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Abstract - We propose a simple scheme for detecting selfish 
behavior achieved by manipulating the 802.11 Medium Access 
Control (MAC) protocol. Specifically, attacks that exploit the 
Distributed Coordination Function (DCF) parameters and data 
rate adaption scheme to maximize individual throughput pose a 
denial of service threat against protocol abiding nodes. We 
detect this malicious behavior by employing a combination of 
supervised and unsupervised learning techniques that monitor 
for disparities in the delay patterns of protocol-abiding and 
illegitimate traffic. Unlike existing approaches, detection is done 
on the wired side. We apply an anomaly-based categorization, 
which obviates the need to train on traces from different 
network instances. Since the approach is holistic and does not 
rely on a feature selection using individual parameters, the 
technique is free of adaptive cheating. Additionally, the accuracy 
of classification is independent of the number of terminals in the 
network, the number of colluding attackers, protocol, rate 
adaptation and higher layer transmission behavior. Simulations 
and experiments are used to validate our scheme. 
 

Index Terms – MAC misbehavior, 802.11 MAC protocol,  
Distributed Coordination Function. 

I. INTRODUCTION 

As a considerable portion of 802.11 wireless driver 
functionality shifts to software with the goal of increased 
customization, it becomes easier to cheat at the MAC layer by 
exploiting medium access vulnerabilities. As a result, the 
inherent fairness in the MAC protocol is removed to 
maximize channel utilization for the malicious node. Noted 
ways of performing this include tweaking DCF parameters 
(contention window, slot time, SIFS, NAV, CTS/RTS 
thresholds), scrambling frames and intentionally colliding 
with external CTS/RTS frames. 

In this paper, we do not consider attacks that target specific 
frames. We present an abstract methodology for detecting 
DCF parameter manipulation as a whole. Further, we 
illustrate a new technique for cheating by disabling rate 
adaptation and detect this form of misbehavior as well. 
 Motivation for cheating at any layer is bandwidth gain 
when sharing a medium with others. Hence, we address the 
problem in an infrastructure wireless setting as opposed to an 
ad hoc network, strategically performing the detection on the 
wired side. The core of our detection scheme is an agent D 
(Figure 1) sitting atop a switch, or a separate monitoring 

device that is connected to the mirror port of a switch, that 
passively sniffs passing traffic streams on the wired side and 
observes the influence of misbehavior on packet inter-arrival 
times (IATs).  To this end, we propose a novel architecture 
that can be implemented on the wired side of the network, that 
detects attacks by sampling incoming traffic streams and 
correlating packet IAT distributions. 

Our misbehavior classification technique is primarily based 
on an anomaly-based classifier that monitors for exceptions 
from the normal delay of nodes that do not cheat on the DCF. 
The classifier makes no assumption on the distribution of the 
normal delay values and is not trained on a predefined behavior. 
Instead it works by seeking a deviation in the closeness of 
incoming IAT sequences. It runs a Bayesian test at runtime to 
do so.  
 The proposed technique is a simple solution that does not 
require procedurally intensive functionality to be implemented 
on wireless terminals/access points or modifications to the 
802.11 standard. As all wireless traffic through the base station 
passes (or can be routed) into the wired backbone where 
detection takes place, the scheme is centralized and is not 
affected by issues that accompany wireless-side detection, such 
as, interference, collisions, visibility and scalability. Since the 
primary classifier performs a relative, basis-less analysis of 
incoming traffic to identify misbehaving traffic, attackers 
cannot make subtle adaptations to their routine and sneak under 
the radar. Also, it is not limited to 'available' signatures and can 
detect patterns that may be missed by analytical feature set 
generators. This is important, because depending on the number 
of nodes, collision probability, protocol, rate adaptation and 
other similar influential factors, there may be a lot that a purely 
supervised classifier does not account for. We also take into 
account the scenario of colluding attackers, where a group of 
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malicious individuals or single-user controlled bots could 
target a well-behaved network in an attempt to cause a 
network-wide denial of service. 
 The remainder of the paper is organized as follows. Section 
II outlines previous work broadly classifying them into three 
categories based on techniques used. Section III provides an 
analysis on the effect of cheating at the MAC layer. The 
proposed detection technique is discussed in Section IV. We 
discuss the scheme's scalability in Section V. Accuracy 
evaluations are given in Section VI. Section VII gives the 
conclusion and future work. 

II. RELATED WORK 
 The literature covered in this section is primarily concerned 
with misbehavior techniques that exploit MAC fairness. 
Works that discuss denial of service attack models in WLANs 
that exploit other 802.11 vulnerabilities are not directly 
relevant in the present context and are not addressed. Current 
work on MAC misbehavior can be broadly classified into 
three categories. The first category consists of approaches that 
analytically reproduce “random” back-off in an attempt to 
emulate the idle time between legitimate transmissions. They 
try to extract a deterministic behavior model from a stochastic 
system in order to recreate expected base-line profiles. The 
second category assumes that fabricating back-off values is 
not scalable and proposes changes that incorporate detection 
in wireless nodes. The third category focuses on the effect of 
misbehaving senders in the absence of an arbiter in ad hoc 
networks. 
 References [1-2] fall in the first category. In [1], the 
proposed method requires wireless nodes to monitor the idle 
time between a successful transmission and the subsequent 
RTS from and to their immediate neighbors. Based on 
collision probability (pc), nodes analytically construct profiles 
for legitimate terminals' distributions to be compared against 
unknown traffic. Nodes calculate pc from the frequency of 
collisions as observed in their vicinity. The method in [2] 
assumes that the network is saturated. It uses a Markov chain 
based model to determine the IAT distribution, complete with 
consideration for pc. However [1-2] do not account for the 
fact that in addition to depending on the system state (e.g., 
number of terminals at a given instance), pc is also a function 
of frequency and duration of transmissions, which depend on 
higher layers. Furthermore, [2] assumes that nodes transmit at 
a constant rate and does not take into account the influence of 
rate adaptation on legitimate traffic.  

In the second category, [3-5] suggest changes to be made to 
either the driver or protocol to include detection into the 
802.11 wireless architecture. The authors of [3] propose a 
Predictive Random Back-off algorithm that tunes the Binary 
Exponential Back-off algorithm to generate a reproducible 
back-off that can be monitored for misbehavior. In [4], the 
receiver assigns back-off values to the sender. The receiver 
assigns an initial back-off from which the sender calculates a 

new back-off as a function of the assigned back-off and number 
of retransmissions. On receiving data from the sender, the 
receiver calculates the new back-off based on the  number of 
retransmissions to check for misbehavior. This active method 
requires changes to be made to the driver and adds 
computational overhead as well as redundancy on the receiver 
and sender sides in calculating the new back-off. In [5], 
detection is done at the access point and involves a series of 
tests to check for misbehavior on different levels. However, it 
uses the magnitude of statistics, such as mean of back-off, as 
the primary metric for classification. This is not advisable as the 
attacker may adjust the back-off sequence in a way that the 
effective mean equals the expected. Also, it monitors the 
number of idle slots, which means that if the attacker cheats on 
slot time and not on contention window, he would not be 
detected because the mean number of idle slots stays constant.
 The third category [6-10] includes studies that analyze the 
consequence of misbehavior in ad hoc networks. References [6-
8] work on similar lines where individual nodes monitor their 
neighbors' back-off. The model in [6] assumes that the 
monitoring node follows the same back-off sequence as its 
neighbors and anticipates the same behavior from them. In [7], 
the sender and receiver strike a mutual agreement on the 
expected back-off values at the beginning of the transmission. 
This model works on the logic that as long as one of the two 
nodes is honest, the system is free of cheaters. In [8], tagged 
nodes announce the state of their pseudo-random generator 
(PRNG) upon which monitoring neighbors determine the 
expected sequence. Since the MAC address is used as a seed for 
the PRNG, MAC spoofing can result in others getting caught 
while the attacker remains undetected. The above solutions do 
not account for interference and hidden terminal problems.  

Our technique for misbehavior classification is free of the 
above mentioned problems as it performs a basis-less 
comparison of unidentified traffic distributions as opposed to a 
comparison with analytically constructed legitimate profiles. 
Misbehavior detection is heuristic and anomaly-based. Our 
technique is independent of rate adaptation and higher layer 
behavior unlike the first category, does not require changes to 
the protocol/driver unlike the second category, and does not 
seek to address misbehavior in ad hoc networks as the related 
work in the third category does. Also, to the best of our 
knowledge, we are the first to propose wired-side detection of 
802.11 MAC misbehavior. Since only the successful 
transmissions from the WLAN carry over to the LAN, wired-
side detection offers a clean, definitive solution that is not 
hampered by noise and hidden terminal problems. As it offers a 
single point of discovery, it is also scalable. The proposed idea 
is rather simple, too. It relies on the fact that for a malicious 
node to be successful, its IAT distribution will look different 
from existing traffic. Thus we are able to distinguish between 
malicious and legitimate traffic by using adaptive learning 
techniques.  
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III. ANALYSIS 

A. Misbehavior study 
 This section illustrates the three kinds of misbehavior 
addressed in this paper, highlighting the consequence on 
legitimate terminals. Cheating on DIFS, that is, transmitting a 
frame before the default DIFS interval expires, reduces the 
minimum delay incurred by a wireless node. Cheating on the 
contention window (CW) shrinks the random back-off period 
that follows DIFS. Cheating on DIFS and/or the contention 
window allows an attacker to have a shorter inter-arrival time 
(Figure 2b) than a legitimate node that conforms to the correct 
operation of the protocol (Figure 2a). Cheating on rate 
adaptation involves transmitting at the maximum available 
data transmission rate (e.g., 11Mbps for 802.11b) by turning 
off Auto Rate Fall-back (ARF) [12], while the legitimate 
nodes adapt to lower data rates to handle packet loss. Given 
the sub-optimal operation of ARF [13], it may be 
advantageous to switch off rate adaptation to transmit faster. 

 To demonstrate the effects of cheating with DIFS and the 
contention window, we used the simulation setup described in 
Section V and measured the distribution of the DCF portion 
(that is, DCFconstant +  DCFrandom from Figure 2) of the IAT 
associated with packets within a trial.                    
 In the case of DIFS cheating, we considered an extreme 
attack scenario (Trial I), where we set the DIFS parameter of 
the attacker to 14us; and for a moderate scenario (Trial II), we 
set the DIFS parameter to 30us for the attacker.  The 
legitimate node's DIFS was left at the prescribed 50us during 
both trials. Figure 3a clearly shows the disparity in the delay 
of the DCF between the attacker and the legitimate node for 
both trials. 
 Similarly, we measured the effects of cheating with the 
contention window for an extreme (CWmin = CWmax = 2us) and 
moderate (CWmin = CWmax = 16us) scenario. For both 
scenarios the legitimate node's contention window was left at 
the default setting (CWmin= 32us, CWmax =1024us). Figure 3b 
shows the effect of cheating on the contention window.  

While the first two kinds of cheating have been studied 
before, we introduce the third. As part of the IEEE 802.11 
standard, wireless nodes perform rate adaptation (shifting to a 

lower/higher optimal PHY data rate) to improve performance 
during physical layer interference (e.g., radio frequency 
interference). However, the most widely deployed rate 
adaptation algorithm, ARF, is often inappropriately invoked as 
a result of packet collisions at the MAC level. This 
inappropriate functionality, interestingly enough, actually 
creates a level of fairness in the network as the nodes share the 
inappropriate penalty by switching to lower transmission rates 
as a result of MAC layer collisions. This phenomenon is 
illustrated in Figure 4a. The overlap of the IAT distributions 
illustrates the fairness that results because of DCF as well as all 
nodes enabling rate adaptation. In our misbehavior scheme, an 
attacker stands to benefit with increased bandwidth utilization 
by simply not performing rate adaptation (Figure 4b) and 
continuing to transmit at the fastest physical layer data rate. 
Figure 4b shows that the distribution of the attacker’s IAT is 
less than the legitimate nodes (indicating a higher sustained 
throughput), illustrating that nodes not employing rate 
adaptation (though flawed in its most widely deployed form - 
ARF) can take away bandwidth from legitimate nodes. Note 
that this works to the attacker's interest when there is little 
physical layer interference as not adapting the rate in a scenario 
with increased physical layer interference may result in the 
attacker’s packets being too mangled to read at the receiver thus 
reducing his throughput. It should be mentioned that though 
ARF is the most-widely deployed rate adaptation protocol, 
there have been many proposed schemes [14-16] to deal with 
this protocol’s inefficiency. 

B. Preliminary experiments 
 As detection on the wired side is a distinguishing factor of 

 
Fig.2. (a) DCF working: Legitimate. 

 
Fig. 2. (b) DCF working: Attacker. 

 
Fig. 3. (a) DIFS cheating, (b) CW cheating. 

 
Fig. 4. (a) Rate adaptation cheating: No attack., (b) Rate adaptation cheating: 

Under attack. 
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this approach, in this section we illustrate its viability. We 
conducted experiments to determine whether the temporal 
characteristics of the IAT observed on the wireless link were 
in tact on the wired side. This is a function of the queuing 
delay and the number of router hops in the path to the 
destination. 
 For this purpose, an experimental testbed was built using 
three Lenovo laptops, three Dell desktops, a Netgear 10/100 
Mbps Fast Ethernet switch and a Linksys 2.4Ghz wireless-b/g 
access point (AP). The setup is similar to the attack scenario 
depiction in Figure 1. The classifier monitors at the switch 
immediately linking the access point to the LAN. 
   The arrival times of upstream traffic were recorded at the 
receiver node on the wired side. On the wireless side, a laptop 
acting as sniffer was used in promiscuous mode to capture 
traffic from the wireless sender. We observed that the arrival 
rates were retained albeit with a uniformly witnessed lag (as a 
result of queuing in switch) as shown in Figure 5 above. Note 
that given the simple one-hop path from the WLAN to the 
classifier node on the wired side, a switch with minimal 
traffic density exhibits a constant queuing delay. 

IV. DETECTION SCHEME  

A. Misbehavior detection 
 While some related work perform a signature-based 
categorization, our classifier compares the delay distributions 
of unknown sequences with each other to find the closeness  
'c'. Each subsequent trace is examined for likeness to the 
preceding incoming traces. A hypothesis test is performed 
over a threshold of likelihood (cthresh) that the classifier is 
initially trained on, but is dynamically updated as the 
classifier learns. The motivation behind using an anomaly-
based detection scheme is that during a given time window, 
all legitimate nodes in a network are expected to converge to 
a similar timing profile. This will be shown in Section V.  

B. Classification Scheme    
 We bin IAT values into n bins (n depends on the bin width) 
and calculate for each dataset the number of occurrences in 
each bin to generate a profile f. To detect misbehavior, we use 
a Naïve Bayes classifier to compare profiles of the first trace 
with those of every other trace to calculate c. This is done 

using a two-sample Chi-square test. 
 Profiles fi are compared with an unknown sample fx based on 
frequency of occurrences in each bin. Because the nature of 
incoming traffic cannot be predicted, prior probability is 
unknown and is assumed equally distributed over the n profiles. 

€ 

PriorProbability P fi( )=1/n                                  (1) 

€ 

Likelihood P fx f i                                              (2)  

€ 

PosteriorProbability P fi fx =  P fx f i .P fi( )       (3) 

Since fx is a random variable {x1,x2,…xd}, 

€ 

P fi fx   =   P x1, x2, ...xd( ) f i .P fi( )                        (4)  

€ 

P fi fx  =  P fi( ). P
k=1

d

∏ xk fi
                                   (5) 

Likelihood (measure of how similar the unknown trace is to a 
given profile) is calculated for each profile using a two-sample 
Chi-square test, which is run independently on all sample-
profile bin frequency pairs. Posterior probability (measure of 
how likely a profile is the closest match for the unknown) is 
derived by aggregating the Likelihood measures (Chi-square 
values) each of which is calculated as shown below. 

€ 

χ 2 =
S1i

− S2i( )
2

S1+ S2i=1

k

∑                                                        (6) 

 S1 and S2 are bin frequencies of the two samples to be 
compared. They represent an unknown and a sample profile. k 
is the number of bins. 

V. PERFORMANCE ANALYSIS 
 A generic simulation template of up to 50 wireless nodes was 
created in ns2 [17], each of which could choose from different 
traffic models, transport protocols, WLAN speeds, locations, 
mobility patterns and packet sizes. MAC parameters were 
altered at  the selfish nodes, while default parameter values of 
the 802.11b standard were retained at legitimate nodes. Table 1 
shows the MAC parameters that were used during the 
simulations, from moderate to extreme cheating. The default 
values for (CWmin,CWmax) and DIFS in the 802.11b amendment 
are (32,1024) and 50µs respectively. 

Though simulations were performed for a longer duration, 
individual 10-second time windows were monitored for 
anomalies.  A 1000*1000 m2 sized topology was created as the 
testbed backbone. The setting includes receiver nodes on the 
wired side and a base station. TCP and UDP traffic generation 
involved the use of FTP and CBR applications. Node location 
changes were performed using varying levels of two-
dimensional spatial placements within fixed coordinates. The 
Random Waypoint mobility model was used for node 
movement. 

In the simulation setup, several parameters were varied to 
study their effect and to check the robustness of our concept. 
The parameters that were varied include the number of nodes, 
data rate, transport protocol, location, mobility and traffic 
model. The results in this section are a representative sample of 

 
Fig. 5. Packet arrival times on wired and wireless sides. 
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our analysis shown for extreme and moderate CW cheating. 
The results shown in Figures 6-8 are each from single 
independent trials. 

Figure 6 shows that the attack model's foundation is such 
that since the attacker steals irrespective of the number of 
nodes at any given instance of time, we should be able to see 
the difference in distributions. This result justifies our 
anomaly based detection approach. It also illustrates our 
technique’s stability in larger networks. 

Secondly, we simulated a group of attackers to check the 
robustness of our detection scheme against a group of 
colluding attackers. As seen in Figure 7, when the attackers 
perform the same changes to the protocol, the technique 
should see a cluster of good and bad nodes. 

Similarly, the distance between attacker and legitimate 
delay distributions persists independent of the transport 
protocol, as shown in Figure 8. Figure 8a shows saturated 
constant rate transmissions. Figure 8b shows exponential 
flows with varying frequency of transmissions (that is, with 
varying ON/OFF periods). This is an important result as it 
shows that our technique supports different higher layer 
behavior. It is important to note that the closeness between 
the TCP attacker and UDP legitimate traffic is minimal, but 
that becomes a trivial concern if traces from a traffic class are 
compared with those from the same class. It is possible to 
extract the transport protocol from the IP header of incoming 
traffic flows even if the data is encrypted because the 
detection is performed on the wired side. Additionally, we 
could observe TCP ACKs to deem a flow as TCP.  

Also, as one of the scenarios to test the system, we 
introduced mobility in the nodes and varied their locations. 
Different combinations of node placements were tried within 
a given topology. The attacker could be placed close to or far 
from the other nodes. Alternatively, he could be close to a 
few and far from the others. Also, he could be close to (worst-
case misbehavior) or far from (best-case misbehavior) the 
base station. The idea behind this type of testing is to see how 
the closeness varies for different scenarios. As will be shown 
in the next section, there is minimal overall variance in 
accuracy. 

Our scheme is free of adaptive cheating because the bad 
node's influence over good nodes invariably shows up in a 
comparison of distributions. Since our technique does not 
expect specific parameters, it is free of parametric adaptive 
cheating where a clever attacker may choose a different 
parameter from the one being monitored for. Also, since we 
do not look at magnitude based metrics, we do not suffer from 
effective-mean based adaptive cheating, where an attacker 

adjusts his delay parameters in timely intervals to misbehave, 
while at the same time satisfying the expected mean criteria. 
Having presented qualitative analysis of the general idea of the 
technique in this section, we illustrate the accuracy of our 
scheme in the next section. Note that the scenarios outlined in 
this section were used in measuring the system's accuracy 
presented in the next section. 

 
VI. ACCURACY MEASURES 

 A combination of simulation and experimentation was 
performed to validate the classifier. The simulation setup used 
is as discussed in the previous section. The experimental testbed 
used for validating the technique is as described in Section III-
B. The laptops act as clients sending data to the desktop. One of 
the laptops is the attacker, while the other laptops are legitimate 
nodes. 

Simulations are used to evaluate DIFS cheating detection.  
Also, for the sake of accuracy in emulating physical layer rate 
adaptation, simulations are used to evaluate rate adaptation 
cheating detection. 

Simulations and experiments are used to evaluate CW 
cheating detection. For experimentation, CW cheating is 
performed by modifying the CW values in the madwifi [18] 
driver. A simple method for doing this is by taking advantage of 
the wireless QoS command line provisioning in 802.11e 
compatible wireless routers. In such a setting, it is possible to 
configure the Enhanced Distributed Coordination Access 
(EDCA) parameters (including CW) for each QoS traffic class - 
best effort, background, voice and video.  

A. Misbehavior Detection 
As a preliminary measure towards testing the precision of 

detection, the width of the bins used in the Bayesian approach 

Table 1: MAC Parameters for selfish nodes 

MAC Parameters 
Class A: (CWmin , CWmax) ∈{(1,1) , (2,2)} OR DIFS  ={1-10}                                 
Class B: (CWmin , CWmax) ∈ {(4,4) , (8,8)}OR DIFS ={11-25} 
Class C: (CWmin , CWmax) ∈  (16,16)  OR DIFS = {26-40}                           

     

 
           Fig. 6. Larger network.                Fig. 7. Colluding attackers. 

 
Fig. 8. UDP vs. TCP – (a) Saturated, (b) Bursty. 
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was tuned in an effort to determine the optimal width - one 
that yields peak accuracy. We assume equal-sized bins and 
perform a non-parametric density estimation. Hence, online 
computation of bin size via optimal binning [19] is not 
required. Note that most of the histograms produced or 
published have equal-width bins [20], which justifies our 
assumption. 

Traces from simulations and experiments were used in 
evaluating accuracy, which applies across all three types of 
cheating. Traces from 60 windows (20 for each type of 
cheating) of 10 seconds each were fed into the classifier. The 
detection from the 60 trials was used in determining True 
Positive Ratio (TPR) measures for the classifier. Further, 20 
trials of legitimate traffic were used to evaluate the False 
Positive Ratio (FPR). This procedure was followed for 
different bin widths. Results are shown in Figure 9a. 

The accuracy measures shown in Figure 9a are an average 
of the results from detection trials of all three types of 
cheating. In Figure 9a, note that with an increase in bin width 
the accuracy drops, which makes sense as the classifier works 
better with a higher number of bins. 

An optimal bin width of 200µs was chosen, as it gives the 
minimum FPR of 0.1 and maximum TPR of 96. The resulting 
measurement is deemed the accuracy of the system because it 
maximizes TPR and minimizes FPR. 

On testing the system with the chosen parameters (bin width 
= 200us and FPR = 0.1) for a total of 20 additional trials (for 
each cheating type), it was observed that the technique is 
accurate in detection 100% of the time for DIFS cheating, 
approximately 92% of the time for CW cheating, and 
approximately 86% of the time for rate adaptation cheating - as 
shown in Figure 9b. For the CW cheating trials in Figure 9b, 
both simulations and experiments were performed (20 trials 
each). 

In the simulations for all three types of cheating, traces from 
different scenarios were tested, in each of which network 
parameters were changed (as discussed in the previous section) 
in an attempt to test the scheme's robustness. 

VII. CONCLUSION AND FUTURE WORK 
 We presented a scalable and immediately deployable 
solution to the problem of selfish behavior at the MAC layer. 

MAC misbehavior is especially dangerous as it can easily lead 
to denial of service. Since we do not look for a specific kind of 
behavior, and instead look for abnormal activity, the system can 
be extended to detect any variant of cheating, including 
requesting for a larger duration and resulting in larger NAV 
values being set by other nodes. Our method is simple and can 
be easily implemented on the wired side. It does not require 
changes to be made to the protocol or wireless terminals. Our 
model is free of adaptive cheating and is independent of number 
of nodes in the network, protocol, rate adaptation, higher layer 
behavior, etc. Also, our method works independent of whether 
RTS/CTS is enabled or not.  
 As an extension, we plan to consider forms of misbehavior 
not addressed in this paper. Additionally, we will investigate 
misbehavior in ad hoc networks. 
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Fig. 9. DCF and Rate adaptation Cheating: 

 (a) Classifier Bin width tuning, (b) Classifier Accuracy. 
 


