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Abstract—Data collection, redistribution and retrieval are es-
sential components of wireless sensor networks (WSNs). In dense
WSN deployments, the sensor data are usually sent to a sink
that can be reached through one or multiple hops. In the case
where communications with the sink are disrupted due to various
reasons, the data must be stored in the network for later retrieval.
When considering in-network storage, we must redistribute the
data among an energy-constrained network with sensors that
have a low storage capacity. In previous works, the data redis-
tribution problem has been studied, but the focus was only on
the redistribution costs while the data retrieval costs (which have
been analyzed in other works as an independent problem) were
ignored. We recognize that these two problems should be studied
in concert and therefore, in this paper, we combine both data
redistribution and retrieval into a single problem. We propose
a graph transformation, formulate the problem as a minimum
cost flow optimization problem and use linear programming to
find the optimal solution. Moreover, we introduce an algorithm
named EDR2: energy-efficient data redistribution and retrieval.
EDR2 is a distributed energy-efficient algorithm for in-network
storage and later retrieval in WSNs. To evaluate our solution
on a large scale, we modeled different scenarios in a 400-node
network, used the GNU Linear Programming Kit (GLPK) to
obtain the optimal solutions, and ran simulations to find the
solutions using our algorithm. Finally, we implemented EDR2

using real sensors to demonstrate the feasibility of our algorithm.
We compared EDR2 with two heuristic algorithm and show that
our approach is an energy-efficient solution for node selection
when redistributing data in a WSN for eventual retrieval.

I. INTRODUCTION

Over the past decade, wireless sensor networks (WSNs)
have gained popularity due to the fact that they are potentially
low cost solutions to a variety of real-world problems [1].
WSNs have been used in both military and civilian domains
where they usually generate large amounts of data over their
lifetime. The goal of large-scale WSN deployments is to
collect, process, store and forward data to remotely monitor
and control the activities in specific areas of interest. Usually,
these networks are unattended and sometimes some nodes
including sink nodes might fail due to various reasons (e.g.,
battery depletion and tampering). In the case where sink
nodes are unreachable, sensor nodes are required to store
generated and collected data in the network to preserve it
while sink nodes are replaced or reassigned. When considering
in-network storage, we must redistribute the data among an
energy constrained network with low storage capacity sensors.
In order to provide a low cost in-network storage solution,
we combine data redistribution and retrieval into a single
problem and provide a sink failure resilient approach. To

our knowledge, we are the first to consider this problem
as a combined one. We provide EDR2, an energy-efficient
algorithm for data redistribution and retrieval, and the linear
programming formulation to find the optimal solution to this
problem.

During normal operation of WSNs, the data storage follows
a centralized approach where data is collected by individual
nodes and sent back to the sink or base station for storage
and processing. Whenever the sink fails, a distributed storage
approach must be used and all nodes should participate in
the data storage by committing some local space for the data
collected at the data producers. To accomplish data redistri-
bution, nodes can learn some network topology information
by communicating with their neighbors and use it to make
decisions about how and where the data should be stored
according to the location of the sink.

The goal of this research is to provide an energy-efficient
algorithm for data redistribution and retrieval in WSNs. We
formulate the data redistribution and retrieval problem using
linear programming (LP) and find the most energy-efficient
way to distribute data items in the network given a set of Data
Producers (DPs) and sink nodes. The contribution of this work
is threefold. First, the introduction of a graph transformation to
generate a new flow network is proposed in order to use it as
the input of the minimum cost problem. Second, we combine
both data redistribution and retrieval into a single problem
and present the optimal solution. Third, a new distributed
algorithm for data redistribution and retrieval is proposed and
implemented.

The rest of this paper is organized as follows. The related
work is presented in Section II. Section III describes the
network model and the problem definition. Section IV presents
our graph transformation and the linear programming formu-
lation. In Section V, we introduce and explain our distributed
algorithm for data redistribution and retrieval. Section VI
presents the analysis, optimal solutions and the results of
our algorithm for different scenarios. In Section VII, we
explain the details of our implementation in TinyOS and the
experimental evaluation. Section VIII concludes the paper.

II. RELATED WORKS

Data redistribution and retrieval are often considered and
studied as two independent problems. To the best of our
knowledge, we are the first to combine them into a single
problem to propose a sink failure resilient approach for WSNs.



In the literature, the most similar research to our work was
proposed by Tang et al. in [2] where the authors formulated the
data redistribution problem as a minimum cost flow problem.
We based our work on the idea of using minimum cost flow
to provide a sink failure resilient approach for more realistic
scenarios. However, our approach is different than that in [2]
since we included the transformation of the original graph
into a flow network and use it to find the minimum data
redistribution and retrieval cost. In [2], the authors analyze
data redistribution and their goal is to assign sink nodes to
offload data. In our case, the sink nodes, gateways usually
connected to external networks, are already defined but still
can be reassigned. In [2], the authors briefly mentioned that
data retrieval can be accomplished using data mules or man-
ually. In the case of large scale WSN deployments, the use
of data mules has many disadvantages since they must have a
notion of the global storage location, they have to visit most
nodes in the network to retrieve data, and they are vulnerable
to attacks putting at risk all the collected data.

EnviroStore [3] is another work that focus on data redis-
tribution. In [3], the authors focused on maximizing storage
capacity of disconnected sensor networks to accommodate the
most data. They also use the idea of data mules to share
data across the partitioned network and increase the storage
capacity. Our work differs from [3] since we do not consider
disconnected networks and our main goal is to minimize
communication costs while redistributing and retrieving the
data.

In [4], the authors consider data retrieval as an individual
problem. SolarStore [4] studies the tradeoffs between storage
reliability and energy consumption in solar-powered sensor
networks. SolarStore also adopts a disconnected network
model, where the stable connection is not always available.
They focus on replicating data in the network and dynamically
adapting the degree of data replication depending on solar
energy and storage availability. Their goal is to maximize the
amount of data that can eventually be retrieved subject to
energy and storage constraints, while our goal is to minimize
the total energy consumption incurred in this procedure.

III. NETWORK MODEL AND PROBLEM DEFINITION

A. Network Model

In our model, we have a network represented as a weighted
graph G = (V,E,w), where each edge (u, v) ∈ E has a
transmission cost wu,v , and each sensor v ∈ V has a storage
capacity cv . We also have a set of data producers also called
source nodes Pi ∈ V that generate data and transmit the data
to sink nodes Si ∈ V through one or multiple hops. In our
model, we consider that all data elements have the same size
and the amount of data is much larger than the local storage
capacity of a single sensor. In the case where sink nodes fail,
all data must be stored in the network. Therefore, all the
nodes should commit some local storage to save some data
elements for later retrieval. The objective of our work is to
minimize the combined cost, that includes the redistribution

cost when storing data in the network and the retrieval cost
when collecting the stored data.

B. Problem Definition

In this section, we formally define the data redistribution
and retrieval problem.
Assumption 1. Fixed Packet Size: we assume without loss of
generality that the size of the packets generated at the data
producers have the same size and we consider each packet as
a data element.
Definition 1. Transmission Energy Function and Cost: the
energy required to transmit a signal is approximately pro-
portional to dα, where d is the distance and α ≥ 2 is the
attenuation factor that depends on the transmission medium.
For each data transmission there is packet overhead θ which is
the cost for sending one packet. In order to minimize the en-
ergy consumption, our objective is to minimize redistribution
and retrieval costs when storing data in network. The problem
studied in this work can be formally defined as follows:
Definition 2. Data redistribution and retrieval problem: Given
a sensor network, a set of data producers Pi, and a set of sink
nodes Si, the data redistribution and retrieval problem is to
find the minimum energy cost paths for both: distributing data
elements d′is from Pi to different nodes Mi in the network
and retrieving data from Mi nodes to the sink nodes once
the sink nodes are ready to collect the stored data. Nodes Mi

are regular nodes used as storage nodes with heterogeneous
storage capacities.

IV. GRAPH TRANSFORMATION AND LINEAR
PROGRAMMING FORMULATION

In this section we formulate the problem. Similar to [2],
we formulate the data redistribution and retrieval problem as
a minimum cost flow problem [5] and use linear programming
to find the optimal solution.

The first step to solving our problem is to perform a graph
transformation to generate a flow network that can be used as
the input for our LP formulation.

A. Flow Network

Before we can use minimum cost flow to find the optimal
solution to our problem, we need to transform our original
graph into a flow network. We propose two transformations
that can be used to calculate this solution. The steps to
accomplish the graph transformation are the following:

Transformation 1 (T1):
1) Take the original graph and use any single-source short-

est path algorithm such as Dijkstra’s algorithm [6] to
calculate the minimum cost from the source and the sink
to all the nodes. Note that the source and sink nodes
should be defined before doing this transformation.

2) Connect the source to every node with an edge that
represents the minimum cost calculated in the previous
step and the link capacity is the storage capacity of each
node.



3) Connect all the nodes to the sink. The edges also
represent the minimum cost.

4) In the case where we have multiple data producers
(sources) and/or multiple sinks, we can use an auxiliary
node connected to all sources or sinks to represent a
single source or sink. The cost of these edges from and
to the auxiliary node are zero and the link capacities
are infinity for an auxiliary sink and the total amount of
data for the auxiliary source.

Transformation 2 (T2):
1) Take the output graph from T1 and for each node v that

is not a source, sink, or auxiliary node, create another
node and re-label the two nodes as v′ and v′′.

2) Connect the two nodes v′ and v′′ using an edge. The
capacity of this new edge is equal to the storage capacity
of the original node v.

3) Connect the sources to all v′ nodes with the original cost
and edge capacity.

4) Connect v′′ nodes to the sink with the original cost and
edge capacity.

Figure 1 shows an example of how to do transformations T1
and T2 to generate the flow network for different scenarios.

Fig. 1: Flow Network Generation for Different Scenarios.

B. Minimum Cost Flow Problem

In our case, the minimum cost flow problem consists of
finding the cheapest way, in terms of energy consumption, for
sending a certain amount of flow or data elements through
the network from the source nodes to the sink nodes. Each

communication link between any two nodes has a maximum
capacity.

Given a weighted flow network G = (V,E,w) with a
source and sink, s, t ∈ V and amount of flow, p, the LP
formulation including our parameters for communication cost
and data size is as follows:

Variables:
wu,v ← real ∀(u, v) ∈ E

fu,v ← real ∀(u, v) ∈ E

Objective Funtion: ∑
(u,v)∈E

wu,v · fu,v →Min

Subject to:

∑
w∈V

fu,w = 0 ∀u 6= s, t (flow conservation)

∑
w∈V

fs,w =
∑
w∈V

fw,t = p (required flow)

0 ≤ fu,v ≤ lu,v (link capacity)

If we use the T1 graph:

∑
w∈V

fs,w ≤ cw (storage capacity)

If we use the T2 graph:

∑
w∈V

fs,w′ = fw′,w′′ (already met)

Where:

wu,v = EnerCost(u, v) + θ

EnerCost(u, v) = dα

We can now explain the differences between the graphs
generated with Transformation T1 and T2. In the case were
we use the graph T1, we need to guarantee that the storage
capacity of each node is not exceeded. Therefore, we need to
add a forth constraint (storage capacity constraint) that will
change the classical minimum cost flow formulation. In the
case where we use the graph T2, we have an edge between the
nodes w′ and w′′ whose link capacity is equal to the storage
capacity of the original node w. In this way, we guarantee that
the capacity of each node will not be exceeded and we can
relax the assumption that all the nodes have the same capacity
or the capacity of each node is fully utilized. If we use the
T2 graph we do not really need the fourth constraint since it
is already covered with the flow conservation constraint.

By solving this LP formulation, we can obtain the minimum
data redistribution and retrieval cost for any given set of data
producers and sinks in a sensor network.



V. DISTRIBUTED ALGORITHM

We now present EDR2, a distributed energy-efficient al-
gorithm for data redistribution. EDR2 is an approximation
algorithm inspired by the distributed "Push-Relabel" algorithm
for solving max-flow problem [7].

Algorithm 1 consists of a network initialization stage
and a distributed flow scheduling stage. In the initializa-
tion stage, the sink node broadcasts a probing message
which propagates through the network to determine the total
communication cost from each individual node towards the
sink (CtS). The initial local CtS is a number larger than
local communication cost ∗ |V |. We minimize the total
message cost during initialization stage by exploring the
Dominant Pruning based broadcasting [8]. First, every node
broadcasts once to get the neighbor list. A second broadcast
is applied to exchange the one-hop neighbor list in order to
obtain the knowledge of two-hop neighbors. Then, sink calcu-
lates the CtS for each of its one-hop neighbors, determining
the forwarding list with minimum

∑
CtS which covers all

the two-hop neighbors of sink. The computation of CtS value
is based on: CtS = MIN(local CtS, Received CtS +
local communication cost). The CtS is also updated in re-
cipient nodes, and the nodes set the gateway node information
as well.

During the minimum cost flow distribution stage, the data
producer also sends a message to collect information about the
path to redistribute the data. We calculate the path capacity
based on the total amount of storage capacity in its down-
stream nodes to the sink. For example, if a node is 3 hops
away from the sink and each node has a storage capacity of
10, the total capacity of the path is 30. We use push-relabel to
send the data using the minimum cost path until the capacities
are fully utilized. The algorithm basically perform push-relabel
operations using node capacity, and minimum cost path to
sink. Thus, the message complexity for the termination of the
algorithm is bounded with O(V 2).

VI. ANALYSIS AND PERFORMANCE

In this section we show the results of our LP formulation,
EDR2, and the related work [2], where only redistribution was
considered. We modeled different network scenarios, analyze
and compare the results.

We implemented our formulation using the GNU Linear
Programming Kit (GLPK) to obtain the optimal solutions, and
also simulated our proposed algorithm EDR2. One scenario
we modeled is a network of 400 nodes placed on a grid of
20x20. We selected one through five data producers and one
sink (node 355 = (18,15)). Each data producer has 500 data
elements to redistribute and the storage capacity of each node
is 10 data elements. Note that according to our formulation,
the storage capacities can be different. Figures 2a-2c show
the node selection when considering only data redistribution
[2], Figures 2d-2f show the node selection when considering
both redistribution and retrieval (Optimal), and Figures 2g-2i
show the results of our simulations using EDR2. Triangles
represent the source nodes, the square represents the sink,

Algorithm 1 EDR2 Algorithm
procedure: Initialization

1: statusu = inactive
2: CtSu = comcostu ∗ |V |
3: each node broadcast to get neighbor list
4: if identityu = SINK then
5: broadcast the message
6: end if
7: Upon reception of (INIT, rCtS) msg from v
8: update CtSu = rCtS + comcostu
9: for all i ∈ nbrlistu do

10: update CtSi = rCtS + comcosti
11: end for
12: if u ∈ forwarding list of v then
13: choose forwarding list with minimum

∑
i∈nbrlistu CtSi

covering all two-hop neighbors
14: broadcast the message
15: else
16: drop the message
17: end if
procedure: Distributed Min-cost Flow

if identityu == DP then
2: excessu = data demand;

end if
4: upon receive flow push msg with f(w,u)

if (excessu = f(w,u))> 0 then
6: find the neighbor v with minimum cost to sink

δ = min {capv , excessu}
8: if δ >0 then

push δ to node v
10: else

if there is remaining storage space then
12: store the δ data item in node u

excessu = 0
14: else

relabel node heightu and go to 5
16: end if

end if
18: end if

and the filled circles are the selected nodes. As expected,
the data is distributed close to the data producers when data
retrieval is not considered, and in between data producers and
the sink otherwise. Figure 3 shows the cost for four cases: only
redistribution [2], redistribution and retrieval (our approach),
only redistribution plus only retrieval, and EDR2. In Figure
3 we can observe that local optimal (only redistribution) plus
local optimal (only retrieval) is not equal to global optimal
(redistribution and retrieval). Note that the gap between our
approach and only redistribution plus only retrieval increases
when we have more data producers and/or data. We also note
that the EDR2 costs are higher than the optimal, which is
expected since this is only an approximation algorithm that
also includes the initialization phase overhead.
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Fig. 2: Node Selection for Data Redistribution and Retrieval
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Fig. 3: Redistribution and Retrieval Costs.

VII. IMPLEMENTATION IN TINYOS AND EVALUATION

We implemented our EDR2 algorithm, and two heuristic
algorithms in TinyOS-2.x to compare their performance in
a WSN with heterogeneous data storage space and different
migration costs for different links.

For our experiments, we set up a network using 16 sensor
nodes placed in a 4x4 grid (Figure 6) and set the transmission
power to minimum in order to have a multihop network. The
transmission cost is defined as the function of residual energy
in the node, with the range from 10 to 50. The number of

packets for each data producer to send is 20, and each node is
assigned with the same initial storage capacity of 10 packets.

The two heuristic algorithms that we implemented were the
greedy and random algorithms. In the greedy algorithm, the
data producer selects the neighbor with the smallest cost to
offload all its data. The selected node stores data in flash until
it is full and then starts forwarding the packets to the next
minimum cost hop. In the random algorithm, the producer
randomly selects one node to offload all its data. When the
selected node’s flash is full, it starts forwarding the packets to
the next randomly selected hop. Since, the random and greedy
algorithms push the excessive data from data producers to the
selected neighbor, and pass the selection token to the next
neighbor, the data flow can be directed to a "dead end" and
therefore it can be lost (as shown in Figure 4).

Figure 5 shows the node selection for our data redistribution
and retrieval experiments when using different algorithms.
Figure 7 shows EDR2’s total communication costs with the
random and greedy algorithms. EDR2 always selects the
lowest cost path to offload data and retrieve the data, while
respecting each node’s storage capacity. The results show that
EDR2 outperforms the other two algorithms for single and
multiple data producers.
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Fig. 5: Node Selection for Experimental Data Redistribution and Retrieval
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Fig. 6: Testbed for Experiments.

VIII. CONCLUSION

In this paper, we formulated in-network data storage and
retrieval as an optimization problem, which can be optimally
solved using a linear programming model. We combined both
data redistribution and retrieval into a single problem and
propose an energy efficient approach to preserve the data in
cases where communications with the sink are disrupted.

To find the optimal solution to the data redistribution and
retrieval problem we proposed two graph transformation used
as the input of the minimum cost flow problem. The minimum
cost flow problem allowed us to find the cheapest way in terms
of energy consumption for sending a certain amount of flow
or data elements through the network from the source nodes
to the sink nodes. We found the optimal solution and showed
that local optimal (only redistribution) plus local optimal (only
retrieval) is not equal to global optimal (redistribution and
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retrieval).
We designed EDR2, a distributed algorithm for data redis-

tribution and retrieval and simulated our algorithm to compare
it with the optimal solution. Moreover, we implemented the
algorithm in TinyOS-2.x to show its feasibility and efficiency
through different experimental scenarios.
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