,
dense seeds are available). Finally, all the existing techniques
do not take into account the structural/topological importance
of users in their quantifications. In practice, different users
may have very different structural importance, e.g., the users
with the maximum and minimum degrees are structurally
different [2][12]. Therefore, existing quantification results
are incomplete with regards to quantifying graph data’s
actual/precise structure-based de-anonymizability, i.e., they
are inaccurate in quantifying graph data’s actual vulnerability
to structure-based DA attacks (we summarize existing de-
anonymizability quantification techniques and discuss their
limitations in detail in Sections II).

Contributions. To address the limitations of existing tech-
niques, we study the structural importance-aware Relative
De-anonymizability (RD) of graph data in this paper. Instead
of treating all the users as equivalent, we quantify the de-
anonymizability of anonymized graph data adaptively and
accurately by taking into account users’ structural differences.
Specifically, our contributions are summarized as follows.

1) We introduce the concept of structural importance-
aware RD of graph data. Specifically, we formally define
θ-RD and (θ, ϵ)-RD of graph data, where θ indicates the
target DA users according to their structural importance
and ϵ characterizes the tolerated DA error by a DA
scheme.



2) Under a general data model, we quantify the seed-based
RD of graph data for both perfect DA (de-anonymizing
all the target users) and partial DA (where some DA er-
ror is tolerated). Our seed-based quantification provides
the most accurate theoretical foundation for the success
of existing seed-based DA attacks (e.g.,[1][2][3]).

3) Under a general data model, we also quantify the seed-
free RD of graph data for both perfect DA and partial
DA. Our seed-free quantification provides the most ac-
curate theoretical foundation for the success of existing
seed-free DA attacks (e.g., [4][5]).

4) Leveraging 15 real world graph datasets, we conduct
a large-scale evaluation of our RD quantification tech-
niques. We also evaluate the performance our quantifica-
tions against that of state-of-the-art quantification tech-
niques. The evaluation results demonstrate that our struc-
tural importance-aware RD quantification techniques are
more sound and accurate when measuring graph data’s
real vulnerability/de-anonymizability.

The reminder of this paper is as follows. In Section II, we
summarize the related work. The system model and prelim-
inaries are given in Section III. We quantify seed-based and
seed-free RD of graph data in Sections IV and V, respectively.
The large-scale evaluation is conducted in Section VI. We
conclude this paper in Section VII.

II. RELATED WORK

A. Graph Data DA

In [3], Backstrom et al. proposed both active and passive
DA attacks to graph data based on subgraph pattern matching.
Later, Narayanan and Shmatikov proposed the first scalable
and robust two-phase DA attack in [1], where the first phase
is used for seed identification and the second phase is for
DA propagation. In addition, Narayanan et al. studied how to
perform link DA in [13] leveraging node/user DA. In [14],
Nilizadeh et al. extended the attack in [1] and presented a
community-enhanced DA attack. In [6], Srivatsa and Hicks p-
resented three two-phase attacks similar to [1] to de-anonymize
contact graphs (constructed from mobility traces). In [2], Ji
et al. proposed another seed-based two-phase DA framework.
There are also seed-free DA attacks, e.g., in [5], a seed-free
optimization-based DA attack is designed. In [7], Ji et al.
developed SecGraph, a uniform and open-source evaluation
system for graph anonymization and de-anonymization.

B. De-anonymizability Quantification

1) Seed-based Quantification: In [10], Yartseva and Gross-
glauser quantified the de-anonymizability of graph data by
analyzing a percolation-based graph matching algorithm under
the Erdös-Rényi (ER) random graph model G(n, p) (a random
graph consists of n nodes/users, and an edge exists between
any pair of nodes with probability p). However, it is seldom
to see that any real world graph data following the ER model
(if not possible) [5][12], the quantification under the ER
model is only mathematically meaningful but not practical.
Nevertheless, it can shed light on more practical quantification.

Another limitation of [10] is that it leverages seed-associated
structural information for de-anonymizability quantification. In
fact, as shown in [9][5], graph data is de-anonymizable based
solely on data’s structural information, i.e., without seeds.

Following the same direction, Korula and Lattanzi con-
ducted another seed-based de-anonymizability quantification
of graph data under both the ER model and the Preferential
Attachment (PA) model [11]. However, the quantification in
[11] is valid under a strong assumption of existing dense
seeds (Θ(ι · n) available seeds, ι ∈ (0, 1] is a constant),
which is not true for real world DA attacks. Recently, Ji et
al. also quantified the seed-based de-anonymizability of social
networks [8] under the ER model and a statistical model.

2) Seed-free Quantification: In [9], Pedarsani and Gross-
glauser quantified the de-anonymizability of graph data under
the ER model. Again, the quantification is under the math-
ematical ER model, which cannot be applied to real world
graph data [5][12]. Ji et al. improved the quantification in [9].
Similar to [9], the authors did not employ seeds neither.

III. SYSTEM MODEL, DEFINITIONS, AND PRELIMINARIES

In this section, we present the system model for RD quan-
tification. To provide consistency, we employ the same data
model, assumptions, and notations with existing quantification
work [5][9][10][11].

A. Data Model

Since we focus on structure-based de-anonymizability quan-
tification, we model the anonymized data as a graph denoted
by Ga = (V a, Ea), where V a = {i|i is an anonymized user}
is the user set and Ea = {eai,j |i, j ∈ V a} is the edge/link set
[5][8][9][10][11]. To de-anonymize Ga, we assume there is an
auxiliary graph Gu = (V u, Eu) available, where V u = {i|i
is a known user} and Eu = {eui,j |i, j ∈ V u} are the user and
edge/link sets, respectively [5][8][9][10][11]. As indicated in
[1][5][6][8][13], Gu is widely available and can be obtained
through multiple means, e.g., online crawling, data aggrega-
tion, regular data publishing by companies and government
agencies, advertising, and third-party applications.

For facilitating our quantification, we restate the two as-
sumptions in [5][8][9][10][11]. First, we assume V a = V u

although we do not know the exact mappings between the
users in V a and V u. Note that, this assumption does not
limit existing works [5][8][9][10][11] nor our quantification.
In the case that V a ̸= V u, we can simply make V a = V u by
adding users in V u \ V a (resp., V a \ V u) to V a (resp. V u)
as isolated nodes (with degree of 0). Second, following the
first assumption, we assume that Ga and Gu are two sampled
graphs of an underlaying conceptual graph G = (V,E),
where V = V a = V u = {i|i is a physical user} and
E = {ei,j |i, j ∈ V } characterizes the possible real world
physical relationships (edges/links) among the users in V . For
instance, given a group of people, their Facebook network
mainly carries their friendship relation while their LinkedIn
network mainly carries their career connections. Mathemat-
ically, this assumption can be formalized as ∀ei,j ∈ E,



Pr(ei,j ∈ Ea) = sa and Pr(ei,j ∈ Eu) = su, where sa and
su are the sampling probabilities of Ga and Gu, respectively.
Note that, the second assumption is only for the mathematical
purpose of conveniently quantifying the structural similarity
between Ga and Gu and does not limit the generality of our
quantification1. Even without this assumption, the derivations
in [8][5][9][10][11] and this paper are still valid, however,
they will be much more complicated (in that scenario, we
need to define more functions to characterize and calculate
the structural similarity between Ga and Gu).

Now, we define some useful notations. We assume |V | =
n and |E| = m. ∀i ∈ V , we define its neighborhood and
degree as Ni = {j|ei,j ∈ E} and di = |Ni|, respectively.
Without loss of generality, we assume di ≤ dj for i < j,
which implies d1 ≤ d2 ≤ · · · ≤ dn. ∀U ⊆ V , we define
nU = |U |, EU = {ei,j ∈ E|i, j ∈ U} be the set of edges
among the users in U , and mU = |EU |. Furthermore, ∀U ⊆ V ,
we use δU1 and δU2 to denote its smallest and second smallest
degrees of the users in U , respectively, and use ∆U

1 and ∆U
2

to denote its largest and second largest degrees of the users
in U , respectively. For instance, when U = V , δU1 = d1,
δU2 = d2, ∆U

1 = dn, and ∆U
2 = dn−1. Given U,W ⊆ V and

U∩W = ∅, we define the set of cross edges between U and W
as EU,W = {ei,j ∈ E|i ∈ U, j ∈ W}, and mU,W = |EU,W |.

To make our quantification general, as done in [5], we
assume G follows the configuration model [12], under which
G can have an arbitrary degree sequence that follows any dis-
tribution. For ∀i, j ∈ V , let pi,j be the probability of an edge
existing between i and j. Then, following the key property of
the configuration model, we have pi,j =

didj

2m−1 ≃
as m→∞

didj

2m .
For ∀U ⊆ V , we define lU = min{pi,j |i, j ∈ U} and
hU = max{pi,j |i, j ∈ U} be the minimum and maximum
existing probabilities of the edges in EU , respectively. Fur-
thermore, given i ∈ V , U ⊆ V , and i /∈ U , we define
li,U = min{pi,j |j ∈ U} and hi,U = max{pi,j |j ∈ U} be
the minimum and maximum existing probabilities of the edges
in E{i},U .

In the following discussion of this paper, to minimize confu-
sion, we use i, ei,j , di, Ni, and other notations interchangeably
in the contexts of G, Ga, and Gu. For some specific scenarios,
we use superscripts ‘a’ and ‘u’ to distinguish between the
contexts of Ga and Gu, respectively.

B. Relative De-anonymizability

Now, we formally define RD. First, we formally define a DA
attack. Given Ga and Gu, a DA attack is defined as a mapping
[5], [8], [9]: σ : V a → V u as shown in Fig.1 (which indicates
a mapping form Ga to Gu), i.e., σ = {(i, σ(i))|i ∈ V a}.

1In practice, Ga may be obtained by anonymizing the raw data using
any graph anonymization technique. Meanwhile, Gu may be any specific
auxiliary graph of the anonymized users. However, it is also reasonable to
consider Ga and Gu are correlated and structurally similar [2][5][9][15]. For
instance, if two users are connected on Facebook, they are also more likely
to be connected on LinkedIn compared to two arbitrary users without any
connection on Facebook. In consideration of this, we introduce and use the
conceptual graph G to simplify the characterization and formalization of the
structural similarity between Ga and Gu.
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Fig. 1. A DA attack.

Under σ, ∀i ∈ V a, σ(i) ∈ V u ∪ {⊥}, where ⊥ is a special
not existing indicator. Furthermore, ∀eai,j ∈ Ea, let σ(eai,j) =
eσ(i),σ(j) and ∀U ⊆ Ea, σ(U) = {σ(eai,j)|eai,j ∈ U}. Since
we assume V a = V u, we define i ∈ V a is successfully de-
anonymized if σ(i) = i. Then, given a mapping σ, we say it
is a k-error DA, denoted by σk, if there are k users that are
incorrectly de-anonymized, i.e., exists k mappings (i, σ(i)) in
σ such that σ(i) ̸= i. Specifically, when k = 0, σ0 is called
the perfect DA.

As we discussed before, in a given G, different users
have different structural importance for structural DA attacks.
Therefore, instead of treating all the users the same as done
in previous quantifications [5][8][9][10][11], we study this
problem under a more general context, where we quantify
the de-anonymizability of users adaptively according to their
relative structural importance. According to the empirical
results in [2], a user with a higher degree implies it has higher
structural importance, e.g., closeness centrality, betweenness
centrality [12]. Therefore, we measure users’ structural impor-
tance according to their degrees. Then, we define G’s θ-RD
as follows.

Definition III.1. θ-RD and θ-relative DA. Given G, Ga,
Gu and θ ∈ [0, 1], let Vθ = {n, n − 1, · · · , (1 − θ)n + 1}
be the users in G with top θn degrees (without loss of
generality, we assume θn is an integer value). Then, Ga (or
equivalently, G) is θ-relatively de-anonymizable if all the users
in Vθ are perfectly de-anonymizable based on their structural
information carried by Ga and Gu. Furthermore, given σ, if
all the users in Vθ are perfectly de-anonymized, σ is a θ-
relative DA.

From the above definition, we can see that when θ = 0,
θ-RD turns to be the de-anonymizability definition considered
in [5][8]-[11]. Therefore, the quantification problem studied in
[5][8]-[11] can be considered as a special case of θ-relative
DA (we formally state this later). To make our quantification
more applicable, we also consider the scenario that σ tolerates
some DA error, indicated by ϵ ∈ [0, θ], as follows.

Definition III.2. (θ, ϵ)-RD and (θ, ϵ)-relative DA. Given
G,Ga, Gu, θ, and ϵ ∈ [0, θ], Ga (or G) is (θ, ϵ)-relative
de-anonymizable if at least (θ − ϵ)n users in Vθ can be
perfectly de-anonymized based on their structural information.
Furthermore, σ is a (θ, ϵ)-relative DA if at least (θ−ϵ)n users
in Vθ are perfectly de-anonymized under σ.

To measure the performance of a de-anonymization attack
σ, we use the edge difference between Ga and Gu under σ [5],
[8], [9], which is defined as Ψσ = |σ(Ea)\Eu|+ |σ−1(Eu)\



Ea|, i.e., Ψσ counts the number of edges that appeared in
one graph (Ga/Gu) while not appearing in another graph
(Gu/Ga). Furthermore, ∀U ⊆ E, the edge difference between
Ga and Gu associated with edges in U under σ is defined as
Ψσ:U = |σ(Ua) \ Uu|+ |σ−1(Uu) \ Ua|.

IV. SEED-BASED RD QUANTIFICATION

In this section, we study the scenario that an adversary has
some seed knowledge. We denote the known seed set as S =
{i|i ∈ V, i is a seed} and let Λ = |S|. For simplicity, we
first assume that Ga and Gu are sampled versions of G with
the same sampling probability s, i.e., sa = su = s. Then, we
extend our quantification to the case that sa ̸= su.

A. θ-RD

For ∀i ∈ V \ S, let li = li,S , hi = hi,S . Define
fs
s = min

i∈Vθ\S,j∈V \(S∪{i})

s(li(1−hjs)+lj(1−his)−2hi(1−s))2

8(li(1−hjs)+lj(1−his)+2hi(1−s)) . We

quantify the condition to de-anonymize a user given S as
follows.

Theorem 1. For ∀i ∈ V \S, if s > max
j∈V \(S∪{i})

2hi−li−lj
2hi−lihj−ljhi

and Λ = Ω( 2 lnn+1
fs
s

), then it is asymptotically almost surely
(a.a.s.)2 that i is perfectly de-anonymizable given S.

Proof Sketch: ∀v ∈ S, Pr(ei,v ∈ E) = pi,v under the con-
figuration model. Furthermore, for mapping (i, i), ei,v causes
an edge difference if it is sampled into one graph (Ga/Gu)
while not into the other (Gu/Ga). Therefore, we have Pr(ei,v
induces one edge difference to mapping (i, i)) = 2pi,vs(1−s).
Similarly, if i is incorrectly de-anonymized to some j ̸= i,
then we have Pr(ei,v/ej,v induces one edge difference to
mapping (i, j)) = pi,vs(1 − pj,vs) + pj,vs(1 − pi,vs). Let
Ei,S = {ei,v|v ∈ S}, X be a random variable counting the
edge differences for mapping (i, i) caused by edges in Ei,S ,
and Y be a random variable counting the edge differences for
mapping (i, j ̸= i) caused by edges in Ei,S and Ej,S . Then,
we have X ∼

∑
v∈S

B(1, 2pi,vs(1 − s)) ≤ B(Λ, 2his(1 − s))

and Y ∼
∑
v∈S

B(1, pi,vs(1 − pj,vs) + pj,vs(1 − pi,vs)) ≥

B(Λ, lis(1−hjs)+ ljs(1−his)), where B(·, ·) is a binomial
distribution. Let λX and λY be the mean values of X and
Y , respectively. Since s > max

v∈S,j∈V \S,j ̸=i

pi,v−pj,v

2pi,v(1−pj,v)
, we

have λY > λX . Then, applying the Pedarsani-Grossglauser
Lemma [9], we have Pr(X ≥ Y ) ≤ 2 exp(− (λY −λX)2

8(λX+λY ) ) ≤
2 exp(−Λfs

s ) ≤ 2 exp(−2 lnn−1) ≤ 1
n2 . Since

∑
n≥1

π2

6 ≤ ∞,

according to the Borel-Cantelli Lemma, Pr(X ≥ Y ) →
n→∞

0 ⇔ Pr(X < Y ) →
n→∞

1, i.e., i is perfectly de-anonymizable
based on the edge difference relative to S. 2

Note that, the conclusion in Theorem 1 is valid not only
for any user in Vθ \ S but also for any user in V \ S. Now,
based on Theorem 1, we quantify a stronger conclusion, which
indicates the condition to perfectly de-anonymize all the users

2Asymptotically almost surely (a.a.s.) implies that as n → ∞, with
probability goes to 1 an event happens.

in Vθ \S, i.e., the θ-RD of Ga. Let Es be the event that there
is at least one incorrectly de-anonymized user in Vθ \S. Then,
we have the following theorem.

Theorem 2. If s > max
i∈Vθ\S,j∈V \(S∪{i})

2hi−li−lj
2hi−lihj−ljhi

and Λ =

Ω( 2 lnn+ln 2θn
fs
s

), it is a.a.s. that Pr(Es) →
n→∞

0, i.e., Ga is
θ-relatively de-anonymizable.

Proof Sketch: Based on the Boole’s in-
equality and Theorem 1, we have Pr(Es) ≤∑
i∈Vθ\S

Pr(i is incorrectly de-anonymized) ≤∑
i∈Vθ\S

2 exp(−Λfs
s ) ≤ 2θn exp(−Λfs

s ) ≤ 1
n2 . Then,

according to the Borel-Cantelli Lemma, we have
Pr(Es) →

n→∞
0. 2

B. (θ, ϵ)-RD

Now, we study the DA that tolerates some DA error, i.e., the
(θ, ϵ)-RD of Ga. Let Vθ−ϵ = {n, n−1, · · · , (1+ ϵ−θ)n+1}.
Then, we demonstrate the quantification in Theorem 3.

Theorem 3. If s > max
i∈Vθ−ϵ\S,j∈V \(S∪{i})

2hi−li−lj
2hi−lihj−ljhi

and

Λ = Ω( 2 lnn+ln 2(θ−ϵ)n
fs
s

), it is a.a.s. that Ga is (θ, ϵ)-relatively
de-anonymizable.

Proof Sketch: To prove this theorem, it is sufficient to
quantify the condition under which there exists a perfectly de-
anonymizable subset of Vθ of size at least (θ− ϵ)n. Here, we
consider Vθ−ϵ since the users in this set have higher structural
importance, i.e., they carry more structural information. Let
Es
ϵ be the event that there is at least one incorrectly de-

anonymized user in Vθ−ϵ. Thus, it is sufficient to prove that it
is a.a.s. Pr(Es

ϵ ) →
n→∞

0. Then, based on similar arguments as
in Theorem 2, this theorem can be proven. 2

C. Extension: sa ̸= su

In the previous quantification, we assume sa = su = s.
In reality, it is possible that sa ̸= su. Now, we quantify
the θ-RD and (θ, ϵ)-RD of Ga in this case. Let fs

sa,su =
min

i∈Vθ\S,j∈V \(S∪{i})
((2hi−lihj−ljhi)sasu+(li−hi)sa+(lj−hi)su)

2

8((li+hi)sa+(lj+hi)su−(2hi+lihj+ljhi)sasu)
. We have the fol-

lowing theorem. The proof is omitted due to the space limi-
tations.

Theorem 4. Suppose sasu
sa+su

> max
i∈Vθ\S,j∈V \(S∪{i})

hi−min{li,lj}
2hi−lihj−ljhi

. Then, (i) if Λ = Ω( 2 lnn+1
fs
sa,su

), it is a.a.s.
that i is perfectly de-anonymizable given S; (ii) if Λ =
Ω( 2 lnn+ln 2θn

fs
sa,su

), it is a.a.s. that Ga is θ-relatively de-

anonymizable; and (iii) if Λ = Ω( 2 lnn+ln 2(θ−ϵ)n
fs
sa,su

), it is a.a.s.
that Ga is (θ, ϵ)-relatively de-anonymizable.

V. SEED-FREE RD QUANTIFICATION

In the previous section, we studied seed-based RD quantifi-
cation. In this subsection, we study seed-free RD quantifica-



tion. Again, for simplicity, we first assume sa = su = s and
then extend to the case that sa ̸= su.

A. θ-RD

Let l = lV , lθ = lVθ
, hθ = hVθ

, κ = (1− θ)n and σκ be a
θ-relative DA. Furthermore, let k ∈ [1, θn] and σκ+k be a DA
such that k users are incorrectly de-anonymized. Define fs =
s((l+lθ)(1−hθs)−2hθ(1−s))2

8((l+lθ)(1−hθs)+2hθ(1−s)) . We have the following theorem.

Theorem 5. If s > 2hθ−lθ−l
hθ(2−lθ−l) and fs = Ω( 2 lnn+1

θkn−k2/2−k ), then
statistically, Pr(Ψσκ < Ψσκ+k

) →
n→∞

1, i.e., it is a.a.s. that a
θ-relative DA induces less edge difference than any DA which
incorrectly de-anonymizes some users in Vθ.

Proof Sketch: Let EVθ
= E \ EVθ

. Then, according to the
edge difference definition, we have Ψσ = Ψσ:EVθ

+ Ψσ:EVθ

for any σ. Since we only focus on de-anonymizing the users
in Vθ, statistically, to prove Pr(Ψσκ < Ψσκ+k

) →
n→∞

1, it is
sufficient to prove Pr(Ψσκ:EVθ

< Ψσκ+k:EVθ
) →
n→∞

1. This is
because Ψσκ:EVθ

=
statistically,n→∞

Ψσκ+k:EVθ
.

Let X = Ψσκ:EVθ
and Y = Ψσκ+k:EVθ

be two random
variables. Furthermore, under σκ+k, let C ⊂ Vθ and I ⊆ Vθ

be the sets of users that are correctly and incorrectly de-
anonymized, respectively. Evidently, C ∪ I = Vθ, C ∩ I = ∅,
and EVθ

= EC ∪ EI ∪ EC,I . For ei,j ∈ EI , it is a
transposition edge if (i, j), (j, i) ∈ σκ+k. Let Et = {ei,j |ei,j
is a transposition edge under σκ+k} and mt = |Et|. Then,
mt ≤ k/2. Let mθ = |Eθ| =

(
n
2

)
, mC = |EC | =

(
θn

θn−k

)
,

mI = |EI | =
(
k
2

)
, and mC,I = |EC,I | = k(θn − k).

Now, ∀ei,j ∈ EVθ
, it contributes one to X if it is existed

and sampled into exactly one of Ga and Gu. Thus, X ∼∑
ei,j∈EVθ

B(1, 2pi,js(1 − s)). Similarly, ∀ei,j ∈ EC ∪ Et, it

contributes one to Y if it is existed and sampled into exactly
one of Ga and Gu. ∀ei,j ∈ EC,I ∪ (EI \ Et), it contributes
one to Y if ei,j (or, σ(ei,j)) is appeared in Ga (or, Gu) while
σ(ei,j) (or, ei,j) is not appeared in Gu (or, Ga). Let qi,j =
pσκ+k(i),σκ+k(j), we have Y ∼

∑
ei,j∈EC∪Et

B(1, 2pi,js(1 −

s))+
∑

ei,j∈EC,I∪(EI\Et)

B(1, pi,js(1−qi,js)+qi,js(1−pi,js)).

Let X ′ ∼
∑

ei,j∈EC,I∪(EI\Et)

B(1,

2pi,js(1 − s)) ≤ B(mC,I + mI − mt, 2hθs(1 − s)) and
Y ′ ∼

∑
ei,j∈EC,I∪(EI\Et)

B(1, pi,js(1 − qi,js) + qi,js(1 −

pi,js)) ≥ B(mC,I +mI − mt, s(l + lθ)(1 − hθs)). Thus,
Pr(X < Y ) = Pr(X ′ < Y ′). Let λX′ and λY ′ be the mean
values of X ′ and Y ′, respectively. Then, since s > hθ−l

hθ(1−l) ,
λX′ < λY ′ . Thus, based on the Pedarsani-Grossglauser
Lemma [9], Pr(X ′ ≥ Y ′) ≤ 2 exp(− (λY ′−λX′ )2

8(λX′+λY ′ )
) ≤ 2 exp(−

(θkn − k2/2 − k)fs) ≤ 2 exp(−2 lnn − 1) ≤ 1
n2 . Thus,

according to the Borel-Cantelli Lemma, Pr(X ′ ≥ Y ′) →
n→∞

0,
i.e., Pr(X ′ < Y ′) = Pr(X < Y ) =

statistically,n→∞
Pr(Ψσκ <

Ψσκ+k
) →
n→∞

1. 2

In theorem 5, we quantified the condition such that

TABLE I
DATA STATISTICS.

Name Type n m ρ d

Google+ SN 4,692,671 90,751,480 8.24E-6 38.7
LiveJournal SN 4,847,571 68,993,773 3.70E-6 17.9

YouTube SN 1,134,890 2,987,624 4.64E-6 5.3
Orkut SN 3,072,441 117,185,083 2.48E-5 76.3
Pokec SN 1,632,803 30,622,564 1.67E-5 27.3

Facebook SN 63,731 817,090 4.02E-4 25.6
Flickr SN 80,513 5,899,882 1.82E-3 146.6

Foursquare SN 639,014 3,214,986 1.57E-5 10.1
Twitter SN 456,631 14,855,875 1.20E-4 54.8
Gowalla LSN 196,591 950,327 4.92E-5 9.7
AstroPh Collab. 18,772 396,160 1.23E-3 22.0
Enron Email 36,692 183,831 3.19E-4 10.7
EuAll Email 265,214 420,045 1.35E-5 3.0
Skitter AS 1,696,415 11,095,298 7.73E-6 13.1

Gnutella P2P 26,518 65,369 1.86E-4 4.9

Pr(Ψσκ < Ψσκ+k
) for any σκ+k. Now, we quantify the θ-

RD of Ga. To achieve this, statistically, we need to show the
uniqueness of σκ, i.e., @σκ+k such that Ψσκ+k

≤ Ψσκ . We
give the quantification in Theorem 6. The proof is omitted
due to the space limitations.

Theorem 6. If s > 2hθ−lθ−l
hθ(2−lθ−l) and fs =

Ω( 2 lnn+(k+1) ln θn+1
θkn−k2/2−k ), then statistically, it is a.a.s. that

@σκ+k such that Ψσκ+k
≤ Ψσκ , i.e., it is a.a.s. that Ga is

θ-relatively de-anonymizable.

B. (θ, ϵ)-RD

Now, we study the RD of Ga when some error is tolerated.
We show the quantification in Theorem 7, where the proof is
omitted due to the space limitations.

Theorem 7. If s > 2hθ−ϵ−lθ−ϵ−l
hθ−ϵ(2−lθ−ϵ−l) and fs =

Ω( 2 lnn+(k+1) ln(θ−ϵ)n+1
(θ−ϵ)kn−k2/2−k ), it is a.a.s. that Ga is (θ, ϵ)-

relatively de-anonymizable.

C. Extension: sa ̸= su

In Theorems 5, 6, and 7, we consider the case
that sa = su. When sa ̸= su, let fsa,su =
((2−l−lθ)hθsasu+(lθ−hθ)sa+(l−hθ)su)

2

8((lθ+hθ)sa+(l+hθ)su−(2+l+lθ)hθsasu)
. We quantify the RD of

Ga as follows. The proof is omitted due to the space limita-
tions.

Theorem 8. Statistically, (i) if sasu
sa+su

> hθ−l
hθ(2−lθ−l) and

fsa,su = Ω( 2 lnn+1
θkn−k2/2−k ), Pr(Ψσκ < Ψσκ+k

) →
n→∞

1; (ii)

if sasu
sa+su

> hθ−l
hθ(2−lθ−l) and fsa,su = Ω( 2 lnn+(k+1) ln θn+1

θkn−k2/2−k ),
it is a.a.s. that Ga is θ-relatively de-anonymizable;
and (iii) if sasu

sa+su
> hθ−ϵ−l

hθ−ϵ(2−lθ−ϵ−l) and fsa,su =

Ω( 2 lnn+(k+1) ln(θ−ϵ)n+1
(θ−ϵ)kn−k2/2−k ), it is a.a.s. that Ga is (θ, ϵ)-

relatively de-anonymizable.

VI. LARGE-SCALE EVALUATION

A. Datasets

To validate our quantification techniques, we employ 15 real
world graph datasets (which are obtained from Stanford SNAP
[16]/ASU Data Repository [17], and have been used in the



latest quantification work [5], [8]) as shown in Table I, where
n indicates the number of nodes (users), m is the number of
edges (links/relationships), ρ is the graph density, and d is the
average degree of each node. The 15 datasets are generated
from various computer systems/services. We briefly introduce
the datasets as follows.
• Social Network Graph (SN). Google+ is a social

networking and identity service that is owned and operated by
Google. LiveJournal is a social networking service where users
can keep a blog, journal, or diary. YouTube is a popular video-
sharing service/website where users can share their videos with
friends, family, and the world. Orkut is a social networking
service which is designed to help users meet new and old
friends and maintain existing relationships. Pokec is one of
the most popular online social networking services in Slovakia.
Facebook is one of the most popular online social networking
services in the world, where users can create their profiles, add
other as “friends”, exchange messages, post status updates and
photos, share videos, and receive notifications when others
update their profiles. Flickr is an image and video hosting
website/social network service. Foursquare is a local search
and discovery mobile service which provides a personalized
local search experience for its users. Twitter is an online social
networking service that enables users to send and read short
140-character messages called “tweets”.
• Location-based Social Network (LSN) Graph. Gowalla

is a location-based social networking service, where users are
able to check in at “Spots” in their local vicinity, either through
a dedicated mobile application or through the mobile website.
• Collaboration (Collab.) Graph. AstroPh is from the e-print
arXiv and covers scientific collaborations between authors-
papers submitted to the Astro Physics category.
• Email Graph. Enron is an email graph that was originally

made public and posted to the web by the Federal Energy
Regulatory Commission during its investigation. EuAll is an
email graph that was generated using the email data from a
large European research institution.
• Autonomous System (AS) Graph. Skitter is an Internet

topology graph.
• P2P Graph. Gnutella is the network topology graph of

the P2P network Gnuttella.

B. Evaluation Methodology

To ensure that our results can be fairly compared with those
in [5], [8], we use the same evaluation setup as in [5], [8], i.e.,
we do not preprocess the employed datasets, e.g., removing
low-degree users. Furthermore, as in [5], [8], we assume sa =
su = s for convenience. Note that this assumption does not
limit the generality of our evaluation. All the evaluations can
be extended to the case of sa ̸= su directly.

In our evaluation, we mainly focus on evaluating the impacts
of θ and s on the inherent de-anonymizability of each dataset
using our quantifications in Section IV and Section V, i.e., how
theoretically de-anonymizable the users of each dataset are
with respect to their structural properties. Let Ξ be a DA attack
without any computational limitation and Ξ de-anonymizes Ga

leveraging Gu by minimizing the edge difference function Ψσ

defined in Section III. Therefore, the output DA scheme of Ξ
is the mapping scheme σ∗ such that σ∗ = argmin

σ
Ψσ, i.e.,

σ∗ has the minimum edge difference among all the possible
DA schemes3. Then, statistically, each evaluation result in this
section can be considered as the performance lower bound of
Ξ under a specific setting of θ and s.

C. Seed-based RD Evaluation

In this subsection, we evaluate the seed-based RD of the 15
datasets. The number of available seeds is assumed to be 50,
i.e., Λ = 50. To simplify the evaluation process, we take the
users with the top-50 degrees in each dataset as the seeds.

1) RD versus θ: When s = 0.6 and Λ = 50, we evaluate
the seed-based RD of each dataset with respect to different θ as
shown in Table II, where each value indicates the percentage
of users that can be successfully de-anonymized. From Table
II, we have the following observations.

When θ increases, the seed-based RD of each dataset de-
creases. For instance, when θ = 0.05 (i.e., the target DA users
are the top-5% users with respect to degree), 100% of target
users of Google+ can be successfully de-anonymized, while
when θ = 0.45 (the target users now are the top-45% users
with respect to degree), the successfully de-anonymizable
target users of Google+ are decreased to 60.1%. The reason
is that when θ increases, more users with relatively low
degrees become target users of DA. However, less structural
information is available for the the new considered low-degree
users, and thus the RD of each dataset decreases.

Generally, the datasets with higher average degree (i.e., d)
and graph density (i.e., ρ) are more de-anonymizable than the
datasets with lower average degree and graph density. For
instance, as shown in Table I, Google+ has a similar size
with LiveJournal. However, Google+ has a higher average
degree/graph density than LiveJournal. According to Table
II, Google+ is more de-anonymizable than LiveJournal, e.g.,
when θ = 0.3, 94.6% target users of Google+ can be de-
anonymized while 57.2% target users of LiveJournal can be
de-anonymized. This is because Google+ has a larger d/ρ,
and thus more structural information is available to uniquely
and correctly distinguish the users in Google+ compared to
LiveJournal.

2) RD versus s: When θ = 0.5, the seed-based de-
anonymizability of the 15 datasets under different s is shown
in Table III, where each value indicates the percentage of target
users that can be successfully de-anonymized. From Table III,
we have the following observations.

When s increases, more users can be successfully de-
anonymized. For instance, when s = 0.4, 23.7% of the
target users of Google+ can be successfully de-anonymized
and when s = 0.7, the ratio of target users that can be

3Given Ga and Gu, it is intuitively that there are at most n! possible DA
schemes, i.e., at most n! mapping schemes from V a to V u. Then, if there is
no computational limitation on Ξ, Ξ can minimize Ψσ by examining all the
n! possible DA schemes.



TABLE II
SEED-BASED DE-ANONYMIZABILITY ANALYSIS (s = .6,Λ = 50).

θ = .05 .1 .15 .2 .25 .3 .35 .4 .45

Google+ 100% 100% 100% 100% 100% 94.6% 79.8% 68.7% 60.1%
LiveJournal 100% 100% 100% 88.7% 69.8% 57.2% 48.2% 41.4% 36.1%

YouTube 100% 98.1% 64.5% 47.6% 37.5% 30.8% 26.0% 22.3% 19.5%
Orkut 100% 100% 100% 100% 100% 100% 100% 98.5% 86.0%
Pokec 100% 100% 100% 100% 87.3% 71.4% 60.0% 51.5% 44.9%

Facebook 100% 100% 100% 100% 99.6% 84.6% 71.2% 61.2% 53.3%
Flickr 100% 100% 100% 100% 100% 100% 100% 100% 100%

Foursquare 100% 100% 99.9% 76.4% 60.2% 49.4% 41.7% 35.8% 31.3%
Twitter 100% 100% 100% 100% 100% 100% 100% 93.7% 81.9%
Gowalla 100% 100% 93.4% 69.0% 54.3% 44.5% 37.5% 32.2% 28.1%
AstroPh 99.9% 99.9% 99.9% 99.7% 95.3% 78.7% 66.2% 56.8% 49.5%
Enron 99.9% 99.9% 99.8% 84.8% 66.8% 54.8% 46.2% 39.8% 34.8%
EuAll 100% 79.0% 52.0% 38.5% 30.3% 24.9% 21.0% 18.1% 15.8%
Skitter 100% 100% 100% 76.6% 60.4% 49.5% 41.7% 35.9% 31.3%

Gnutella 99.5% 71.7% 48.6% 36.9% 29.9% 25.3% 22.0% 19.4% 17.5%

TABLE III
SEED-BASED DE-ANONYMIZABILITY ANALYSIS (θ = .5,Λ = 50).

s = .35 .4 .45 .5 .55 .6 .65 .7 .75

Google+ 18.4% 23.7% 29.7% 36.6% 44.4% 53.2% 63.0% 74.0% 86.3%
LiveJournal 9.9% 13.2% 17.0% 21.3% 26.3% 31.9% 38.2% 45.1% 52.9%

YouTube 6.1% 7.9% 9.8% 12.0% 14.5% 17.2% 20.3% 23.6% 27.2%
Orkut 21.5% 29.1% 38.2% 48.9% 61.5% 76.0% 92.5% 100% 100%
Pokec 10.5% 14.5% 19.4% 25.2% 31.8% 39.5% 48.3% 58.1% 69.2%

Facebook 12.3% 17.4% 23.3% 30.2% 38.1% 47.1% 57.1% 68.2% 80.5%
Flickr 46.7% 62.3% 80.2% 99.5% 100% 100% 100% 100% 100%

Foursquare 9.3% 12.2% 15.4% 19.1% 23.1% 27.7% 32.6% 38.0% 43.8%
Twitter 23.6% 31.0% 39.5% 49.1% 60.1% 72.5% 86.4% 100% 100%
Gowalla 7.9% 10.5% 13.4% 16.8% 20.6% 24.8% 29.6% 34.9% 40.8%
AstroPh 9.6% 14.8% 20.5% 27.2% 34.9% 43.6% 53.4% 64.4% 76.5%
Enron 9.7% 13.1% 16.9% 21.0% 25.6% 30.7% 36.3% 42.5% 49.4%
EuAll 5.4% 6.8% 8.4% 10.1% 11.9% 14.0% 16.3% 18.7% 21.4%
Skitter 9.5% 12.3% 15.5% 19.1% 23.2% 27.7% 32.8% 38.4% 44.7%

Gnutella 7.2% 8.3% 9.6% 11.3% 13.4% 16.0% 19.0% 22.6% 26.8%

TABLE IV
SEED-FREE DE-ANONYMIZABILITY ANALYSIS (s = .6).

θ = .05 .1 .15 .2 .25 .3 .35 .4 .45

Google+ 100% 100% 100% 87.4% 75.8% 67.7% 61.6% 56.8% 52.9%
LiveJournal 94.0% 63.6% 51.3% 44.2% 39.5% 36.0% 33.4% 31.2% 29.5%

YouTube 51.7% 34.8% 27.9% 23.9% 21.2% 19.3% 17.8% 16.6% 15.6%
Orkut 100% 100% 100% 100% 100% 100% 91.9% 85.0% 79.4%
Pokec 99.9% 73.3% 60.6% 53.0% 47.9% 44.1% 41.1% 38.7% 36.7%

Facebook 99.7% 98.3% 81.3% 69.8% 62.1% 56.4% 52.1% 48.6% 45.8%
Flickr 100% 100% 100% 100% 100% 100% 100% 100% 100%

Foursquare 89.5% 59.0% 46.8% 39.9% 35.4% 32.0% 29.4% 27.4% 25.7%
Twitter 100% 100% 100% 100% 100% 99.1% 89.7% 82.2% 76.3%
Gowalla 73.2% 49.6% 39.9% 34.3% 30.6% 27.9% 25.8% 24.1% 22.7%
AstroPh 96.3% 85.0% 70.7% 61.7% 55.5% 50.8% 47.2% 44.3% 41.9%
Enron 97.1% 68.6% 54.1% 45.9% 40.4% 36.5% 33.5% 31.1% 29.1%
EuAll 46.4% 30.4% 23.9% 20.2% 17.8% 16.1% 14.7% 13.7% 12.8%
Skitter 91.1% 59.3% 46.8% 39.8% 35.2% 31.9% 29.3% 27.3% 25.7%

Gnutella 18.7% 17.4% 16.4% 15.7% 15.1% 14.7% 14.3% 14.0% 13.8%

successfully de-anonymized is increased to 74%. This is
because a large s implies more common edges are shared by
Ga (the anonymized graph) and Gu (the auxiliary graph), i.e.,
more structural similarity between Ga and Gu. Hence, more
users in Ga can be successfully de-anonymized leveraging the
increased structural similarity between Ga and Gu.

Even if s is small, a significant number of users within
each dataset can still be successfully de-anonymized, e.g.,
18.4% target users of Google+ and 46.7% target users of
Flickr can be successfully de-anonymized when s = 0.35.

This demonstrates that structure-based DA is very powerful.
Therefore, in addition to protect the semantic information
carried by graph data, the data’s structural information is also
important and deserves dedicated consideration/protection.

Similar to analyze Table II, if a dataset has higher av-
erage degree and/or graph density, it is more vulnerable to
structure-based DA attacks, e.g., Flickr is more vulnerable than
Google+. The reason is the same as analyzed before: higher
average degree and/or graph density imply more structural
information can be used for conducting successful DA.



TABLE V
SEED-FREE DE-ANONYMIZABILITY ANALYSIS (θ = .5).

s = .35 .4 .45 .5 .55 .6 .65 .7 .75

Google+ 15.8% 20.6% 26.3% 32.9% 40.7% 49.8% 60.3% 72.6% 86.9%
LiveJournal 8.1% 10.9% 14.2% 18.1% 22.7% 28.0% 34.1% 41.2% 49.2%

YouTube 5.1% 6.5% 8.2% 10.2% 12.3% 14.8% 17.5% 20.6% 24.0%
Orkut 18.0% 25.0% 33.7% 44.7% 58.2% 74.8% 94.8% 100% 100%
Pokec 8.3% 11.7% 16.0% 21.2% 27.5% 35.0% 44.0% 54.6% 67.1%

Facebook 9.8% 14.2% 19.7% 26.2% 34.1% 43.4% 54.2% 66.8% 81.3%
Flickr 43.1% 60.1% 80.8% 99.9% 100% 100% 100% 100% 100%

Foursquare 7.7% 10.2% 13.0% 16.4% 20.1% 24.3% 29.2% 34.5% 40.5%
Twitter 20.5% 27.4% 35.7% 45.7% 57.5% 71.3% 87.6% 100% 100%
Gowalla 6.5% 8.7% 11.2% 14.2% 17.6% 21.6% 26.1% 31.2% 37.1%
AstroPh 6.5% 11.6% 16.9% 23.2% 30.8% 39.8% 50.4% 62.8% 77.0%
Enron 7.9% 10.9% 14.4% 18.2% 22.6% 27.5% 33.1% 39.4% 46.5%
EuAll 4.5% 5.8% 7.1% 8.6% 10.3% 12.1% 14.1% 16.3% 18.8%
Skitter 7.9% 10.3% 13.1% 16.4% 20.1% 24.3% 29.1% 34.7% 41.0%

Gnutella 6.5% 7.4% 8.5% 9.8% 11.5% 13.6% 16.0% 19.1% 22.9%

D. Seed-free RD Evaluation

1) RD versus θ: When we fix s = 0.6, the seed-free RD of
the 15 datasets given different θ is shown in Table IV. From
Table IV, we have the following observations.

Generally, all the datasets are completely or partially de-
anonymizable even if there is no seed information available,
i.e., the considered graph datasets are completely/partially de-
anonymizable based only on their structural information. For
instance, when θ = 0.3, 94.6%, 84.6%, and 100% target users
of Google+, Facebook, and Twitter can be successfully de-
anonymized, respectively. This is because, as shown in our
de-anonymizability quantification, the structural information
associated with users (especially high-degree users) is suf-
ficient to uniquely distinguish them with a high probability.
Therefore, our seed-free RD quantification provides the the-
oretical foundation for the success of emerging seed-free DA
attacks, e.g., Bayesian-based attack [4] and optimization-based
attack [5].

When θ increases, the target users of each dataset (except
for Flickr) become less de-anonymizable. For instance, 69.8%
target users of Facebook are de-anonymizable when θ = 0.2
while 48.6% target users of Facebook are de-anonymizable
when θ = 0.4. The reason is the same as analyzed in the seed-
based DA scenario: with the increase of θ, more relatively
low-degree users become to target DA users. However, less
structural information can be employed to de-anonymize the
relatively low-degree users, followed by the decrease of the
percentage of the de-anonymizable users in each dataset.

When comparing the results in Table IV (the seed-free
scenario) with the results in Table II (the seed-based scenario),
we find that each dataset is more de-anonymizable in the seed-
based scenario than that in the seed-free scenario, which is
consistent with the intuition given the same θ. For instance,
when θ = 0.3, 84.6% target users of Facebook can be
successfully de-anonymized in the seed-based DA scenario
while 56.4% target users of Facebook can be successfully de-
anonymized in the seed-free DA scenario. Therefore, although
the carried structural information of graph data is sufficient
to conduct large-scale successful DA, we conclude that the
available seed information can improve the DA performance.
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Fig. 2. Comparisons with state-of-the-art quantification techniques [5], [8].

Similar to the seed-based DA scenario, if a dataset has
higher average degree and/or graph density, it is also more de-
anonymizable in the seed-free DA scenario. Again, the reason
is due to the carried richer structural information.

2) RD versus s: When fixing θ = 0.5, the seed-free RD of
the 15 datasets with respect to different s is shown in Table
V, from which we have the following observations.

Similar to the seed-based DA scenario, with the increase
of s, all the datasets become more de-anonymizable. For
instance, when s = 0.35, 15.8% target users of Google+ can
be successfully de-anonymized while when s = 0.75, 86.9%
target users of Google+ can be successfully de-anonymized.
The reason is also the same as in the seed-based DA scenario:



a large s implies Ga is more structurally similar to Gu, and
thus more users in Ga can be successfully de-anonymized
leveraging Gu.

When comparing Table V (the seed-free scenario) with
Table III (the seed-based scenario), we find that each dataset
is more de-anonymizable when having seed information avail-
able. For instance, when s = 0.5, 49.1% target users of
Twitter can be successfully de-anonymized in the seed-based
DA scenario while 45.7% target users of Twitter can be
successfully de-anonymized in the seed-free DA scenario.
Again, the reason is straightforward: the available seed users
can provide more accurate auxiliary information in the DA.

Due to the same reason as analyzed before, the datasets
with the higher average degree and/or graph density are more
de-anonymizable than the datasets with lower average degree
and/or graph density.

E. Comparisons with State-of-the-Art Quantifications

In this subsection, we experimentally compare our Seed-
Based RD quantification (SBRD) with the state-of-the-art
seed-based de-anonymizability quantification technique in
[8], denoted by SBD, and compare our Seed-Free RD
quantification (SFRD) with the state-of-the-art seed-free de-
anonymizability quantification technique in [5], denoted by
SFD. Since the common datasets employed in [5], [8], and
this paper are Google+, LiveJournal, Orkut, Twitter, Gowalla,
Enron, and Skitter, we employ these 7 datasets to conduct
the comparative evaluation study. When comparing SBD and
SBRD, we select 50 top-degree users from each dataset to
serve as seeds. Furthermore, in all the evaluation, we set
s = sa = su = 0.6 for convenience.

Leveraging the 7 datasets, we show the seed-based de-
anonymizability evaluation results of SBD and SBRD in
Fig.2 (a) and show the seed-free de-anonymizability evaluation
results of SFD and SFRD in Fig.2 (b). From Fig.2, we make
the following observations.

When comparing SBD with SBRD (Fig.2 (a)), we find
that all the 7 datasets are actually more de-anonymizable
under SBRD that under SBD. Therefore, the results implies
the seed-based DA conditions obtained in this paper are
more accurate/tighter than that in [8]. The reason is because
instead of considering all the users structurally equivalent, we
adaptively quantify the de-anonymizability of users according
to their structural importance.

Similarly, when comparing SFD and SFRD (Fig.2 (b)), all
the datasets are more de-anonymizable under SFRD than under
SFD, which implies our seed-free RD quantification technique
is more accurate than that in [5]. The reason is the same as
in the seed-based de-anonymizability quantification scenario:
adaptively considering users’ structural importance enables us
to quantify the de-anonymizability of graph data in a more
accurate manner.

Remark. For sparse graph datasets (e.g., LiveJournal), the
improvements of our relative quantifications are not very
significant compared with state-of-the-art quantifications. This
is because less structural information is carried by sparse

graphs, i.e., they are inherently more resistant to structure-
based DA attacks. The most notable contribution of our RD
quantifications is that we fundamentally/theoretically provide
more accurate/tighter seed-based and seed-free DA bounds for
anonymized graph data than state-of-the-art quantifications.

VII. CONCLUSION

In this paper, we study the structural importance-aware RD
quantification problem for graph data. Specifically, we quan-
tify both the seed-based and the seed-free RD of anonymized
graph data for both perfect DA (de-anonymizing all the target
users) and partial de-anonymizaiton (tolerating some DA error)
under a general graph model. In our quantification, instead of
treating all the users in a graph dataset as structurally equiv-
alent, we adaptively quantify their actual de-anonymizability
in terms of their structural importance. Leveraging 15 real
world graph datasets, we evaluate our relative quantifications
and compare them with state-of-the-art seed-based and seed-
free quantification techniques. The results demonstrate that our
structural importance-aware relative quantifications are more
accurate when measuring graph data’s real de-anonymizability.
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