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Abstract—Understanding and analyzing the past and current
behavior of the Internet will be instrumental in building to-
morrow’s more efficient and scalable networks (e.g., the future
Internet). In this paper, we study the impact of Autonomous
Systems (AS) paths on the end-to-end latency. Unfortunately,
due to the diverse set of non-disclosed routing policies among
ASs, packets belonging to a certain end-to-end connection may
traverse different ASs, causing fluctuating AS paths. Fluctuation
of AS paths has been studied in the literature directly from the
core of the network. In this paper, we take a different approach to
the analysis of the fluctuation, solely from the edge of the network.
Specifically, from the end user’s perspective, some AS paths
may be optimal (or better) and some sub-optimal. Furthermore,
there is not a unique definition for sub-optimality as it may
be reflected with various measures (e.g., latency) depending on
the application requirements and expectations. In this paper
we analyze fluctuating AS path lengths (ASPLs) and investigate
their impact on the end-to-end latency over the Internet at a
greater scale than previous studies. This study was conducted
using Scriptroute to probe various PlanetLab nodes. Our results
show that all of the source nodes experienced some AS path
differences and the ASPL values that the sources use greatly vary.
At worst, some nodes experienced different paths over 70% of
the time during our measurements. We observed that the largest
difference in ASPLs on a particular connection was as high as
6 with an average of 2.5. Moreover, we present real cases where
ASPL and latency values are related, inversely related, and not
related at all. Finally, we provide a simple definition for sub-
optimality and analyze the collected data against this definition.
We show that overall 82% of the fluctuating paths and 9% of
all the traces between source-destination pairs faced sub-optimal
AS paths.

Index Terms—AS Paths, BGP, end-to-end Internet measure-
ments, PlanetLab, Scriptroute, ASPL

I. INTRODUCTION

There is a significant effort in designing the future Internet
(e.g., Future Internet Design (FIND) initiative of NSF [1])
among academia and industry. Understanding and analyzing
the past and current behavior of the Internet will be instru-
mental in building tomorrow’s more efficient and scalable
networks. With this in mind, we study the impact of fluctuating
Autonomous Systems (ASs) paths on the end-to-end latency.

The Border Gateway Protocol (BGP) in the Internet allows
ASs (e.g., ISPs) almost complete freedom in adopting their

routing preferences. This is because each AS is comprised
of one or more connected network operators that have their
own set of routing rules and policies. Since, connection
relationships between ASs (i.e., peering) mostly determine the
routing policies, different AS paths may be traversed between
the same end points in a given communication setting. For
instance, as seen in the illustration in Figure 1, two different
paths can be traversed between the two end-points: AS1-AS7-
AS6-AS5-AS4 and AS1-AS2-AS3-AS4. In some cases, this
situation might cause Internet traffic to not traverse the shortest
AS paths without affecting latency, whereas in other cases it
may. Specifically, from the end user’s perspective, some AS
paths may be optimal (or better) and some sub-optimal. In this
paper, the impact of such sub-optimal AS paths is investigated
from end-users’ perspective.

Fig. 1. A possible ASPL fluctuation between the two red end-points.

AS path inflation is a well-known problem in the literature
[2], [3]. Previous studies on the issue primarily looked at
the causes of AS path inflation and focused on observing
the problem from either a centralized vantage point [4] or
the core of the network at different ASs [2]. In this paper,
we take a complementary approach to previous research by
analyzing the fluctuating AS paths from the edge of the
network. The problem is also investigated over a greater scale
than previous studies, spanning more than 100 PlanetLab [5]
nodes. Using trace-driven methods, we identify fluctuating AS
path lengths (ASPLs) between the same source and destination
pairs. Further, the impact of such varying paths over the users’
measured end-to-end performance is studied. This involves the
analysis of latency with respect to ASPLs.



In this paper, we label sub-optimal AS paths as the paths
that have higher latency values between the same source and
destination pairs. For simplicity, we assume that traces reflect
the actual BGP behavior as our purpose is not to directly
study BGP behavior. Thus, independent of the policies adapted
by ASs, we provide this simple definition for sub-optimal
paths and analyze our collected data against our definition to
determine how frequent the paths between the same end hosts
experience sub-optimal AS paths.

Our results show that the PlanetLab nodes that have oscillat-
ing ASPLs on a given connection exhibit a varying behavior.
ASPL values showed fluctuations 30% and 11% of the times
based on the two sets of data collected at different times.
As a worst case, some nodes experienced different paths over
70% of the time during our measurements. We observed the
largest ASPL difference as high as 6 with an average of 2.5.
Furthermore, we witnessed that every source node took sub-
optimal AS paths and that overall 82% of the fluctuating paths
and 9% of all the traces between source-destination pairs faced
sub-optimal AS paths.

The rest of this paper is organized as follows. In Section
2 related work is given. Section 3 explains our technical
approach when collecting data from PlanetLab nodes. Analysis
of the AS paths is the focus of Section 4. We then provide a
simple definition for sub-optimality in Section 5. In Section
6 we articulate other possible definitions of sub-optimality.
Section 7 explores the frequency of sub-optimal paths. Finally,
the paper is concluded in Section 8.

II. RELATED WORK

In this section, we present previous related research efforts
placing each in one of the two categories. The first category
involves studies focusing on AS path inflation, and the second
category addresses BGP behavior.

A. AS Path Inflation

AS path inflation is a well-known problem that has been
studied well by previous works. Gao and Wang [2] focused
on the extent of AS path inflation by routing policies using
RouteView route tables from the perspective of the core of
the network (ASs). They showed two typical routing policies
influencing the inflation. In [3], Spring et al. quantified the
causes of path inflation. The study proposed a way to create
the overall topology picture and to identify the routing policies
between ISPs. Finally, the study presented the impact of the
routing policies and the topology on the AS paths over 65
operational ISPs and 45 PlanetLab nodes. An earlier study
by Savage et al. [4] focused on showing the existence of the
perfect routing paths that enabled maximum performance for
end-users. They measured the performance from a centralized
location to other nodes (between 20 to 40 nodes).

The theme of the aforementioned works and ours is similar.
However, in our work, we solely aim to see the sub-optimality
of the AS paths in relation to latency. We observe the fre-
quency of such paths and their consequences to end-users.
However, our intention is not to study the causes of oscillating

AS paths. We complement the previous research in several
ways. First, some of the previous studies primarily looked
at the issue of AS path inflation from either a centralized
vantage point [4] or the core of the network at different ASs
[2] in a one-to-many fashion between the nodes. In contrast,
we analyze the fluctuating AS paths from the edge of the
network in a many-to-many relationship. Second, we look at
the oscillation of the AS paths with more recent data compared
to earlier efforts. The availability of the PlanetLab research
platform made it possible to reach more nodes compared to
earlier studies. Last, collecting data from PlanetLab nodes with
Scriptroute tool allowed us to easily synchronize the AS paths
and the latency values. Also, our study ignores the failures in
the Internet and only focuses on the paths that are accessible
on an end-to-end basis in order to see the effect of sub-optimal
ASPLs.

B. BGP Behavior

There are several other studies related to the behavior of
BGP and the effects of route selections on the performance
seen by the end-users. Gao et al. defines the current BGP
path selection problem and propose a solution to the BGP
convergence problem [6]. Later, they extended their research
and focus on the routing policies between ASs [7]. They
investigated the import and export policies applied by ASs.
Another relevant study by Mahajan et al. [8] focused on
the misconfigurations of the BGP and its effects on Internet
availability, suggesting a way to recognize them on the BGP
announcements. In addition, Feamster et al. described the
design and implementation of a tool called rcc, a router con-
figuration checker, which finds BGP configuration faults using
static analysis [9]. Furthermore, McPherson et al. focused on
the route oscillations in an AS that were caused by IBGP
and route reflectors [10]. They proposed two solutions to this
problem: One involves using the MED attribute, whereas the
other proposes creating a new protocol that does not contain
a route oscillation problem in its behavior. Similarly, Basu et
al. focused on route oscillation problems [11]. They presented
some cases where the previous solutions may fail and proposed
a better resolution. Likewise, we address the same oscillation
issues in this paper. However, we focus mainly on the AS
fluctuations. Lastly, in a recent paper [12], the authors pre-
sented measurements identifying slow convergence and path
exploration in the global Internet routing system and proposed
a new path-ranking method.

III. DATA COLLECTION METHODOLOGY

In this section, we describe the method used for obtaining
and analyzing the data for this study.

To quantify the impact of changing AS path lengths (i.e.,
sub-optimal paths) we must first identify the presence of
such paths in the Internet. The large number of ASs today
in the Internet and the fact that their inter-connections are
not publicly available make this objective a daunting task.
Accepting this as the premise of our study, we used a trace-
driven methodology to collect the data. Specifically, we ran
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scripts implemented in Ruby on PlanetLab [5] nodes. The
PlanetLab nodes are a collection of machines distributed over
the entire globe spanning over 30 countries and including 753
machines hosted by 363 sites. Scriptroute [13] is one of the
measurement tools freely available on these nodes. We traced
the route towards certain destinations via the implementation
of traceroute in scriptroute followed by an AS-lookup via
whois assuming that the traceroute reflected the actual BGP
behavior. Also, we were able to remotely run our Ruby scripts
with a cookie placed over PlanetLab nodes. The method of
data collection is shown in Figure 2.

Fig. 2. Indirect measurements using Scriptroute.

Two sets of data were collected at different times for this
study. The purpose of the first set of data was to observe the
general AS path behavior (Section IV-A) whereas the aim of
the second one was tailored more for studying the individual
end-to-end pair of nodes (Section IV-B). For the first dataset,
hereafter called DataSet-I, we selected the most stable 101
PlanetLab nodes from 19 countries, which were mostly edu-
cational sites. From 101 diverse points, we probed 100 other
nodes simultaneously. We repeated the measurement cycle
27 times over a week in April-2006. In total, we collected
data from 272700 traceroute probes. As for the second set
of data, hereafter DataSet-II, it was comprised of 130 nodes
spread over 27 countries in different continents from mostly
educational sites. In DataSet-II, we collected 55 successful
runs of data. This resulted in a total of 922337 traceroutes.
The data was collected from March 2007 to April 2007. Both
DataSet-I and DataSet-II are available for interested parties via
the Communications Systems Center Lab webpage at Georgia
Institute of Technology [14].

One important remark is on the number of available Plan-
etLab nodes for our study. Although PlanetLab has more than
700 nodes connected to the system, we realized that not all
had a scriptroute daemon running on them. To address this
problem, we pruned the nodes that did not have a scriptroute
daemon running on them. This was done via another utility
called sr-listservers script that is available inside the scrip-
troute tool.

IV. ANALYSIS OF THE AS PATHS

The aim of this section is first to exhibit the overall
behavior of oscillating ASPLs. Then, we investigate ASPL and
latency results from individual node pairs spanning different
continents.

A. Overall Behavior

We first identify paths that use different AS paths between
the same end-to-end pairs.

As there is no specific definition for sub-optimality of the
AS paths in the Internet, it is reasonable to first analyze how
paths between certain source and destination pairs behave.
Given a certain source-destination pair, some paths may ex-
perience longer AS path lengths (ASPL) in their successive
transmissions to the same destinations due to many reasons1.
Therefore, investigation of how many of the probes from
certain PlanetLab nodes had changing ASPLs towards their
destinations is presented in this subsection. Without loss of
generality, we assume that the paths that have varying ASPLs
would have the potential of exhibiting sub-optimal paths.
Figure 3 shows the number of different and same paths towards

Fig. 3. Number of different and same paths towards their destinations from
a given PlanetLab node.

their destinations from PlanetLab nodes. As seen in the figure,
the number of PlanetLab nodes with oscillating ASPLs exhibit
a varying behavior. At worst, some nodes experienced different
paths, during our measurements over 70% of the time. We
also provide how much a certain ASPL towards a destination
differ from its subsequent probes to the same destination in
Figure 4. The largest difference in ASPL to a destination has
been observed to be as high as 6 and as low as 1. Overall
the average difference of ASPLs is 2.5. It is our observation
that all of the source nodes experienced some path differences.
Overall 11%2 of all probes from sources to destinations took
different ASPLs. There were 25 nodes out of 101 PlanetLab
nodes that experienced more than or equal to a 10% differences
in ASPLs (from their lowest ASPL values) with the average
ASPL of almost 3. On the other hand, there are 37 PlanetLab
nodes that experienced more than 2 differences in ASPLs with
the average of almost 4.

1Please note that there are several studies primarily investigating the cause
of AS path inflation in the Internet. Thus, studying the reasons is outside of
the scope of this paper.

2The overall fluctuation rate was 30% for DataSet-II.
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Fig. 4. Biggest difference between varying AS Path lengths towards their
destinations from a given PlanetLab node.

B. Results Based on Intercontinental Traffic and Geographical
Location

In this part of the study, we look at individual node
pairs from different continents. For this, we determined the
following nodes pairings from the continents using DataSet-II:
US-US, US-Asia, US-Europe, Europe-Asia, Europe-Europe.
Moreover, under each category, we tried to choose different
countries where possible. Due to space limitations, we only
include a subset of pairings. In all the figures, the forward and
reverse path ASPL and latency results are plotted together to
allow one to make meaningful comparisons.

Fig. 5. Individual pair: One node (14) is in the US and the other (121) is
in China.

In Figure 5, one node is located in the US and the other node
is located in China. Several odd behaviors can be observed
in analyzing this figure. For instance, a big downward jump
in the ASPL may increase the latency, similarly an upward
increase in the ASPL may decrease the latency, and finally
an increase in the ASPL may not cause any distinguishable
effect on the latency. In the same figure (Figure 5), one can
observe that a steady ASPL may experience fluctuating latency
values. Depending on the user application, the value of the
latency difference may cause some performance degradation.
Moreover, in Figure 5, we observe that the greater value of
ASPL on one path may not correspond to a higher value of

latency in the same path in comparison to the opposite path.
The latency may be the same as or lower than that of the other
path.

Finally, small ASPL fluctuations may not disturb the end-
to-end latency as can be seen in Figure 6. In this figure, node
62 is located in Korea and the other node (35) is in Italy.

Fig. 6. Individual pair: One node (62) is in Korea and the other (35) is in
Italy.

V. SUB-OPTIMALITY ANALYSIS

In the previous section, we identified the presence of
oscillating ASPLs, which have great potential of exhibiting
sub-optimal paths. We also presented our observation from
the collected data that a smaller ASPL value could exhibit
a poorer end-to-end latency than that of a big ASPL value
among the same end-points. In this section, we analyze the
data to infer sub-optimal ASPLs.

One can come up with many definitions for sub-optimal
AS paths. For a certain source and destination pair A and B,
we simply define sub-optimality as an AS path that exhibits
inferior end-to-end latency to its counterparts. Specifically, in a
set of n RTT and ASPL observations, we can find the optimal
path among different paths by identifying the one that has the
lowest mean latency (RTTminAB ), compare this value with the
other ASPLs’ mean latencies. If the separation among mean
values is larger than a certain threshold, γ,3 we define the ith

AS path as sub-optimal,RTT iψ for this pairing:.

RTT iψ ≥ RTTminAB ∗ γ (1)

where RTTminAB = min(RTT 1
AB , RTT 2

AB , .., RTTnAB) and i
is the particular ASPL value with (1, 2, .., n) and i ≤ n.

Albeit a simple definition, with our definition for sub-
optimality we can shed light on the collected data to identify
sub-optimal ASPLs from optimal ones. Thus, Figures 7-9
illustrate sub-optimal and optimal ASPLs for nodes that have
4, 3 and 2 ASPLs towards their destinations, respectively. We
should also note that we focus on the same destination-source

3This value is just taken as a very tight lower bound with 2% for now,
further analysis can be done with other values.
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pairings because different destinations from the same node
may normally be exposed to different paths.

Fig. 7. End-to-end average latency of sub-optimal AS paths from nodes that
use 4 different AS paths toward their destinations.

In these figures, we are able to see which nodes experienced
sub-optimal AS paths. The same numbers on the x-axis
represents AS paths towards different destinations from the
same node. This reflects the fact that different destinations
from the same node may be experiencing sub-optimal paths
as explained above.

Fig. 8. End-to-end average latency of sub-optimal AS paths from nodes that
use 3 different AS paths toward their destinations.

Fig. 9. End-to-end average latency of sub-optimal AS paths from nodes that
use 2 different AS paths toward their destinations.

VI. OTHER POSSIBLE DEFINITIONS

In our observations, we saw cases where different ASPLs on
the same connection had huge latency differences. Therefore,
the basic definition we provided in the previous section could

also be extended easily to consider cases where the end-to-
end latencies from nodes exhibit huge RTT variability or huge
deviations from the mean. Since the variance and the closely-
related standard deviation are measures of how spread out a
distribution is, we would be able to present a fine-tuned sub-
optimality definition for the cases where source and destination
pairs experience variable statistical measures. To illustrate this,
in Figure 10, we present sub-optimal and optimal ASPLs for
nodes that use 4 ASPL towards their destinations, this time
with RTT variability. Due to space limitations, RTT variability
of nodes that use 3 and 2 ASPLs towards their destinations
were not shown.

Fig. 10. End-to-end latency variability of sub-optimal AS Paths from nodes
that use 4 different AS-Paths toward their destinations..

VII. FREQUENCY OF SUB-OPTIMAL AS PATHS

Based on the definition given in the previous section, this
section quantifies how frequent, (which we refer to as sub-
optimality ratio), the nodes experienced sub-optimal AS paths
during our measurements.

As we have described earlier, for a given source-destination
pair and set of observations, we identify sub-optimal paths and
compare them with the optimal one. If a path is not optimal, it
contributes to the sub-optimal paths. We computed percentage
distribution of sub-optimal AS paths from nodes that use 4, 3,
and 2 different AS paths towards their destinations using this
approach.

Sub-optimality ratios for paths that use different ASPLs are
shown in Figures 11-13. The figures also depict the average
sub-optimality ratio for these cases. The packets that were
transmitted over 4 different ASPLs had the average sub-
optimality ratio of 79%. Similarly, the ones that are carried
over 3 and 2 different ASPLs had average sub-optimality
ratios of 57% and 41%, respectively. In other words, source-
destination pairs that have varying ASPLs experienced at worst
almost 80% sub-optimality. Moreover, it is important to note
that overall 82% of the fluctuating paths and 9% of all the
traces between source-destination pairs faced sub-optimal AS
paths.

VIII. CONCLUSION AND FUTURE WORK

In this paper the impact of sub-optimal AS paths has been
investigated from the end-users’ perspective. We collected data
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Fig. 11. Percentage distribution of sub-optimal AS paths from nodes that
use 4 different AS paths, average = 79%.

Fig. 12. Percentage distribution of sub-optimal AS paths from nodes that
use 3 different AS paths, average = 57%.

Fig. 13. Percentage distribution of sub-optimal AS paths from nodes that
use 2 different AS paths, average = 41%.

from more than 100 PlanetLab nodes with a trace driven
method. Assuming that the traces reflected the actual BGP
behavior we then analyzed the data to identify how many
ASPLs the sources used towards their destinations.

We have shown that ASPLs vary greatly. All of the source
nodes experienced some path differences. Overall, ASPL val-
ues showed fluctuations between 11% and 30% of the times
based on the two sets of data collected at different times. In the
worst case, during our measurements, some nodes experienced
different AS paths 70% of the time. We observed the largest
difference in ASPL as high as 6 with an average of 2.5. We
have presented real cases where the ASPL and latency values
are related, inversely related, and not related. For instance,
a lower ASPL does not yield a lower latency always from
analysis of the individual end-to-end pairings. In all the cases,

latency fluctuates both in the reverse and the forward paths,
however the average values of the latency on the forward and
reverse paths between the end points are close.

Finally, as there is not a unique definition for sub-optimality,
we provided a simple definition for sub-optimal ASPLs. We
later quantified our measurements against our definition to
determine how frequent the paths between the same end hosts
experienced were sub-optimal AS paths. Our results showed
that overall 82% of the fluctuating paths and 9% of all the
traces between source-destination pairs faced sub-optimal AS
paths. Furthermore, how the definition of sub-optimality could
also be extended easily to consider cases where the end-to-
end latencies from nodes exhibit huge RTT variability was
discussed.

As future work, we plan to extend the basic definition
of sub-optimality to include various other metrics. Another
interesting future study from our data would be to identify
where the AS path differences occur most of the time; in other
words how far the source is usually away from the point the
AS path varies over sub-optimal paths. Although this would
primarily depend on how ASs are interconnected, we expect
some meaningful results.
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