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Abstract. We present a novel de-anonymization attack on mobility
trace data and social data. First, we design an Unified Similarity (US)
measurement, based on which we present a US based De-Anonymization
(DA) framework which iteratively de-anonymizes data with an accura-
cy guarantee. Then, to de-anonymize data without the knowledge of the
overlap size between the anonymized data and the auxiliary data, we
generalize DA to an Adaptive De-Anonymization (ADA) framework. Fi-
nally, we examine DA/ADA on mobility traces and social data sets.

1 Introduction

Social networking is a fast-growing business sector nowadays. To protect users’
privacy, social network owners usually anonymize data by removing “Personally
Identifiable Information (PII)” before releasing the data to the public. However,
this data anonymization is vulnerable to a new social auxiliary information based
data de-anonymization attack [1][2][3]. For example, just recently, it was report-
ed that poorly anonymized logs revealed New York City cab drivers’ detailed
whereabouts (June 23, 2014) [5].

A few de-anonymization attacks have been designed for social data [1][2] or
mobility trace data [3]. In [1], Backstrom et al. proposed active and passive
attacks on social data. Since the proposed active attack relies on sybil nodes
to obtain auxiliary information before social data release, it is not practical as
analyzed in [2]. For the passive attack designed in [1], it is workable however
not scalable [2]. In [2], Narayanan and Shmatikov showed a de-anonymization
attack on social network data which can be modeled by directed graphs (where
direction information carried by data can be viewed as free auxiliary information
for adversaries). In [3], Srivatsa and Hicks presented the first de-anonymization
attack to mobility traces by using social networks as a side-channel. Our work
improves existing works in some or all of the following aspects. First, we signifi-
cantly improve the de-anonymizaiton accuracy and decrease the computational
complexity by proposing a novel Core Matching Subgraphs (CMS) based adap-
tive de-anonymization strategy. Second, besides utilizing nodes’ local property,
we incorporate nodes’ global property into de-anonymization without incurring
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high computational complexity. Furthermore, we also define and apply two new
similarity measurements in the proposed de-anonymization technique. Finally,
the de-anonymization algorithm presented in this work is a much more general
attack framework. It can be applied to both mobility trace data and social data,
directed and undirected data graphs, and weighted and unweighted data sets.
We give the detailed analysis and remarks in the related work (due to space
limitation, we put the related work in the Technical Report [17] of this paper).

In summary, our main contributions are as follows1. (i) We define three
de-anonymization metrics, namely structural similarity, relative distance sim-
ilarity, and inheritance similarity, (ii) Toward effective de-anonymization, we
define a Unified Similarity (US) measurement by collectively considering the de-
fined structural similarity, relative distance similarity, and inheritance similari-
ty. Subsequently, we propose a US based De-Anonymization (DA) framework,
by which we iteratively de-anonymize the anonymized data with an accura-
cy guarantee provided by a de-anonymization threshold and a mapping control
factor. (iii) To de-anonymize data without the knowledge on the overlap size
between the anonymized data and the auxiliary data, we generalize DA to an
Adaptive De-Anonymization (ADA) framework. (iv) We apply the presented
de-anonymization framework to mobility traces and social data sets. The exper-
imental results demonstrate that the presented de-anonymization attack is very
effective and robust. For instance, 93.2% of the users in Infocom06 [13] can be
successfully de-anonymized given one seed mapping, and 58% of the users in
Google+ can be de-anonymized given five seed mappings.

2 Preliminaries and Model

Anonymized Data Graph. In this paper, we consider anonymized data which
can be modeled by an undirected graph2, denoted by Ga = (V a, Ea,W a), where
V a = {i|i is a node} is the node set (e.g., users in an anonymized Google+
graph [10]), Ea = {lai,j |i, j ∈ V a, and there is a tie between i and j} is the
set of all the links existing between any two nodes in V a (a link could be a
friend relationship such as in Google+ [10]), and W a = {wa

i,j |i, j ∈ V a, lai,j ∈
Ea, wa

i,j is a real number} is the set of possible weights associated with links in
Ea (e.g., in a coauthor graph, the weight of a coauthor relationship could be the
number of coauthored papers). If Ga is an unweighted graph, we simply define
wa

i,j = 1 for each link lai,j ∈ Ea.
For ∀i ∈ V a, we define its neighbor set as Na(i) = {j ∈ V a|laij ∈ Ea}. Then,

∆a
i = |Na(i)| represents the number of neighbors of i in Ga. For ∀i, j ∈ V a, let

pa(i, j) be a shortest path from i to j inGa and |pa(i, j)| be the number of links on

1 Due to the space limitation, we put more discussion and experimental results in the
Technical Report [17] of this paper.

2 Note that, the de-anonymization algorithm designed in this paper can also be applied
to directed graphs directly by overlooking the direction information on edges, or by
incorporating the edge-direction based de-anonymizatoin heuristic in [2] which could
obtain better accuracy.
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pa(i, j) (the number of links passed from i to j through pa(i, j)). Then, we define
Pa
i,j = {pa(i, j)} the set of all the shortest pathes between i and j. Furthermore,

we define the diameter of Ga as Da = max{|pa(i, j)|∀i, j ∈ V a, pa(i, j) ∈ Pa
i,j},

i.e., the length of the longest shortest path in Ga.
Auxiliary Data Graph. As in [2][3][4], we assume the auxiliary data is the

information crawled in current online social networks, e.g., the “follow” relation-
ships on Twitter [2], the “friend” relationships on Facebook [3], etc. Furthermore,
similar as the anonymized data, the auxiliary data can also be modeled as an
undirected graph Gu = (V u, Eu,Wu), where V u is the node set, Eu is set of all
the links (relationships) among the nodes in V u, and Wu is the set of possible
weights associated with the links in Eu. As the definitions on the anonymized
graph Ga, we can define the neighborhood of ∀i ∈ V u as Nu(i), the shortest
path set between i ∈ V u and j ∈ V u as Pu(i, j) = {pu(i, j)}, and the diameter
of Gu as Du = max{|pu(i, j)|∀i, j ∈ V u, pu(i, j) ∈ Pu(i, j)}.

In addition, we assume Ga and Gu are connected. Note that this is not a lim-
itation of our scheme. The designed de-anonymization attack is also applicable
to the case where Ga or Gu is not connected. We will discuss this in Section 4.

Attack Model. Our de-anonymization objective is to map the nodes in the
anonymized graph Ga to the nodes in the auxiliary graph Gu as accurate as
possible. Formally, let γ(v) be the objective reality of v ∈ Ga in the physical
world. Then, an ideal de-anonymization can be represented by mapping Φ :
Ga → Gu, such that for v ∈ Ga, Φ(v) = v′ if v′ = Φ(v) ∈ V u and Φ(v) =⊥
if Φ(v) /∈ V u, where ⊥ is a special not existing indicator in the auxiliary data
graph. Now, let M = {(v1, v′1), (v2, v′2), · · · , (vn, v′n)} be the outcome of a de-
anonymization attack such that vi ∈ V a,∪vi = V a, n = |V a| (i = 1, 2, · · · , n)
and v′i = Φ(vi), v

′
i ∈ V u ∪ {⊥} (i = 1, 2, · · · , n). Then, the de-anonymization

on vi is said to be successful if Φ(vi) = γ(vi) when γ(vi) ∈ V u or Φ(vi) =⊥
when γ(vi) /∈ V u; and failure if Φ(vi) ∈ {u|u ∈ V u, u ̸= γ(vi)} ∪ {⊥} when
γ(vi) ∈ V u or Φ(vi) ̸=⊥ when γ(vi) /∈ V u. In this paper, we are aiming to design
a de-anonymization attack with a high success rate (accuracy).

3 De-anonymization

From a macroscopic view, the designed de-anonymization attack framework con-
sists of two phases: seed selection and mapping propagation. In the seed selec-
tion phase, we identify a small number of seed mappings from the anonymized
graph Ga to the auxiliary graph Gu serving as landmarks to bootstrap the de-
anonymization. In the mapping propagation phase, we de-anonymize Ga through
synthetically exploiting multiple similarity measurements.

Seed Selection and Mapping Spanning. Seed selection is possible in our
de-anonymization framework because of three reasons. The first reason is the
common availability of huge amounts of social data, which is an open and rich
source for obtaining a small number of seeds. For instance, the data published for
academic and government data mining may also release some auxiliary informa-
tion [4]. The second reason is the existence of multiple effective channels to obtain
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a small number of seed mappings (actually, we can obtain much richer auxiliary
information), e.g., data leakage [2][4], third party applications [2], etc. The third
reason is that a small number of seed mappings is sufficiently helpful (or e-
nough depends on the required accuracy) to our de-anonymization framework.
As shown in our experiments, a small number of seed mappings (sometimes even
one seed mapping) are sufficient to achieve highly accurate de-anoymization. In
our de-anonymization framework, we can select a small number of seed map-
pings by employing multiple seed selection strategies [1][2][3][4] individually or
collaboratively, e.g., launching a small scale sybil attack [1][2], compromising a
small number of nodes [1][2][3], third party applications [6][7][8], etc.

Since seed selection is not our primary contribution in this paper, we assume
we have identified κ seed mappings by exploiting the aforementioned strategies
individually or collaboratively, denoted byMs = {(s1, s′1), (s2, s′2), · · · , (sκ, s′κ)},
where si ∈ V a, s′i ∈ V u, and s′i = Φ(si). In the mapping propagation phase, we
start with the seed mappingMs and propagate the mapping (de-anonymization)
to the entire Ga iteratively. Let M0 = Ms be the initial mapping set and
Mk (k = 1, 2, · · · ) be the mapping set after the k-th iteration. To facilitate our
discussion, we first define some terminologies as follows.

Let Ma
k =

|Mk|∪
i=1

{vi|(vi, v′i) ∈ Mk} and Mu
k =

|Mk|∪
i=1

{v′i|(vi, v′i) ∈ Mk} \ {⊥

} be the sets of nodes that have been mapped until iteration k in Ga and
Gu, respectively. Then, we define the 1-hop mapping spanning set of Ma

k as
Λ1(Ma

k ) = {vj ∈ V a|vj /∈ Ma
k and ∃vi ∈ Ma

k s.t. vj ∈ Na(vi)}, i.e., Λ1(Ma
k )

denotes the set of nodes in Ga that have some neighbor been mapped and
themselves not been mapped yet. To be general, we can also define the δ-
hop mapping spanning set of Ma

k as Λδ(Ma
k ) = {vj ∈ V a|vj /∈ Ma

k and ∃vi ∈
Ma

k s.t. |pa(vi, vj)| ≤ δ}, i.e., Λδ(Ma
k ) denotes the set of nodes in Ga that are

at most δ hops away from some node been mapped and themselves not been
mapped yet. Here, δ(δ = 1, 2, · · · ) is called the spanning factor in the mapping
propagation phase of the proposed de-anonymization framework. Similarly, we
can define the 1-hop mapping spanning set and δ-hop mapping spanning set for
Mu

k as Λ1(Mu
k ) = {v′j ∈ V u|v′j /∈ Mu

k and ∃v′i ∈ Mu
k s.t. v′j ∈ Nu(v′i)} and

Λδ(Mu
k ) = {v′j ∈ V u|v′j /∈ Mu

k and ∃v′i ∈ Mu
k s.t. |pu(v′i, v′j)| ≤ δ}, respec-

tively. Based on the defined δ-hop mapping sets Λδ(Ma
k ) and Λδ(Mu

k ), we try
to seek a mapping Φ which maps the anonymized nodes in Λδ(Ma

k ) to some
nodes in Λδ(Mu

k ) ∪ {⊥} iteratively in the mapping propagation phase of our
de-anonymization framework.

Structural Similarity. Since both anonymized data and the auxiliary data
can be modeled by graphs, the structural/topological characteristics could be
a reference for coarse granularity (high level) de-anonymization. Here, coarse
granularity de-anonymization implies for an anonymized node v ∈ V a, we de-
anonymize it by mapping it to some nodes {v′|v′ ∈ V u ∪ {⊥} and v′ in Gu is
structurally similar to v in Ga} even the ideal one-to-one mapping cannot be
achieved. Structural characteristics based coarse granularity de-anonymization
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is meaningful since we can employ further techniques to refine the coarse gran-
ularity de-anonymization and finally de-anonymize v exactly.

In graph theory, the concept of centrality to measure the topological impor-
tance and characteristic of a node within a graph is often used. In this paper,
we employ three centrality measurements to capture the topological property of
a node in Ga or Gu, namely degree centrality, closeness centrality, and between-
ness centrality. In the case that the considered data is modeled by a weighted
graph, we also define the weighted version of the three centrality measurements.
Furthermore, to demonstrate the aforementioned topological properties, we will
employ an example data set (St Andrews [11]), which consists of a mobility trace
data set of 27 users and a Facebook network of the same 27 users. The mobility
trace data set has 18,241 WiFi records. We use the method in [3] to construct
an anonymized graph on the 27 users based on the mobility trace data and take
the Facebook network as the auxiliary data.

Degree Centrality and Weighted Degree Centrality. The degree centrality is
defined as the number of ties that a node has in a graph. For instance, in the
considered anonymized data graph, the degree centrality of v ∈ V a is defined
as dv = ∆a

v = |Na(v)|. We calculate the degree centrality of the nodes in St
Andrews and their counterparts in Facebook, and the result is shown in Fig.1
(a). From Fig.1 (a), we observe that the degree centrality distributions of the
anonymized graph and auxiliary graph are similar, which implies degree central-
ity can be used for de-anonymization. On the other hand, multiple nodes in both
graphs may have similar degree centrality, which suggests that degree centrality
can be used for coarse granularity de-anonymization.

When the data being considered is modeled by a weighted graph, the weights
on links provide extra information in characterizing the centrality of a node. In
this case, the degree centrality defined for an unweighted graph cannot properly
reflect a node’s structural importance [9]. To consider both the number of links
associated with a node and the weights on these links, we define the weighted

degree centrality for v ∈ V a as wdv = ∆a
v(

∑
u∈Na(v)

wa
v,u

∆a
v

)α, where α is a positive

tuning parameter that can be set according to the research setting and data [9].
Basically, when 0 ≤ α ≤ 1, high degree is considered more important, whereas
when α ≥ 1, weight is considered more important. Similarly, we can define the

weighted degree centrality for v′ ∈ V u as wdv′ = ∆u
v′(

∑
u′∈Nu(v′)

wu
v′,u′

∆u
v′

)α.

Closeness Centrality and Weighted Closeness Centrality. From the definition
of degree centrality, it indicates the local property of a node since only the adja-
cent links are considered. To fully characterize a node’s topological importance,
some centrality measurements defined from a global view are also important
and useful. One manner to count a node’s global structural importance is by
closeness centrality, which measures how close a node is to other nodes in a
graph and is defined as the ratio between n− 1 and the sum of its distances to
all other nodes. In the definition, n is the number of nodes and distance is the
length in terms of hops from a node to another node in a graph. Formally, for
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(c) Betweenness centrality
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(f) sI(v, v
′)

Fig. 1. Structural/relative distance/inheritance similarity.

v ∈ V a, its closeness centrality cv is defined as cv = |V a|−1∑
u∈V a,u ̸=v

|pa(v,u)| . Similarly,

the closeness centrality cv′ of v′ ∈ V u is defined as cv′ = |V u|−1∑
u′∈V u,u′ ̸=v′

|pu(v′,u′)| .

Fig.1 (b) demonstrates the closeness centrality score of the nodes in St An-
drews and their counterparts in the corresponding social graph Facebook. From
Fig.1 (b), the closeness centrality distribution of nodes in the anonymized graph
generally agrees with that in the auxiliary graph, which suggests that closeness
centrality can be a measurement for de-anonymization. In the case that the data
being considered is modeled by a weighted graph, we generalize the weighted

closeness centrality for v ∈ V a and v′ ∈ V u as wcv = |V a|−1∑
u∈V a,u ̸=v

|pa
w(v,u)| and

wcv′ = |V u|−1∑
u′∈V u,u′ ̸=v′

|pu
w(v′,u′)| , respectively, where paw(·, ·)/puw(·, ·) is the shortest

path between two nodes in a weighted graph.

Betweenness Centrality and Weighted Betweenness Centrality. Besides close-
ness centrality, betweenness centrality is another measure indicating a node’s
global structural importance within a graph, which quantifies the number of
times a node acts as a bridge (intermediate node) along the shortest path be-
tween two other nodes. Formally, for v ∈ V a, its betweenness centrality bv

in Ga is defined as bv = 2
(|V a|−1)(|V a|−2) ·

∑
x̸=v ̸=y

σa
xy(v)

σa
xy

, where x′, y′ ∈ V a,

σa
xy = |Pa(x, y)| is the number of all the shortest paths between x and y in

Ga, and σa
xy(v) = |{pa(x, y) ∈ Pa(x, y)|v is an intermediate node on path

pa(x, y)}| is the number of shortest paths between x and y in Ga that v lies
on. Similarly, the betweenness centrality bv′ of v′ ∈ V u in Gu is defined as

bv′ = 2
(|V u|−1)(|V u|−2) ·

∑
x′ ̸=v′ ̸=y′

σu
x′y′ (v

′)

σu
x′y′

.
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According to the definition, we obtain the betweenness centrality of nodes
in St Andrews as shown in Fig.1 (c). From Fig.1 (c), the nodes in Ga and
their counterparts in Gu agree highly on betweenness centrality. Consequently,
betweenness centrality can also be employed in our de-anonymization frame-
work for distinguishing mappings. For the case that the considering data is
modeled as a weighted graph, we define the weighted betweenness centrality

for v ∈ V a and v′ ∈ V u as wbv = 2
(|V a|−1)(|V a|−2) ·

∑
x ̸=v ̸=y

σwa
xy (v)

σwa
xy

and wbv′ =

2
(|V u|−1)(|V u|−2) ·

∑
x′ ̸=v′ ̸=y′

σwu
x′y′ (v

′)

σwu
x′y′

, respectively, where σwa
xy and σ

wa(v)
xy (respec-

tively, σwu
x′y′ and σ

wa(v′)
x′y′ ) are the number of shortest paths between x and y

(respectively, x′ and y′) and the number of shortest paths between x and y
(respectively, x′ and y′) passing v (respectively, v′) in the weighted graph Ga

(respectively, Gu).

Structural Similarity. From the analysis on real data sets, the local and
global structural characteristics carried by degree, closeness, and betweenness
centralities of nodes can guide our de-anonymization framework design. Fol-
lowing this direction, to consider and utilize nodes’ structural property inte-
grally, we define a unified structural measurement, namely structural similar-
ity, to jointly count two nodes’ both local and global topological properties.
First, for v ∈ V a and v′ ∈ V u, we define two structural characteristic vec-
tors Sa(v) and Su(v′) respectively in terms of their (weighted) degree, close-
ness, and betweenness centralities as follows: Sa(v) = [dv, cv, bv, wdv, wcv, wbv]
and Su(v′) = [dv′ , cv′ , bv′ , wdv′ , wcv′ , wbv′ ]. In Sa(v), if Ga is unweighted, we set
wdv = wcv = wbv = 0; otherwise, we first count dv, cv, and bv by assuming Ga is
unweighted, and then count wdv, wcv, and wbv in the weightedGa. We also apply
the same method to obtain Su(v′) in Gu. Based on Sa(v) and Su(v′), we define
the structural similarity between v ∈ V a and v′ ∈ V u, denoted by sS(v, v

′), as

the cosine similarity between Sa(v) and Su(v′), i.e., sS(v, v
′) = Sa(v)·Su(v′)

∥Sa(v)∥∥Su(v′)∥ ,

where · is the dot product and ∥ · ∥ is the magnitude of a vector.

The structural similarity between the nodes in St Andrews and its auxil-
iary network Facebook is shown in Fig.1 (d), where Counterpart represents
sS(v, v

′ = γ(v)) indicating the structural similarity between v ∈ V a and it-
s objective reality γ(v) in Gu, Min represents min{sS(v, x′)|x′ ∈ V u, x′ ̸=
γ(v)}, Max represents max{sS(v, x′)|x′ ∈ V u, x′ ̸= γ(v)}, and Avg represents

1
|V u|−1

∑
x′∈V u,x′ ̸=γ(v)

sS(v, x
′). From Fig.1 (d), we have the following two basic

observations. (i) For some nodes with distinguished structural characteristics,
e.g., nodes 2, 16, 24, they agree with their counterparts and disagree with oth-
er nodes in the auxiliary graphs significantly. Consequently, this suggests that
these nodes can be de-anonymized even just based on their structural charac-
teristics. In addition, this confirms that structural properties can be employed
in de-anonymization attacks. (ii) For the nodes with indistinctive structural
similarities, e.g., nodes 7, 10, 22, 26, exact node mapping relying on structural
property alone is difficult or impossible to achieve from the view of graph the-
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ory. Fortunately, even if this is true, structural characteristics can also help us
to differentiate these indistinctive nodes from most of the other nodes. Hence,
structural similarity based coarse granularity de-anonymization is practical.

Relative Distance Similarity. In the first phase, we select an initial seed
mapping M0 = Ms = {(s1, s′1), (s2, s′2), · · · , (sκ, s′κ)}. This apriori knowledge
can be used to conduct more confident ratiocination in de-anonymization. There-
fore, for v ∈ V a \Ma

0 , we define its relative distance vector, denoted by Da(v)
to the seeds in Ma

0 = {s1, s2, · · · , sκ} as Da(v) = [Da
1(v), D

a
2(v), · · · , Da

κ(v)],

where Da
i (v) =

|pa(v,si)|
Da is the normalized relative distance between v and seed

si. Similarly, based on the initial seed set Mu
0 = {s′1, s′2, · · · , s′κ} in Gu, we can

define the relative distance vector for v′ ∈ V u \ Mu
0 to the seeds in Mu

0 as

Du(v′) = [Du
1 (v

′), Du
2 (v

′), · · · , Du
κ(v

′)], where Du
i (v

′) =
|pu(v′,s′i)|

Du is the normal-
ized relative distance between v′ and seed s′i. Again, we can define the relative dis-
tance similarity between v ∈ V a\Ma

0 and v′ ∈ V u\Mu
0 , denoted by sD(v, v′), as

the cosine similarity betweenDa(v) andDu(v′), i.e., sD(v, v′) = Da(v)·Du(v′)
∥Da(v)∥∥Du(v′)∥ .

For St Andrews/Facebook, by assuming Ms = {(i, i)|i = 1, 2, · · · , 6} (which
implies Ma

0 = Mu
0 = {1, 2, 3, 4, 5, 6}), we can obtain the relative distance sim-

ilarity scores between the nodes in V a \ Ma
0 and the nodes in V u \ Mu

0 as
shown in Fig.1 (e). From Fig.1 (e), we can observe the following facts. (i) Some
anonymized nodes (which may be indistinctive with respect to structural simi-
larity), e.g., nodes 14, 19, 23, highly agree with their counterparts and meanwhile
disagree with other nodes in the auxiliary graph, which suggests that they can
be de-anonymized successfully with a high probability by employing the relative
distance similarity based metric. (ii) For some nodes, e.g., nodes 11, 21, 26, 27,
they are indistinctive on the relative distance similarity with respect to the ini-
tial seed selection {1, 2, 3, 4, 5, 6}. To distinguish them, extra effort is expected,
e.g., by utilizing structural similarity collaboratively, employing another seed s-
election, etc. (ii) The nodes that are significantly distinguishable with respect
to structural similarity may be indistinctive with respect to relative distance
similarity, and vice versa. This inspires us to design a proper and effective multi-
measurement based de-anonymization framework.

Inheritance Similarity. Besides the initial seed mapping, the de-anonymized
nodes during each iteration, i.e., Mk, could provide further knowledge when
de-anonymize Λδ(Ma

k ). Therefore, for v ∈ Λδ(Ma
k ) and v′ ∈ Λδ(Mu

k ), we de-
fine the knowledge provided by the currently mapped results as the inheri-
tance similarity, denoted by sI(v, v

′). Formally, sI(v, v
′) can be quantified as

sI(v, v
′) = C

|Nk(v,v′)| · (1 − |∆a
v−∆u

v′ |
max{∆a

v ,∆
u
v′}

) ·
∑

(x,x′)∈Nk(v,v′)

s(x, x′) if Nk(v, v
′) ̸= ∅,

and sI(v, v
′) = 0, otherwise, where C ∈ (0, 1) is a constant value representing

the similarity loss exponent, Nk(v, v
′) = (Na(v)×Nu(v′)) ∩Mk = {(x, x′)|x ∈

Na(v), x′ ∈ Nu(v′), (x, x′) ∈ Mk} is the set of mapped pairs between Na(v) and
Nu(v′) till iteration k, and s(x, x′) ∈ [0, 1] is the overall similarity score between
x and x′ which is formally defined in the following subsection.

From the definition of sI(v, v
′), we can see that (i) if two nodes have more

common neighbors which have been mapped, then their inheritance similarity
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score is high; (ii) we also count the degree similarity in defining sI(v, v
′). If the

degree difference between v and v′ is small, then a large weight is given to the
inheritance similarity; otherwise, a small weight is given; and (iii) we involve
the similarity loss in counting sI(v, v

′), which implies the inheritance similarity
is decreasing with the distance increasing (iteration increasing) between (v, v′)
and the original seed mapping.

Now, for St Andrews/Facebook, if we assume half of the nodes have been
mapped (the first half according to the ID increasing order), then the inheri-
tance similarity between the rest of the nodes in the anonymized graph and the
auxiliary graph is shown in Fig.1 (f). From the result, we can observe that under
the half number of nodes been mapped assumption, some nodes, e.g., nodes 16,
19, 24, agree with their counterparts and meanwhile disagree with all the other
nodes significantly in the auxiliary graph, which implies that they are potential-
ly easier to be de-anonymized when inheritance similarity is taken as a metric.
Note that, in Fig.1 (f), we just randomly assume that the known mapping nodes
are the first half nodes in the anonymized graph and auxiliary graph. Actually,
the accuracy performance of the inheritance similarity measurement could be
improved. This is because there are no necessary correlations among the ran-
domly chosen mapping nodes in Fig.1 (f). Nevertheless, in our de-anonymization
framework, the obtained mappings in one iteration depend on the mappings in
the previous iteration. This strong correlation among mapped nodes allows for
use of the inheritance similarity in practical de-anonymizaiton.

De-anonymization Algorithm. From the aforementioned discussion, we
find that the differentiability of anonymized nodes is different with respect to dif-
ferent similarity measurements. For instance, some nodes have distinctive topo-
logical characteristics, e.g., node 16 in St Andrew, which implies they can be
potentially de-anonymized solely based on the structural similarity. On the oth-
er hand, for some nodes, due to lacking of distinct topological characteristics,
the structural similarity based method can only achieve coarse granularity de-
anonymization. Nevertheless and fortunately (from the view of adversary), they
may become significantly distinguishable with the knowledge of a small amount
of auxiliary information, e.g., nodes 14, 19, and 23 in St Andrews are poten-
tially easy to de-anonymize based on relative distance similarity. In summary,
the analysis on real data sets suggests to us to define a unified measurement
to properly involve multiple similarity metrics for effective de-anonymization.
To this end, we define a Unified Similarity (US) measurement by considering
the structural similarity, relative distance similarity, and inheritance similarity
synthetically for v ∈ Λδ(Ma

k ) and v′ ∈ Λδ(Mu
k ) in the k-th iteration of our de-

anonymization framework as s(v, v′) = cS ·sS(v, v′)+cD ·sD(v, v′)+cI ·sI(v, v′),
where cS , cD, cI ∈ [0, 1] are constant values indicating the weights of structural
similarity, relative distance similarity, and inheritance similarity, respectively,
and cS + cD+ cI = 1. In addition, we define s(v, v′) = 1 if (v, v′) ∈ Ms. Now, we
are ready to present our US based De-Anonymization (DA) framework, which
is shown in Algorithm 1.
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Algorithm 1: US based De-Anonymization (DA)

1 M0 = Ms, k = 0, flag = true;
2 while flag = true do

3 calculate Λδ(Ma
k ) and Λδ(Mu

k );

4 if Λδ(Ma
k ) = ∅ or Λδ(Mu

k ) = ∅, output Mk, break;

5 for ∀v ∈ Λδ(Ma
k ) and ∀v′ ∈ Λδ(Mu

k ), calculate s(v, v′);

6 construct a weighted bipartite graph Bk = (Λδ(Ma
k ) ∪ Λδ(Mu

k ), Eb
k,W

b
k );

7 find a maximum weighted bipartite matching M′ of Bk;

8 for every (x, x′) ∈ M′, if s(x, x′) < θ, M′ = M′ \ {(x, x′)};
9 let K = max{1, ⌈|ϵ ·M′|⌉} and for ∀(x, x′) ∈ M′, if s(x, x′) is not the Top-K mapping

score in M′ then
10 M′ = M′ \ {(x, x′)};

11 if M′ = ∅, output Mk and break;

12 Mk+1 = Mk ∪ M′, k++;

In Algorithm 1, Bk = (Λδ(Ma
k ) ∪ Λδ(Mu

k ), E
b
k,W

b
k) is a weighted bipartite

graph defined on the intended de-anonymizing nodes during the k-th iteration,
where Eb

k = {lbv,v′ |∀v ∈ Λδ(Ma
k ),∀v′ ∈ Λδ(Mu

k )}, and W b
k = {wb

v,v′} is the set of

all the possible weights on the links in Eb
k. Here, for ∀(v, v′) ∈ Eb

k, the weight on
this link is defined as the US score between the associated two nodes, i.e., wb

v,v′ =
s(v, v′). Parameter θ is a constant value named de-anonymization threshold to
decide whether a node mapping is accepted or not. Parameter ϵ ∈ (0, 1] is the
mapping control factor, which is used to limit the maximum number mappings
generated during each iteration. By ϵ, even if there are many mappings with
similarity score greater than the de-anonymization threshold, we only keep the
K = max{1, ⌈|ϵ ·M′|⌉} more confident mappings.

We give further explanation on the idea of Algorithm DA as follows. The
de-anonymization is bootstrapped with an initial seed mapping and starts the
iteration procedure. During each iteration, the intended de-anonymizing nodes
are calculated first based on the mappings obtained in the previous iteration
followed by calculating the US scores between nodes in Λδ(Ma

k ) and nodes in
Λδ(Mu

k ). Subsequently, based on the obtained US scores, a weighted bipartite
graph is constructed between nodes in Λδ(Ma

k ) and nodes in Λδ(Mu
k ). Then, we

compute a maximum weighted bipartite matching M′ on the constructed bipar-
tite graph. To improve the de-anonymization accuracy, we apply two important
rules to refine M′: (i) by defining a de-anonymization threshold θ, we eliminate
the mappings with low US scores in M′. This is because we are not confident to
take the mappings with low US scores (< θ) as correct de-anonymizaiton, and
more improtantly, they may be more accurately de-anonymized in the following
iterations by utilizing confident mapping information obtained in this iteration
(this can be achieved since we involve inheritance similarity in the US defini-
tion); and (ii) we introduce amapping control factor ϵ, orK equivalently, to limit
the maximum number of mappings been accepted as correct de-anonymization.
During each iteration, only K mappings with highest US scores will be tak-
en as correct de-anonymization with confidence even if more mappings having
US scores greater than the de-anonymizaiton threshold. This strategy has two
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benefits. On one hand, only highly confident mappings are kept, which could
improve the de-anonymization accuracy. On the other hand, for the mappings
been rejected, again, they may be better re-de-anonymized in the following iter-
ations by utilizing the more confident knowledge of the Top-K mappings from
this iteration.

Time and Space Complexities Analysis. Let n = max{|V a|, |V u|} and
m = max{|Ea|, |Eu|}. Then, according to combinatorial analysis, Algorithm 1’s
time complexity is O(n2 log n+mn) and space complexity is O(min{n2,m+n}).

4 Generalized Scalable De-anonymization

De-anonymization on Data Sets without Knowledge of Overlap Size.
One predicament in practical de-anonymization, which is omitted in existing de-
anonymization attacks, is that we do not actually know how large the overlap
between the anonymized data and the auxiliary data even we have a lot of aux-
iliary information available. Therefore, it is unadvisable to do de-anonymization
based on the entire anonymized and auxiliary graphs directly, which might cause
low de-anonymization accuracy as well as high computational overhead.

To address the aforementioned predicament, guarantee the accuracy of DA,
and simultaneously improve de-anonymization efficiency and scalability, we ex-
tend DA to an Adaptive De-Anonymization framework, denoted by ADA. ADA
adaptively de-anonymizes Ga starting from a Core Matching Subgraph (CMS),
which is formally defined as follows. Let Ms be the initial seed mapping be-
tween the anonymized graph Ga and the auxiliary graph Gu. Furthermore, de-
fine V a

s =
∪

x,y∈Ma
0

{v|v lies on pa(x, y) ∈ Pa(x, y)}, i.e., V a
s is the union of all the

nodes on the shortest paths among all the seeds in Ga, and V a
c = V a

s ∪Λδ(V a
s ),

i.e., V a
c is the union of V a

s and the δ-hop mapping spanning set of V a
s . Then, we

define the initial CMS on Ga as the subgraph of Ga on V a
c , i.e., G

a
c = Ga[V a

c ].
Similarly, we can define V u

s =
∪

x′,y′∈Mu
0

{v′|v′ lies on pu(x′, y′) ∈ Pu(x′, y′)} and

V u
c = V u

s ∪ Λδ(V u
s ). Then, the initial CMS on Gu is Gu

c = Ga[V u
c ].

The CMS is generally defined for two purposes. First, we can employ a CMS
to adaptively and roughly estimate the overlap between Ga and Gu in terms of
the seed mapping information. On the other hand, we propose to start the de-
anonymization from the CMSs, by which the de-anonymization is smartly limited
to start from two small subgraphs with more information confidence, and thus
we could improve the de-anonymization accuracy and reduce the computational
overhead.

Now, based on CMS, we discuss ADA as shown in Algorithm 2. In Algo-
rithm 2, µ is the adaptive factor which controls the spanning size of the CMS
during each adaptive iteration. The basic idea of ADA is as follows. We start
the de-anonymization from CMSs Ga

c and Gu
c by running DA. If DA is ended

with Λδ(Ma
k ) = ∅ or Λδ(Mu

k ) = ∅, then the actual overlap between Ga and
Gu might be larger than Ga

c/G
u
c since more nodes could be mapped. There-

fore, we enlarge the previous considering CMS Ga
c/G

u
c by involving more n-
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Algorithm 2: Adaptive De-Anonymization (ADA)

1 generate Ga
c and Gu

c and run DA for Ga
c and Gu

c ;

2 if Step 1 is ended on the condition that Λδ(Ma
k ) = ∅ or Λδ(Mu

k ) = ∅ then
3 if Λµ(V a

c ) = ∅ or Λµ(V u
c ) = ∅, return;

4 V a
c = V a

c ∪ Λµ(V a
c ), V a

c = V a
c ∪ Λµ(V a

c );
5 Ga

c = Ga[V a
c ], Gu

c = Gu[V u
c ];

6 go to Step 1 to de-anonymize unmapped nodes in updated Ga
c and Gu

c ;

odes in Λµ(V a
c )/Λ

µ(V u
c ) and repeat the de-anonymization for unmapped nodes.

Same as DA, the time and space complexities of ADA are O(n2 log n+mn) and
O(min{n2,m+ n}), respectively.

Disconnected Data Sets. In reality, when we employ a graph Ga/Gu to
model the anonymized/auxiliary data, Ga/Gu might be not connected. In this
case, Ga and Gu can be represented by the union of connected components as
m∪
i=1

Ga
i and

n∪
j=1

Gu
j respectively, where Ga

i and Gu
j are some connected compo-

nents. Now, when defining the structural similarity, relative distance similarity,
or inheritance similarity, we change the context from Ga/Gu to components
Ga

i /G
u
j . Then, we can apply DA/ADA to conduct de-anonymization.

5 Experiments

In this section, we examine the performance of the presented de-anonymization
attack on real data sets3. In each group of experiments, we specify the employed
setup and provide comprehensive analysis. The default settings are: α = 1.5,
C = 0.9, cS = 0.2, cD = 0.6, cI = 0.2, θ = 0.6, δ ∈ {1, 2}, µ ∈ {1, 2, 3}, ϵ = 0.5
and seed number = 5.

Data Sets. In this paper, we employ six well known data sets to examine the
effectiveness of the designed de-anonymization framework4: St Andrews/Facebook
[11][3], Infocom06/DBLP [13][3], Smallbule/Facebook [12][3], ArnetMiner [14],
Google+ [10], and Facebook [15]. St Andrews, Infocom06, and Smallbule are
three mobility trace data sets. An overview of the three mobility traces is shown
in Table 1. We employ the same techniques as in [3] to preprocess the three mo-
bility trace data sets to obtain three anonymized data graphs. To de-anonymize
the three anonymized mobility data traces, we employ three auxiliary social
network data sets [3] associated with these three mobility traces. For St An-
drews, we have a Facebook data set indicating the “friend” relationships among
the T-mote users in the trace. For Infocom06, we employ a coauthor data set
consisting of 616 authors obtained from DBLP which indicates the “coauthor”
relationships among all the attendees of INFOCOM 2005. For Smallblue, we

3 Due to the space limitation, we put the detailed experimental settings and more
results in the Technical Report [17] of this paper.

4 Not that it has been shown that the classical mobility traces of the (latitude, longi-
tude, timestamp) form can also be represented by graph models [16].
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Table 1. Mobility traces.

St Andrews Infocom06 Smallblue

Comm. network type WiFi Bluetooth IM
Comm. nodes No. 27 78 125

Contacts No. 18,241 182,951 240,665

Social network type Facebook DBLP Facebook
Social nodes No. 27 616 400

have a Facebook network among 400 employees from the same enterprise as S-
mallblue. Note that, the social network data sets corresponding to Infocom06
and Smallblue are supersets of them with respect to involved users.

We also apply the presented de-anonymization attack to social data sets:
ArnetMiner [14], Google+ [10], and Facebook [15]. ArnetMiner is an online a-
cademic social network, which consists of 1,127 authors and 6,690 “coauthor”
relationships. For each coauthor relationship, there is a weight associated with
it indicating the number of coauthored papers by the two authors. As a new
social network, Google+ was launched in early July 2011. We use two Google+
data sets which were created on July 19 and August 6 in 2011 [10], denoted by
JUL and AUG respectively. Both JUL and AUG consist of 5,200 users as well as
their profiles. In addition, there were 7,062 connections in JUL and 7,813 con-
nections in AUG. By insight analysis [10], some connections appeared in AUG
may not appear in JUL and vise versa. This is because a user may add new
connections or disable existing connections. Furthermore, the two data sets are
preprocessed as undirected graphs. Since we know the hand labeled ground truth
of JUL and AUG, we will examine the presented de-anonymization framework
by de-anonymizing JUL with AUG as auxiliary data and then de-anonymizing
AUG with JUL as auxiliary data. The Facebook data set consists of 63,731 users
and 1,269,502 “friend” relationships (links). To use this data set to examine the
presented de-anonymization attack, we will preprocess it based on the known
hand labeled ground truth.

De-anonymize Mobility Traces. By utilizing the corresponding social
networks as auxiliary information, we exploit the presented de-anonymization
algorithm DA to de-anonymize the three well known mobility traces St An-
drews, Infocom06, and Smallblue. The results are shown in Fig.2 (a)-(c), where
DA denotes the presented US-based de-anonymization framework, and DA-SS,
DA-RDS, and DA-IS represent the de-anonymization based on structural similar-
ity solely, relative distance similarity solely, and inheritance similarity solely, re-
spectively. From Fig.2 (a)-(c), we can see that (i) the presented de-aonymization
framework is very effective even with a small amount of auxiliary information.
For instance, DA can successfully de-anonymize 93.2% of the Infocom06 data
just with the knowledge of one seed mapping. For St Andrews and Smallblue,
DA can also achieve accuracy of 57.7% and 78.3% respectively with one seed
mapping. Furthermore, DA can successfully de-anonymize all the data in St An-
drews and Smallblue and 96% of the data of Smallblue with the knowledge of
7 seed mappings; and (ii) the US-based de-anonymization is much more effec-
tive and stable than structural, relative distance, or inheritance similarity solely
based de-anonymization. The reason is that US tries to distinguish a node from
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(a) St Andrews vs Facebook
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(b) Infocom06 vs DBLP
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(c) Smallblue vs Facebook
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(d) DA with noise
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(e) ArnetMiner
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(f) Google+
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Fig. 2. De-anonymize mobility traces.

multiple perspectives, which is more efficient and comprehensive. As the anal-
ysis shown in Section 3, the nodes can be easily differentiated with respect to
one measurement but might be indistinguishable with respect to another mea-
surement. Consequently, synthetically characterizing a node as in US is more
powerful and stable.

We also examine the robustness of the presented de-anonymization attack to
noise and the result is shown in Fig.2 (d) (on the knowledge of 5 seed mappings).
In the experiment, we only add noise to the anonymized data. According to
the same argument in [2], the noise in the auxiliary data can be counted as
noise in the anonymized data. To add p percent of noise to the anonymized
data, we randomly add p

2 · |Ea| spurious connections to and meanwhile delete
p
2 · |Ea| existing connections from the anonymized graph (a node may become
isolated after the noise adding process). For instance, in Fig.2 (d), 20% of noise
implies we add 10% spurious connections and delete 10% existing connections of
|Ea| from the anonymized data. From Fig.2 (d), we can see that the presented
de-anonymization framework is robust to noise. Even if we change 20% of the
connections in the anonymized data, the achieved accuracies on St Andrews,
Infocom06, and Smallblue are still 80.8%, 50.7%, and 60.8%, respectively. Note
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that, when 20% of the connections have been changed, the structure of the
anonymized data is significantly changed. In practical, if the anonymized data
release is initially for research purposes, this structural change may make the
data useless. However, by considering multiple perspectives to distinguish a node,
the anonymized data can still be de-anonymized as shown in Fig.2 (d), which
confirms the assertion in [2] that data set structure change may not provide
effective privacy protection.

De-anonymize ArnetMiner. ArnetMiner can be modeled by a weighted
graph where the weight on each relationship indicates the number of coauthored
papers by the two authors. To examine the de-anonymization framework, we first
anaonymize ArnetMiner by adding p percent noise as explained in the previous
subsection. Furthermore, for each added spurious coauthor relationship, we also
randomly generate a weight in [1, Amax], where Amax is the maximum weight
in the original ArnetMiner graph. Then, we de-anonymize the anonymized data
using the original ArnetMiner data and the result is shown in Fig.2 (e).

From Fig.2 (e), we can observe that the presented de-anonymization frame-
work is very effective on weighted data. With only knowledge of one seed map-
ping, more than a half (53.9%) and one-third (34.1%) of the authors can be
de-anonymized even with noise levels of 4% and 20%, respectively. Further-
more, when adding 20% of noise to the anonymized data, the presented de-
anonymization framework achieves 71.5% accuracy if 5 seed mappings are avail-
able and 92.8% accuracy if 10 seed mappings are available; (ii) the presented
de-anonymization framework is robust to noise on weighted data. When we have
10 or more seed mappings, the accuracy degradation of our de-anonymization
algorithm is small even with more noise, e.g., the accuracy is degraded from
99.7% in the 4%-noise case to 96% in the 20%-noise case; and (iii) if the available
number of seed mappings is 10, the knowledge brought by more seed mappings
cannot improve the de-anonymization accuracy significantly. This is because the
achieved accuracy on the knowledge of 10 seed mappings is already about 95%.
Therefore, to de-anonymize a data set, it is not necessary to spend efforts to
obtain a lot of seed mappings. As in this case, to de-anonymize most of the
authors, 5 to 10 seed mappings is sufficient.

De-anonymize Google+.Now, we validate the presented de-anonymization
framework on the two Google+ data sets JUL and AUG. We first utilize AUG
as auxiliary data to deanonymize JUL denoted by De-JUL, i.e., use future data
to de-anonymize historical data, and then utilize JUL to de-anonymize AUG
denoted by De-AUG, i.e., use historical data to de-anonymize future data. The
results is shown in Fig.2 (f). Again, from Fig.2 (f), we can see that the presented
de-anonymization framework is very effective. Just based on the knowledge of
5 seed mappings, 57.9% of the users in JUL and 61.6% of the users in AUG
can be successfully deanonymized. When 10 seed mappings are available, the
de-anonymization accuracy can be improved to 66.8% on JUL and 73.9% on
AUG, respectively.

However, we also have two other interesting observations from Fig.2 (f): (i)
when the number of available seed mappings is above 10, the performance im-
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provement is not as significant as on previous data sets (e.g., mobility traces,
ArnetMiner) even the de-anonymization accuracy is around 70% for JUL and
75% for AUG; and (ii) De-AUG has a better accuracy than De-JUL, which im-
plies that the AUG data set is easier to de-anonymize than the JUL data set. To
explain the two observations, we assert this is because of the structural property
of the two data sets. Follow this direction, we investigate the degree distribu-
tion of JUL and AUG as shown in Fig.2 (g). From Fig.2 (g), we can see that
the degree of both JUL and AUG generally follows a heavy-tailed distribution.
In particular, 38.4% of the users in JUL and 34.3% of the users in AUG have
degree of one, named leaf users. This is normal since Google+ was launched in
early July 2011, and JUL and AUG are data sets crawled in July and August of
2011, respectively. That is also why JUL has more leaf users than AUG (a user
connects more people later). Now, we argue that the leaf users cause the difficul-
ty in improving the de-anonymization accuracy. From the perspective of graph
theory, the leaf users limit not only the performance of our de-anonymization
framework but also the performance of any de-anonymization algorithm. An ex-
planatory example is as follows. Suppose v ∈ V a is successfully de-anonymized
to v′ ∈ V u. In addition, the two neighbors x and y of v and the two neighbors
x′ and y′ of v′ are all leaf users. Then, even x′ = γ(x), y′ = γ(y), and v has
been successfully de-anonymized to v′, it is still difficult to make a decision to
map x (or y) to x′ or y′ since s(x, x′) ≈ s(x, y′) from the view of graph theory.
Consequently, to accurately distinguish x, further knowledge such as semantic
information is required.

To support our argument, we take an insightful look on the experimental
results. For each successfully de-anonymized user in JUL and AUG, we classify
the user in terms of its degree into one of two sets: leaf user set if its degree is
one or non-leaf user set if its degree is greater than one. Then, we re-calculate
the de-anonymization accuracy for leaf users and non-leaf users and the results
are shown in Fig.2 (h), where De-JUL-Leaf/De-AUG-Leaf represents the ratio
of leaf nodes that have been successfully de-anonymized in JUL/AUG while
De-JUL-NonLeaf/De-AUG-NonLeaf represents the ratio of non-leaf users that
have been successfully de-anonymized in JUL/AUG. From Fig.2 (h), we can see
that (i) the successful de-anonymization ratio on non-leaf users is higher than
that on leaf users in JUL and AUG. This is because non-leaf users carry more
structural information; and (ii) considering the results shown in Fig.2 (f), the de-
anonymization accuracy on non-leaf users is higher than the overall accuracy and
the de-anonymization accuracy on leaf users is lower than the overall accuracy.
The two observations on Fig.2 (h) confirms our argument that leaf users are
more difficult than non-leaf users to de-anonymize. Furthermore, this is also
why De-AUG has higher accuracy than De-JUL in Fig.2 (f). AUG is easier to
de-anonymize since it has less leaf users than JUL.

De-anonymize Facebook. Finally, we examine ADA on Facebook. Based
on the hand labeled ground truth, we partition the data sets into two about-
equal parts utilizing the method employed in [2], and then we take one part as
auxiliary data to de-anonymize the other part. When the two parts only have
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10% and 20% users in common, the achievable accuracy and the induced false
positive error of ADA are shown in Fig.2 (i). As a fact, most of the existing
de-anonymization attacks are not very effective for the scenario that the overlap
between the anaonymized data and the auxiliary data is small or even cannot
work totally. Surprisingly, for ADA, we can observe from Fig.2 (i) that (i) based
on the proposed CMS, ADA can successfully de-anonymize 62.4% of the common
users with false positive error of 34.1% when the overlap is 10% and 71.8% of
the common users with false positive error of 25.6% when the overlap is 20%
with the knowledge of just 5 seed mappings; (ii) the de-anonymization accuracy
is improved to 81.3% (resp., 85.6%) and the false positive error is decreased to
16.8% (resp., 13%) when the overlap is 10% and 10 (resp., 20) seed mappings
available, and the de-anonymization accuracy is improved to 87% (resp., 90.8%)
and the false positive error is decreased to 11.6% (resp., 8.6%) when the overlap
is 20% and 10 (resp., 20) seed mappings available, which demonstrates that
ADA is very effective in dealing with the partial data overlap situation; and (iii)
ADA has a higher de-anonymization accuracy and lower false positive error in
the 20% data overlap scenario than that in the 10% data overlap scenario. This
is because a larger overlap size implies a common node will carry much more
similar structural information in both graphs, and thus it can be de-anonymized
with higher probability and accuracy. From Fig.2 (i), we can also see that 10 seed
mappings are sufficient to achieve high de-anonymization accuracy and low false
positive error. Therefore, ADA is applicable with efficiency and performance
guarantee in practical.

6 Conclusion

In this paper, we present a novel and effective de-anonymization attack based on
a Unified Similarity (US) measurement which synthetically incorporates multiple
data structural factors. The experimental results demonstrate that the presented
de-anonymization framework is very effective and robust to noise.
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