A Wired-side Approach to
MAC Misbehavior Detection

Aravind Venkatarama
Department of Computer Science
Georgia State University
Atlanta, GA 30303
aravindv85@gmail.com

Abstract - We propose a simple scheme for detecting selfish
behavior achieved by manipulating the 802.11 Medium Access
Control (MAC) protocol. Specifically, attacks that exploit the
Distributed Coordination Function (DCF) parameters and data
rate adaption scheme to maximize individual throughput pose a
denial of service threat against protocol abiding nodes. We
detect this malicious behavior by employing a combination of
supervised and unsupervised learning techniques that monitor
for disparities in the delay patterns of protocol-abiding and
illegitimate traffic. Unlike existing approaches, detection is done
on the wired side. We apply an anomaly-based categorization,
which obviates the need to train on traces from different
network instances. Since the approach is holistic and does not
rely on a feature selection using individual parameters, the
technique is free of adaptive cheating. Additionally, the accuracy
of classification is independent of the number of terminals in the
network, the number of colluding attackers, protocol, rate
adaptation and higher layer transmission behavior. Simulations
and experiments are used to validate our scheme.

Index Terms — MAC misbehavior, 802.11 MAC protocol,
Distributed Coordination Function.

I. INTRODUCTION

As a considerable portion of 802.11 wireless driver
functionality shifts to software with the goal of increased
customization, it becomes easier to cheat at the MAC layer by
exploiting medium access vulnerabilities. As a result, the
inherent fairness in the MAC protocol is removed to
maximize channel utilization for the malicious node. Noted
ways of performing this include tweaking DCF parameters
(contention window, slot time, SIFS, NAV, CTS/RTS
thresholds), scrambling frames and intentionally colliding
with external CTS/RTS frames.

In this paper, we do not consider attacks that target specific
frames. We present an abstract methodology for detecting
DCF parameter manipulation as a whole. Further, we
illustrate a new technique for cheating by disabling rate
adaptation and detect this form of misbehavior as well.

Motivation for cheating at any layer is bandwidth gain
when sharing a medium with others. Hence, we address the
problem in an infrastructure wireless setting as opposed to an
ad hoc network, strategically performing the detection on the
wired side. The core of our detection scheme is an agent D
(Figure 1) sitting atop a switch, or a separate monitoring

Cherita Corbett
Applied Physics Lab
Johns Hopkins University
Laurel, MD 20723
cherita.corbett@jhuapl.edu

Raheem Beyah
Department of Computer Science
Georgia State University
Atlanta, GA 30303
rbeyah@cs.gsu.edu

Wired Backbone Wireless Network

Fig. 1. MAC Misbehavior: Illustration.

device that is connected to the mirror port of a switch, that
passively sniffs passing traffic streams on the wired side and
observes the influence of misbehavior on packet inter-arrival
times (IATs). To this end, we propose a novel architecture
that can be implemented on the wired side of the network, that
detects attacks by sampling incoming traffic streams and
correlating packet IAT distributions.

Our misbehavior classification technique is primarily based
on an anomaly-based classifier that monitors for exceptions
from the normal delay of nodes that do not cheat on the DCF.
The classifier makes no assumption on the distribution of the
normal delay values and is not trained on a predefined behavior.
Instead it works by seeking a deviation in the closeness of
incoming IAT sequences. It runs a Bayesian test at runtime to
do so.

The proposed technique is a simple solution that does not
require procedurally intensive functionality to be implemented
on wireless terminals/access points or modifications to the
802.11 standard. As all wireless traffic through the base station
passes (or can be routed) into the wired backbone where
detection takes place, the scheme is centralized and is not
affected by issues that accompany wireless-side detection, such
as, interference, collisions, visibility and scalability. Since the
primary classifier performs a relative, basis-less analysis of
incoming traffic to identify misbehaving traffic, attackers
cannot make subtle adaptations to their routine and sneak under
the radar. Also, it is not limited to 'available' signatures and can
detect patterns that may be missed by analytical feature set
generators. This is important, because depending on the number
of nodes, collision probability, protocol, rate adaptation and
other similar influential factors, there may be a lot that a purely
supervised classifier does not account for. We also take into
account the scenario of colluding attackers, where a group of

malicious individuals or single-user controlled bots could
target a well-behaved network in an attempt to cause a
network-wide denial of service.

The remainder of the paper is organized as follows. Section
I outlines previous work broadly classifying them into three
categories based on techniques used. Section III provides an
analysis on the effect of cheating at the MAC layer. The
proposed detection technique is discussed in Section IV. We
discuss the scheme's scalability in Section V. Accuracy
evaluations are given in Section VI. Section VII gives the
conclusion and future work.

II. RELATED WORK

The literature covered in this section is primarily concerned
with misbehavior techniques that exploit MAC fairness.
Works that discuss denial of service attack models in WLANs
that exploit other 802.11 vulnerabilities are not directly
relevant in the present context and are not addressed. Current
work on MAC misbehavior can be broadly classified into
three categories. The first category consists of approaches that
analytically reproduce “random” back-off in an attempt to
emulate the idle time between legitimate transmissions. They
try to extract a deterministic behavior model from a stochastic
system in order to recreate expected base-line profiles. The
second category assumes that fabricating back-off values is
not scalable and proposes changes that incorporate detection
in wireless nodes. The third category focuses on the effect of
misbehaving senders in the absence of an arbiter in ad hoc
networks.

References [1-2] fall in the first category. In [1], the
proposed method requires wireless nodes to monitor the idle
time between a successful transmission and the subsequent
RTS from and to their immediate neighbors. Based on
collision probability (p.), nodes analytically construct profiles
for legitimate terminals' distributions to be compared against
unknown traffic. Nodes calculate p, from the frequency of
collisions as observed in their vicinity. The method in [2]
assumes that the network is saturated. It uses a Markov chain
based model to determine the IAT distribution, complete with
consideration for p.. However [1-2] do not account for the
fact that in addition to depending on the system state (e.g.,
number of terminals at a given instance), p, is also a function
of frequency and duration of transmissions, which depend on
higher layers. Furthermore, [2] assumes that nodes transmit at
a constant rate and does not take into account the influence of
rate adaptation on legitimate traffic.

In the second category, [3-5] suggest changes to be made to
either the driver or protocol to include detection into the
802.11 wireless architecture. The authors of [3] propose a
Predictive Random Back-off algorithm that tunes the Binary
Exponential Back-off algorithm to generate a reproducible
back-off that can be monitored for misbehavior. In [4], the
receiver assigns back-off values to the sender. The receiver
assigns an initial back-off from which the sender calculates a

new back-off as a function of the assigned back-off and number
of retransmissions. On receiving data from the sender, the
receiver calculates the new back-off based on the number of
retransmissions to check for misbehavior. This active method
requires changes to be made to the driver and adds
computational overhead as well as redundancy on the receiver
and sender sides in calculating the new back-off. In [5],
detection is done at the access point and involves a series of
tests to check for misbehavior on different levels. However, it
uses the magnitude of statistics, such as mean of back-off, as
the primary metric for classification. This is not advisable as the
attacker may adjust the back-off sequence in a way that the
effective mean equals the expected. Also, it monitors the
number of idle slots, which means that if the attacker cheats on
slot time and not on contention window, he would not be
detected because the mean number of idle slots stays constant.

The third category [6-10] includes studies that analyze the
consequence of misbehavior in ad hoc networks. References [6-
8] work on similar lines where individual nodes monitor their
neighbors' back-off. The model in [6] assumes that the
monitoring node follows the same back-off sequence as its
neighbors and anticipates the same behavior from them. In [7],
the sender and receiver strike a mutual agreement on the
expected back-off values at the beginning of the transmission.
This model works on the logic that as long as one of the two
nodes is honest, the system is free of cheaters. In [8], tagged
nodes announce the state of their pseudo-random generator
(PRNG) upon which monitoring neighbors determine the
expected sequence. Since the MAC address is used as a seed for
the PRNG, MAC spoofing can result in others getting caught
while the attacker remains undetected. The above solutions do
not account for interference and hidden terminal problems.

Our technique for misbehavior classification is free of the
above mentioned problems as it performs a basis-less
comparison of unidentified traffic distributions as opposed to a
comparison with analytically constructed legitimate profiles.
Misbehavior detection is heuristic and anomaly-based. Our
technique is independent of rate adaptation and higher layer
behavior unlike the first category, does not require changes to
the protocol/driver unlike the second category, and does not
seek to address misbehavior in ad hoc networks as the related
work in the third category does. Also, to the best of our
knowledge, we are the first to propose wired-side detection of
802.11 MAC misbehavior. Since only the successful
transmissions from the WLAN carry over to the LAN, wired-
side detection offers a clean, definitive solution that is not
hampered by noise and hidden terminal problems. As it offers a
single point of discovery, it is also scalable. The proposed idea
is rather simple, too. It relies on the fact that for a malicious
node to be successful, its TAT distribution will look different
from existing traffic. Thus we are able to distinguish between
malicious and legitimate traffic by using adaptive learning
techniques.

III. ANALYSIS

A. Misbehavior study

This section illustrates the three kinds of misbehavior
addressed in this paper, highlighting the consequence on
legitimate terminals. Cheating on DIFS, that is, transmitting a
frame before the default DIFS interval expires, reduces the
minimum delay incurred by a wireless node. Cheating on the
contention window (CW) shrinks the random back-off period
that follows DIFS. Cheating on DIFS and/or the contention
window allows an attacker to have a shorter inter-arrival time
(Figure 2b) than a legitimate node that conforms to the correct
operation of the protocol (Figure 2a). Cheating on rate
adaptation involves transmitting at the maximum available
data transmission rate (e.g., 11Mbps for 802.115) by turning
off Auto Rate Fall-back (ARF) [12], while the legitimate
nodes adapt to lower data rates to handle packet loss. Given
the sub-optimal operation of ARF [13], it may be
advantageous to switch off rate adaptation to transmit faster.

DCFconstanI . DCFconslanl o DCFrandam O
™~ ™)
MAC o
e] . s
IAT
- - - - - - - = = = = = = »
Fig.2. (a) DCF working: Legitimate.
DCF,, .. DCF et DCF o,
fe——» I« e »
MAC 2
s [0 b

IAT
= = = = = = —

Fig. 2. (b) DCF working: Attacker.

To demonstrate the effects of cheating with DIFS and the
contention window, we used the simulation setup described in
Section V and measured the distribution of the DCF portion
(that is, DCF copstans + DCFangom from Figure 2) of the IAT
associated with packets within a trial.

In the case of DIFS cheating, we considered an extreme
attack scenario (Trial I), where we set the DIFS parameter of
the attacker to 14us; and for a moderate scenario (Trial II), we
set the DIFS parameter to 30us for the attacker. The
legitimate node's DIFS was left at the prescribed 50us during
both trials. Figure 3a clearly shows the disparity in the delay
of the DCF between the attacker and the legitimate node for
both trials.

Similarly, we measured the effects of cheating with the
contention window for an extreme (CW,,;,= CW,,. = 2us) and
moderate (CW,,;, CW o 16us) scenario. For both
scenarios the legitimate node's contention window was left at
the default setting (CW,,;,= 32us, CW,. =1024us). Figure 3b
shows the effect of cheating on the contention window.

While the first two kinds of cheating have been studied
before, we introduce the third. As part of the IEEE 802.11
standard, wireless nodes perform rate adaptation (shifting to a

----- Trial1- Extreme misbehavior: Attacker, DIFS = 14us -----Trigl I- Extreme misbehavior: Attacker, CW = 2us
—— TrialI- Extreme misbehavior: Legitimate, DIFS = 50us —— TrialI- Extreme misbehavior: Legitimate, CW = 32us
-- - - Trial I- Moderate misbehavior: Attacker, DIFS = 30us -- - --Trial Il- Moderate misbehavior: Attacker, CW = 16us
—— Trial II- Moderate misbehavior: Legitimate, DIFS = 50us| —— Trial Il- Moderate misbehavior: Legitimate, CW = 32us

08 o8t |

08 ; o6l

CDF
CDF

o4l ol

02

50 W B a0 X0 0 2 30 10 5
(DIFS + Back-off) (us) (Back-off/Slot time) (us)

Fig. 3. (a) DIFS cheating, (b) CW cheating.

A
/7//
¢ 4

/
/

07|
06| /

‘Atacker: Not performing Rate adaptation
09 Legitimate 1: Performing Rate adaptation
Legitimate 2: Performing Rate adaptation

CDF
o
o

CDF

o

—Legitimate 1: Performing Rate adaptation
01 —— Legitimate 2: Performing Rate adaptation 01 /
—— Legitimate 3: Performing Rate adaptation

05 1 15 2 05 15 2

1
IAT (us) x10° AT (us) x10*

Fig. 4. (a) Rate adaptation cheating: No attack., (b) Rate adaptation cheating:
Under attack.

lower/higher optimal PHY data rate) to improve performance
during physical layer interference (e.g., radio frequency
interference). However, the most widely deployed rate
adaptation algorithm, ARF, is often inappropriately invoked as
a result of packet collisions at the MAC level. This
inappropriate functionality, interestingly enough, actually
creates a level of fairness in the network as the nodes share the
inappropriate penalty by switching to lower transmission rates
as a result of MAC layer collisions. This phenomenon is
illustrated in Figure 4a. The overlap of the IAT distributions
illustrates the fairness that results because of DCF as well as all
nodes enabling rate adaptation. In our misbehavior scheme, an
attacker stands to benefit with increased bandwidth utilization
by simply not performing rate adaptation (Figure 4b) and
continuing to transmit at the fastest physical layer data rate.
Figure 4b shows that the distribution of the attacker’s IAT is
less than the legitimate nodes (indicating a higher sustained
throughput), illustrating that nodes not employing rate
adaptation (though flawed in its most widely deployed form -
ARF) can take away bandwidth from legitimate nodes. Note
that this works to the attacker's interest when there is little
physical layer interference as not adapting the rate in a scenario
with increased physical layer interference may result in the
attacker’s packets being too mangled to read at the receiver thus
reducing his throughput. It should be mentioned that though
ARF is the most-widely deployed rate adaptation protocol,
there have been many proposed schemes [14-16] to deal with
this protocol’s inefficiency.

B. Preliminary experiments

As detection on the wired side is a distinguishing factor of

Packets
a
8

—ae— Wired-side arrival times
—x— Wireless-side arrival times
T2102 1210 12106 12108
Time (us) M 109

Fig. 5. Packet arrival times on wired and wireless sides.

this approach, in this section we illustrate its viability. We
conducted experiments to determine whether the temporal
characteristics of the IAT observed on the wireless link were
in tact on the wired side. This is a function of the queuing
delay and the number of router hops in the path to the
destination.

For this purpose, an experimental testbed was built using
three Lenovo laptops, three Dell desktops, a Netgear 10/100
Mbps Fast Ethernet switch and a Linksys 2.4Ghz wireless-b/g
access point (AP). The setup is similar to the attack scenario
depiction in Figure 1. The classifier monitors at the switch
immediately linking the access point to the LAN.

The arrival times of upstream traffic were recorded at the
receiver node on the wired side. On the wireless side, a laptop
acting as sniffer was used in promiscuous mode to capture
traffic from the wireless sender. We observed that the arrival
rates were retained albeit with a uniformly witnessed lag (as a
result of queuing in switch) as shown in Figure 5 above. Note
that given the simple one-hop path from the WLAN to the
classifier node on the wired side, a switch with minimal
traffic density exhibits a constant queuing delay.

IV. DETECTION SCHEME

A. Misbehavior detection

While some related work perform a signature-based
categorization, our classifier compares the delay distributions
of unknown sequences with each other to find the closeness
'c". Each subsequent trace is examined for likeness to the
preceding incoming traces. A hypothesis test is performed
over a threshold of likelihood (cy,.s) that the classifier is
initially trained on, but is dynamically updated as the
classifier learns. The motivation behind using an anomaly-
based detection scheme is that during a given time window,
all legitimate nodes in a network are expected to converge to
a similar timing profile. This will be shown in Section V.

B. Classification Scheme

We bin IAT values into n bins (n depends on the bin width)
and calculate for each dataset the number of occurrences in
each bin to generate a profile /. To detect misbehavior, we use
a Naive Bayes classifier to compare profiles of the first trace
with those of every other trace to calculate ¢. This is done

using a two-sample Chi-square test.

Profiles f; are compared with an unknown sample f, based on
frequency of occurrences in each bin. Because the nature of
incoming traffic cannot be predicted, prior probability is
unknown and is assumed equally distributed over the » profiles.

PriorProbability P(f;)=1/n (M
Likelihood P(f.|f.) (2)
PosteriorProbability P(f|f.)=P(f.|f)P(f) ()

Since f; is a random variable {x;x,,...xs},

P(f|f.) = Pl(x.x,.x,)| f,)P(f))
PULL) = PU]TPx) (5)

Likelihood (measure of how similar the unknown trace is to a
given profile) is calculated for each profile using a two-sample
Chi-square test, which is run independently on all sample-
profile bin frequency pairs. Posterior probability (measure of
how likely a profile is the closest match for the unknown) is
derived by aggregating the Likelihood measures (Chi-square
values) each of which is calculated as shown below.

(6)

S; and S, are bin frequencies of the two samples to be
compared. They represent an unknown and a sample profile. &
is the number of bins.

V. PERFORMANCE ANALYSIS

A generic simulation template of up to 50 wireless nodes was
created in ns2 [17], each of which could choose from different
traffic models, transport protocols, WLAN speeds, locations,
mobility patterns and packet sizes. MAC parameters were
altered at the selfish nodes, while default parameter values of
the 802.115 standard were retained at legitimate nodes. Table 1
shows the MAC parameters that were used during the
simulations, from moderate to extreme cheating. The default
values for (CW,,;,, CW,..,) and DIFS in the 802.115 amendment
are (32,1024) and 50us respectively.

Though simulations were performed for a longer duration,
individual 10-second time windows were monitored for
anomalies. A 1000%*1000 m” sized topology was created as the
testbed backbone. The setting includes receiver nodes on the
wired side and a base station. TCP and UDP traffic generation
involved the use of FTP and CBR applications. Node location
changes were performed using varying levels of two-
dimensional spatial placements within fixed coordinates. The
Random Waypoint mobility model was used for node
movement.

In the simulation setup, several parameters were varied to
study their effect and to check the robustness of our concept.
The parameters that were varied include the number of nodes,
data rate, transport protocol, location, mobility and traffic
model. The results in this section are a representative sample of

Table 1: MAC Parameters for selfish nodes

MAC Parameters

Class A: (CWoyin, CWiay) €{(1,1),(2,2)} OR DIFS ={1-10}
Class B: (CW,in, CWoa) € {(4,4), (8,8)}OR DIFS ={11-25}
Class C: (CWyin, CWpay) € (16,16) OR DIFS = {26-40}

our analysis shown for extreme and moderate CW cheating.
The results shown in Figures 6-8 are each from single
independent trials.

Figure 6 shows that the attack model's foundation is such
that since the attacker steals irrespective of the number of
nodes at any given instance of time, we should be able to see
the difference in distributions. This result justifies our
anomaly based detection approach. It also illustrates our
technique’s stability in larger networks.

Secondly, we simulated a group of attackers to check the
robustness of our detection scheme against a group of
colluding attackers. As seen in Figure 7, when the attackers
perform the same changes to the protocol, the technique
should see a cluster of good and bad nodes.

Similarly, the distance between attacker and legitimate
delay distributions persists independent of the transport
protocol, as shown in Figure 8. Figure 8a shows saturated
constant rate transmissions. Figure 8b shows exponential
flows with varying frequency of transmissions (that is, with
varying ON/OFF periods). This is an important result as it
shows that our technique supports different higher layer
behavior. It is important to note that the closeness between
the TCP attacker and UDP legitimate traffic is minimal, but
that becomes a trivial concern if traces from a traffic class are
compared with those from the same class. It is possible to
extract the transport protocol from the IP header of incoming
traffic flows even if the data is encrypted because the
detection is performed on the wired side. Additionally, we
could observe TCP ACKs to deem a flow as TCP.

Also, as one of the scenarios to test the system, we
introduced mobility in the nodes and varied their locations.
Different combinations of node placements were tried within
a given topology. The attacker could be placed close to or far
from the other nodes. Alternatively, he could be close to a
few and far from the others. Also, he could be close to (worst-
case misbehavior) or far from (best-case misbehavior) the
base station. The idea behind this type of testing is to see how
the closeness varies for different scenarios. As will be shown
in the next section, there is minimal overall variance in
accuracy.

Our scheme is free of adaptive cheating because the bad
node's influence over good nodes invariably shows up in a
comparison of distributions. Since our technique does not
expect specific parameters, it is free of parametric adaptive
cheating where a clever attacker may choose a different
parameter from the one being monitored for. Also, since we
do not look at magnitude based metrics, we do not suffer from
effective-mean based adaptive cheating, where an attacker

—— Attacker 1
—— Attacker 2

CDF
o
o

—— Attacker 3
—— Attacker 4
—— Attacker 5
— Legitmate 1
—Legitimate 2
—— Legitimate 3
—— Legitimate 4
Legitimate 5

CDF

05 1 15 2 25 1 P 3 7 5
AT (us) ot AT (us) ot

Fig. 6. Larger network. Fig. 7. Colluding attackers.

coF
°
&

CDF

—— TCP: Attacker
—— UDP: Attacker

——TCP: Attacker
—— UDP: Attacker
—— TCP: Legitimate o1
—— UDP: Legiimate

—TCP: Legitimate
—— UDP: Legitimate
000 2000 3000 4000 5000 6000 7000
AT (us) IAT (us)

2000 4000 6000 8000 10000
Fig. 8. UDP vs. TCP — (a) Saturated, (b) Bursty.

adjusts his delay parameters in timely intervals to misbehave,
while at the same time satisfying the expected mean criteria.
Having presented qualitative analysis of the general idea of the
technique in this section, we illustrate the accuracy of our
scheme in the next section. Note that the scenarios outlined in
this section were used in measuring the system's accuracy
presented in the next section.

VI. ACCURACY MEASURES

A combination of simulation and experimentation was
performed to validate the classifier. The simulation setup used
is as discussed in the previous section. The experimental testbed
used for validating the technique is as described in Section III-
B. The laptops act as clients sending data to the desktop. One of
the laptops is the attacker, while the other laptops are legitimate
nodes.

Simulations are used to evaluate DIFS cheating detection.
Also, for the sake of accuracy in emulating physical layer rate
adaptation, simulations are used to evaluate rate adaptation
cheating detection.

Simulations and experiments are used to evaluate CW
cheating detection. For experimentation, CW cheating is
performed by modifying the CW values in the madwifi [18]
driver. A simple method for doing this is by taking advantage of
the wireless QoS command line provisioning in 802.11e
compatible wireless routers. In such a setting, it is possible to
configure the Enhanced Distributed Coordination Access
(EDCA) parameters (including CW) for each QoS traffic class -
best effort, background, voice and video.

A. Misbehavior Detection

As a preliminary measure towards testing the precision of
detection, the width of the bins used in the Bayesian approach

Bin width = 200us

— o 100 stttk

Accuracy
g

70| —+— CW Cheating: Simulation
—+— CW Cheating: Experiment
10 65 —— DFS Cheating: Simulation

R o —&—Rate Adaptation Cheating: Simulation

ol . 601
150 250 300 400 500 2 4 6 8 10 12 14 16 18 2

Bin idth (us) Trials

Fig. 9. DCF and Rate adaptation Cheating:
(a) Classifier Bin width tuning, (b) Classifier Accuracy.

was tuned in an effort to determine the optimal width - one
that yields peak accuracy. We assume equal-sized bins and
perform a non-parametric density estimation. Hence, online
computation of bin size via optimal binning [19] is not
required. Note that most of the histograms produced or
published have equal-width bins [20], which justifies our
assumption.

Traces from simulations and experiments were used in
evaluating accuracy, which applies across all three types of
cheating. Traces from 60 windows (20 for each type of
cheating) of 10 seconds each were fed into the classifier. The
detection from the 60 trials was used in determining True
Positive Ratio (TPR) measures for the classifier. Further, 20
trials of legitimate traffic were used to evaluate the False
Positive Ratio (FPR). This procedure was followed for
different bin widths. Results are shown in Figure 9a.

The accuracy measures shown in Figure 9a are an average
of the results from detection trials of all three types of
cheating. In Figure 9a, note that with an increase in bin width
the accuracy drops, which makes sense as the classifier works
better with a higher number of bins.

An optimal bin width of 200us was chosen, as it gives the
minimum FPR of 0.1 and maximum TPR of 96. The resulting
measurement is deemed the accuracy of the system because it
maximizes TPR and minimizes FPR.

On testing the system with the chosen parameters (bin width
= 200us and FPR = 0.1) for a total of 20 additional trials (for
each cheating type), it was observed that the technique is
accurate in detection 100% of the time for DIFS cheating,
approximately 92% of the time for CW cheating, and
approximately 86% of the time for rate adaptation cheating - as
shown in Figure 9b. For the CW cheating trials in Figure 9b,
both simulations and experiments were performed (20 trials
each).

In the simulations for all three types of cheating, traces from
different scenarios were tested, in each of which network
parameters were changed (as discussed in the previous section)
in an attempt to test the scheme's robustness.

VII. CONCLUSION AND FUTURE WORK

We presented a scalable and immediately deployable
solution to the problem of selfish behavior at the MAC layer.

MAC misbehavior is especially dangerous as it can easily lead
to denial of service. Since we do not look for a specific kind of
behavior, and instead look for abnormal activity, the system can
be extended to detect any variant of cheating, including
requesting for a larger duration and resulting in larger NAV
values being set by other nodes. Our method is simple and can
be easily implemented on the wired side. It does not require
changes to be made to the protocol or wireless terminals. Our
model is free of adaptive cheating and is independent of number
of nodes in the network, protocol, rate adaptation, higher layer
behavior, etc. Also, our method works independent of whether
RTS/CTS is enabled or not.

As an extension, we plan to consider forms of misbehavior
not addressed in this paper. Additionally, we will investigate
misbehavior in ad hoc networks.

REFERENCES

[1] A.L. Toledo, and X. Wang, "Robust Detection of Selfish Misbehavior in
Wireless Networks," IEEE Journal on Selected Areas in Communications,
Vol.25,2007.

[2] Y. Rong, S.-K. Lee, and H.-A. Choi, "Detecting Stations Cheating on
Backoff Rules in 802.11 Networks Using Sequential Analysis," IEEE
INFOCOM 2006.

[3] L. Guang, and C. Assi, "Mitigating Smart Selfish MAC Layer
Misbehavior in Ad Hoc Networks," Wireless and Mobile Computing,
Networking and Communications, 2006.

[4] P. Kyasanur, and N.H. Vaidya, "Selfish MAC layer misbehavior in
wireless networks," IEEE Transactions on Mobile Computing, Vol.4, 2005.

[5] M. Raya, 1. Aad, J.-P. Hubaux, and A El Fawal, "DOMINO: Detecting
MAC Layer Greedy Behavior in IEEE 802.11 Hotspots," [EEE Transactions on
Mobile Computing, Vol.5, 2006.

[6] S. Radosavac, G.V. Moustakides, J.S. Baras, and I. Koutsopoulos, “An
Analytic Framework for Modeling and Detecting Access Layer Misbehavior in
Wireless Networks,” ACM TISSEC, Vol.11, 2008.

[71 S. Radosavac, A.A. Cardenas, J.S. Baras, and G.V. Moustakides,
“Detecting IEEE 802.11 MAC layer misbehavior in ad hoc networks: Robust
strategies against individual and colluding attackers,” Journal of Computer.
Security, Vol.15, 2007.

[8] V.N. Lolla, L.K. Law, S.V. Krishnamurthy, C. Ravishankar, and D.
Manjunath, "Detecting MAC Layer Back-off Timer Violations in Mobile Ad
Hoc Networks," IEEE ICDCS 2006.

[9] M. Cagalj, S. Ganeriwal, I. Aad, and J.-P. Hubaux, "On selfish behavior in
CSMA/CA networks," IEEE INFOCOM 2005.

[10] J. Youngmi, and G. Kesidis, "Distributed Contention Window Control for
Selfish Users in IEEE 802.11 Wireless LANS," IEEE Journal on Selected Areas
in Communications, Vol.25, 2007.

[11]1L. Guang, and C. Assi, "A Self-Adaptive Detection System for MAC
Misbehavior in Ad Hoc Networks," IEEE ICC 2006.

[12] A. Kamerman, and L. Monteban, “WaveLAN-II: A high-performance
wireless LAN for the unlicensed band,” Bell Labs Technical Journal, pages
118-133, 1997.

[13] Q. Pang, V.C.M Leung, and S.C. Liew, "A rate adaptation algorithm for
IEEE 802.11 WLANs based on MAC-layer loss differentiation," Broadband
Networks, 2005.

[14] J. Kim, S. Kim, S. Choi, and D. Qiao, "CARA: Collision-Aware Rate
Adaptation for IEEE 802.11 WLANSs," IEEE INFOCOM 2006.

[15] S. Biaz, and S. Wu, "Loss Differentiated Rate Adaptation in Wireless
Networks," IEEE WCNC 2008.

[16] S.H. Wong, H. Yang, S. Lu, and V. Bharghavan, “Robust rate adaptation
for 802.11 wireless networks,” ACM MobiCom 2006.

[17] http://www.isi.edu/nsnam/ns/

[18] http://madwifi-project.org/

[19] M. Refaat, “Data Preparation for Data Mining Using SAS”, Academic
Press, 2007.

[20] http://www.stata.com/support/faqs/graphics/histvary.html

