
ABSTRACT
In this paper we propose a technique for detecting under utilized
resources (less than 70% memory utilization) due to memory bound
processes by passively monitoring network traffic produced by the
resource. To our knowledge, this is the first approach of its kind.
One application of this technique is dynamic resource discovery
(detection of resources with under utilized memory) in a High
Performance Desktop or Cluster Grid computing environment
confined to a low latency Local Area Network (LAN). Our method
removes the need to communicate directly with resources to
determine if their memory is under utilized, thus reducing traffic on
the network. This is very important in a High Performance
computing environment since data or computational intensive
applications may be present. The proposed method creates a delay
sensitive profile generated by the analysis of monitored network
traffic due to High Performance UDP based services such as file
transfer applications (FOBS, Tsunami, UDT, SABUL, etc.),
message passing platforms (MPICH-G2/Score, etc.), and many
more. An energy value is derived from the delay sensitive profile,
which represents the state (over utilized memory or under utilized
memory) of the resource of interest. Then a simple threshold is
applied to the energy value to identify the state of the resource.
Several scenarios have been investigated to determine the
feasibility of the proposed technique. Results suggest that the
proposed technique can use network traffic to extract delays
associated with a resources’ memory utilization and accurately
determine the state of the resource.

Keywords
grid computing, resource discovery, wavelet transform.

1. INTRODUCTION
A local cluster is a collection of independent and cheap

machines used together as a supercomputer to provide a solution
[18]. In practice, this is implemented by applying grid middleware
to clusters of local computers to form a high performance platform
for distributed applications or simply a local Cluster Grid.
Similarly, a local Desktop Grid harvests the idle computing
resources of local desktop PCs [19]. Both local Cluster Grids and
local Desktop Grids are viable tools for complex science and
engineering related applications. In such environments fast
communication mechanisms are absolutely necessary, especially if
data intensive applications are used [21],[22]. Also, under utilized
resources must be quickly found. In general, Grid systems
coordinate non-centralized resources, use standard, open, general
purpose protocols (UDP, TCP, ICMP, etc.), and deliver qualities of
service on a very large scale [1]. The coordination of these non-
centralized resources is one of the major challenges that Grid
networks face. For these reasons resource discovery is a non-trivial
problem. Resource discovery can be defined as the systematic
process of determining which grid resource is the best candidate to
complete a job in the shortest amount of time with the most
efficient use of available resources [3]. For Grids that service
memory bound processes (such as permutation multiplication,
matrix multiplication, sorting, etc.) [23], dynamic resource
discovery has the critical job of quickly finding under utilized
resources; otherwise the overall throughput of the grid is decreased
due to submitting jobs to over utilized resources.

In this paper we focus on resource discovery in High
Performance Cluster environments confined to low latency LANs
that heavily utilize UDP for different services. One such service is
file transfer via FOBS, Tsunami, UDT, SABUL, etc. [21]. Another
is message passing via MPICH-G2/Score [24]. Specifically, this
method passively detects under utilized resources. Throughout the
rest of this paper, under utilized resources will be defined as nodes
with less than 70% memory utilization, and conversely, over
utilized resources will be defined as nodes with 70% or more
memory utilization. As a direct result of the above mentioned

Using Network Traffic to Passively Detect
Under Utilized Resources in High

Performance Cluster Grid Computing
Environments

Lanier Watkins
Department of Computer Science

Georgia State University
Atlanta, GA USA

lanierwatkins@bellsouth.net

Raheem Beyah
Department of Computer Science

Georgia State University
Atlanta, GA USA

rbeyah@cs.gsu.edu

Cherita Corbett
Sandia National Laboratories

Livermore, CA USA
clcorbe@sandia.gov

GridNets 2007, October 17-19, 2007, Lyon, France.
Copyright 2007 ICST 978-963-9799-07-3

Node 1

64 MB

Monitor Node

100 Mbps Hub

Node 4Node 2

128 MB

Node 3

192 MB

Figure 1. Experimental Setup.

definitions, memory utilization becomes a binary value, either over
utilized or under utilized. The main contribution of this technique is
its ability to passively distinguish between under utilized and over
utilized resources due to memory bound processes by analyzing
network traffic generated by the resources. The end result is a
reduction of network traffic on the High Performance Cluster Grid.

Normally during resource discovery, a node can be queried
directly or a dedicated information server can be queried to
determine a node’s resource information [1], in these two models
each node has to disseminate its resource information either
directly to the requestor or to a collector node that relays the
information to a requestor on behalf of each node. Section 2
discusses many proposed methods that attempt to mitigate the
impacts to the Cluster Grid network as a result of intrusively
determining resource information, but none propose a passive
approach, which alleviates the need to probe a node.

If used alone, one of the limitations of this method is that it does
not presently provide the same level of details (e.g., number of
CPUs, clock speed, available disk space, etc.) about the potential
resources as more intrusive resource discovery methods; however,
memory utilization information is provided without the overhead of
query based network traffic. Also, there is no additional software
that needs to be installed on resources to support this method. One
apparent use for this technique would be as an enhancement to
existing intrusive resource discovery methods. The new hybrid
resource discovery method would provide the same level of details
about potential resources without having to continuously query
resources directly for dynamic resource information (memory
utilization).

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 is used to provide background on
the use of signal processing upon network traffic to solve
networking problems. Section 4 explains the experimental setup
and the experimental procedure. In Section 5 a closer look is taken
at the inner-workings of the node to attempt to characterize the
source of the delays that detects the presence of memory utilization.
Section 6 presents an introduction to signal processing by using the
Discrete Wavelet Transform. Section 7 presents results and
discusses the feasibility of the technique. Finally, Section 8
concludes the paper.

2. RELATED WORK
A survey of resource discovery algorithms is discussed in [4].

The flooding algorithm, which is similar to the method used by

network routers to advertise routes, assigns to each node a fixed set
of neighboring nodes, and each node contacts its fixed set of
neighbors and transmits the updates to them. The swamping
algorithm is very similar to the flooding algorithm except that each
node may open connections with all of their neighbors, not just a
fixed set of neighboring nodes. Another algorithm, the random
pointer jump algorithm should only be used if there exists a path
between every pair of machines. This algorithm mandates that each
node contacts a random neighbor and the chosen neighbor then
sends resource information to the contacting node. Finally, the
name-dropper algorithm works as follows: each node sends
information to one, randomly chosen neighbor then every time a
pointer jumps, a back edge is added. For example, when node A
chooses node B and node B passes to A all of its neighbors, node B
also obtains a pointer back to A.

In [2] the proposed resource discovery system is based on the
peer-to-peer (P2P) model and provides a complex query interface.
It supports rich resource descriptions and complex queries by
encoding resources and queries with Resource Description
Framework (RDF). To avoid flooding queries to irrelevant nodes, a
semantics-based routing scheme is proposed to route queries only
to related nodes.

A data dissemination strategy called distinctive awareness is
introduced in [5]. In this algorithm, the nodes with distinct
attributes are more significant and thus their status information gets
propagated accordingly. To implement this algorithm, the concept
of Grid Potential is used to encapsulate the relative processing
capabilities of different machines and networks that constitute the
grid and only data corresponding to nodes with the highest grid
potential gets disseminated.

The name-dropper algorithm, the P2P model and the distinctive
awareness algorithms are very powerful and feasible resource
discovery methods; however, they rely upon direct interaction with
nodes or direct communication between nodes to disseminate
resource data. This calls for the following complexity, a node or a
group of nodes have to be involved in an organized scheme to
actively extract resource information from the node in question and
pass along that data from one node to the next until this data
reaches its destination using the available network bandwidth. The
approach detailed in this paper introduces a different type of
resource discovery algorithm that is passive in nature; thus no
nodes must be probed to obtain resource information. It could be
used in conjunction with other more intrusive methods to eliminate
the need to continuously probe resources for dynamic resource
information (memory utilization).

3. BACKGROUND
Signal processing is a key element in this approach; applying

such a technique to network traffic is not a new phenomenon.
Previously, this tool has been applied to network traffic to extract
valuable information; specifically the Power Spectrum Density
(PSD) which is derived from the Fourier Transform and has been
used to identify a node’s network card, using passive methods [6].
In [8], the authors identify Denial of Service (DoS) attacks by
applying signal processing, namely by observing that the spectral
content of network traffic varies directly with the number of

Cloud

Node 2

Node 1

Node 3

Node n

Network Traffic Analysis

(Build Time Series)

Pre-Processing

(Wavelet Transform)

Feature Extraction

(Wavelet Energy)

Detection & Decision

Monitor Node

Figure 2. Passive Resource Characterization Algorithm (PRC).

attackers involved in the scenario and exploiting the fact that the
frequency range can be used to classify the DoS attacks.

The Fourier Transform and its derivatives are powerful signal
processing methods and are well suited for situations where
frequency domain analysis is critical; however, the Discrete
Wavelet Transform (DWT) is equally as powerful, but is well
suited for situations where time domain analysis is critical, which is
the case in this paper. The Wavelet Transform has been used in
such methods as the analysis of the long-range-dependent
phenomenon in Ethernet traffic [9]; and the passive detection of
network performance problems by analyzing TCP traffic [10].
None of these methods have devised a scheme to extract internal
information about the actual sending node, e.g., memory utilization,
etc.

4. EXPERIMENTAL SETUP AND
PROCEDURE

4.1 Experimental Setup
The experimental setup is composed of five nodes (Figure 1),

four Dell OptiPlex GX1 450 Mhz Pentium III nodes and one Dell
OptiPlex GX200 866 Mhz Pentium III node. These nodes are
connected via a 100 Mbps Ethernet hub, and they all have
100Mbps Ethernet cards. The GX200 is used strictly as a traffic
monitor to capture packets that traverse the network using
tcpdump. The remaining four GX1 nodes are used to emulate
traffic on a grid network. Nodes 1, 2, and 3 function as source
nodes and have identical architectures except for the memory size.
Node 1 is configured with 64 MB, node 2 uses 128MB, and node 3
uses 192MB. Node 4 functions as a destination node throughout
our experiments; all nodes are installed with Linux Red Hat 7.0.

4.2 Experimental Procedure
The purpose of the experiments is to emulate UDP traffic on a

high bandwidth, high performance Cluster Grid network. The
network traffic is generated by using the sock program [15] to
simulate UDP network traffic at 14 Mbps constant bit rate (CBR).
The timestamps captured and stored by the monitor node are used
to build a time series that describes the departure times in seconds
of the UDP packets from nodes 1, 2 and 3. Section 4.3 describes
this algorithm in more detail.

Once the necessary traffic has been observed and the
corresponding times series has been created, the next step is to use
the Discrete Wavelet Transform (DWT) to create a delay sensitive
profile. This delay sensitive profile is composed of the
Approximated Coefficients and the Detailed Coefficients; however
for this paper the Detailed Coefficients are discarded and only the
Approximated Coefficients are used. An energy value is derived
from the Approximated Coefficients and a simple threshold is
applied to the energy value to determine the state of the resource
(memory utilization).

We investigate two scenarios in Section 7.1 and 7.2: The
application of the proposed technique to nodes with over utilized
memory, and the application of the proposed technique to nodes
with under utilized memory. The goal is to establish the method’s
ability to discern between the two.

For the first scenario (Section 7.1), we subject nodes 1, 2, and 3
to approximately a 70% memory utilization load by opening
multiple X-Windows applications; the memory utilization and
minimum CPU utilization is verified via the Linux vmstat
command. Meanwhile, the monitor node captures and stores the
UDP traffic with corresponding timestamps to a file and the DWT
is used to create the delay sensitive profile. This test case is
repeated 45 times for each of the three source nodes. For the second
scenario (Section 7.2), the same test cases described above were
repeated. However, no memory utilization was imposed on the
sources. The overall purpose is to show that the method produces
and energy value for under utilized nodes that is discernable from
the energy vale for over utilized nodes.

4. Passive Resource Characterization
Algorithm (PRC)

The diagram in Figure 2 provides a high level flow of the PRC
Algorithm. Only the Detection & Decision module of the PRC
Algorithm differs for scenario 1 and scenario 2:

Network Traffic Analysis- The tcpdump packet sniffer
application is used to capture the network packets produced by the
node of interest. The time series is created using the timestamp
from each packet that departs the node of interest. The algorithm
works with as little as one thousand packets.

Pre-Processing- The wavelet transform separates the time series
into Approximated Coefficients and Detailed Coefficients.
Together, these two sets of coefficients comprise the delay
sensitive profile. The Detailed Coefficients are discarded and only
the Approximated Coefficients are used.

Feature Extraction- An energy value is calculated from the
Approximated Coefficients. This energy value is used to represent
the delay strength of the corresponding time series.

Detection and Decision- In Section 7.1, the PRC algorithm is
used along with a simple threshold on the energy value to decide
between under utilized and over utilized nodes. The threshold

energy value would be derived by initial calibrations on over
utilized resources. In Section 7.2, the PRC algorithm is used along
with a simple threshold on the energy value as well, but since all of
the trials in this section are under utilized, further analysis is
needed to extract useful information. This analysis reveals that the
trials for the different memory sizes are somewhat separable.
Nodes with more available memory have a smaller energy value
than nodes with less available memory. It is also noticed that as the
available memory increases it becomes increasingly harder to
separate the trials by memory size.

This algorithm can be used to enhance existing intrusive
resource discovery algorithms in the following manner: a
Dedicated Resource Evaluator (DRE) node containing a hybrid
composed of the proposed method and one of the resource
discovery methods mentioned in Section 2. DRE could be placed
on the mirror port of a switch connected to a local Cluster Grid.
Upon the registration of each node on the Grid, static resource
information (e.g. number of CPUs, CPU speed, disk space,
operating system type, etc.) could be documented for the node. This
static resource information need only be documented once. Prior to
dynamic resource information (memory utilization) being needed
DRE would passively extract resource information from existing
network traffic produced by each node on the Grid using the PRC
algorithm. As data is analyzed, one Resource Availability Table
(RAT) would be computed and continuously updated. Only under
utilized nodes would be listed. All other nodes would have been
eliminated by the threshold energy value. Whenever nodes on the
Grid require grid resources, DRE would be queried and the under
utilized resources on the Grid would be made available to the
requesting node.

5. COMPUTER ARCHITECTURE
DISCUSSION

To better understand the source of the delays induced into the
network traffic produced by nodes subjected to CPU utilization, the
high level process of creating a packet in a Pentium based
architecture is explored. This process involves many internal parts
of the node working together; the CPU, the physical memory, the
front side bus, the PCI bus, the network card, etc. The operating
system along with the CPU creates a buffer descriptor in main
memory, which contains the starting memory address and length of
the packet that is to be sent. Multiple buffer descriptors are created
if the packet consists of multiple discontiguous regions of memory.
The operating system along with the CPU then writes to a memory-
mapped register on the Network Interface Card (NIC) with
information about the new buffer descriptors. This data traverses
the front side bus through the Northbridge to the PCI bus. The NIC
initiates one or more direct memory access (DMA) transfers to
retrieve the descriptors. Then, the NIC initiates one or more DMA
transfers to move the actual packet data from the main memory into
its transmit buffer using the address and length information in the
buffer descriptors. This data again leaves the front side bus, travels
through the Northbridge to the PCI bus into the NIC. Finally, the
NIC informs the operating system and CPU that the descriptor has
been processed. Then the NIC sends the packet out onto the
network through its medium access control (MAC) unit [14].

Table 1 was created using average data transfer time, average
Table 1. Parameters taking during 45 Trials

standard deviation and data gathered from the /proc/stat and
/proc/stat/meminfo files on nodes 1,2 and 3. The average transfer
time was calculated by averaging the transfer time of all trials in
scenario 2 (Section 7.2), the average standard deviation was
calculated by averaging the standard deviation of all trials in
scenario 2; and the average CPU, buffering and paged out was
calculated by averaging the results of the /proc/stat or
/proc/stat/meminfo files for all trials in scenario 2. For the trials in
scenario 1 (Section 7.1) the values in Table 1 are increased
accordingly since the effect of adding memory utilization is an
increase in the parameters listed in Table 1.
The data in Table 1 suggests that from the time the node was
booted (trials began immediately after node booted) until the end of
the last trial, the 64MB node experienced the most paging,
buffering and CPU use, mainly because of the use of a larger swap
file. On average, the 128MB node experienced the next highest
amounts of paging, buffering and CPU use and the 192MB node
experienced the least amount of paging, buffering and CPU use.
The important thing to note is that these two nodes produced
parameters that are close in value. Combined, the process of
paging, buffering and CPU use induces very small but detectable
delays inversely proportionate to the amount of available memory,
and could explain the differences in data transfer times and the
differences in the standard deviation of time series for the three
nodes in scenario 2. Naturally, increased activity stemming from
the above-mentioned processes produces increased traffic on the
bus and contention for the bus; also, the use of a swap file adds
additional delays. Collectively, these delays contaminate the
process of creating and sending a network packet onto the network.
These delays form a unique signature relative to the use of
available memory by the Linux Memory Manager.

6. SIGNAL PROCESSING
Similar to the Fourier Transform, which uses the sine and cosine

functions to express the original signal, the DWT expresses the
original signal in terms of the chosen wavelet, and the inverse
DWT reproduces the original signal exactly. There are many
wavelets in existence and custom wavelets can be created by
ensuring that the proposed wavelet meets the admissibility
condition [11], which essentially says that the proposed wavelet is
of zero mean. The Haar Wavelet is the simplest wavelet, which
only calls for the convolution of the original signal with a low pass

 64MB 128MB 192MB

Avg. Data Transfer
Time (sec) 51.145190 51.144935 51.144924

Avg. Standard
Deviation of Time

Series

14.7870508 14.7870478 14.7870429

*Avg. User CPU
Utilization (%) 0.0692654 0.0676846 0.0673846
*Avg. Buffering

(K) 2505 2504 2464

*Avg. Paged out 1502 1376 1293

Swap File Large Small Small

 Figure 3. DWT using the Haar Wavelet of a representative
UDP time series produced by 64MB node.

Figure 4. DWT using the Haar Wavelet of a representative

UDP time series produced by 128MB node.

filter to produce the Approximated Coefficients and a convolution
of the original signal with a high pass filter to produce the Detailed
Coefficients. The Approximated Coefficients contain all of the low
frequency information of the original signal, and the Detailed
Coefficients contain all of the high frequency information of the
original signal. The Haar DWT of a signal is given in (1), (1a) are
the Approximated Coefficients and (1b) are the Detailed
Coefficients; the subscripts j and k refer to the scale of the DWT
and index of the signal respectively [12]. In this paper, the first
level (j=1) Haar DWT is used solely.

)(
2

1
212, kkkj ssa +!

"
 (1a)

)(
2

1
212, kkkj ssd !"

!

 (1b)

Figure 5. DWT using the Haar Wavelet of a representative

UDP time series produced by 192MB node.

Given a time series s(t), which is a series of packet departure times,
the majority of the energy in the wavelet domain is captured by
computing the magnitude squared of the Approximated
Coefficients taken from the DWT of the time series.

There is conservation of energy from Parseval's Energy Theorem
for Wavelets [13]; the sum of the energy of the Approximated
Coefficients and the Detailed Coefficients equal the energy of the
input signal s(t). This is given in equation (2), where L and t are the

!!!
===

"+

L

t

L

k

k

L

k

k
tsda

1

2
2/

1

2

,1

2/

1

2

,1)((2)

The Figures 3-5 contain the DWT of time series of representatives
from the memory varied nodes; the Approximated Coefficients
have similar linear trends as the original input signal, except it is
one half of its length. The Detailed Coefficients are also one half
the length of the original signal, and contain information about
transients (sharp changes) in the original signal, this feature is
paramount in providing visual evidence that there is indeed a
difference between length and index of the input signal respectively
and k is the index of the wavelet coefficients. time series created
from nodes with different physical memory sizes. A comparison of
the Detailed Coefficients in Figures 3-5 will reveal that
distinguishable peaks occur for each time series displayed. The
peaks for the time series created from the 64MB node suggest that
there exist transients throughout the time series, and thus delays;
this is supported by the data in Table 1 which suggest that the
64MB node undergoes more paging, buffering and CPU use than
the other two nodes. The peaks for the time series created from the
128MB and 192MB node suggest that there are transients or delays
in the time series, but less than the 64MB node, which is also
supported by the data in Table 1.

By using the DWT a delay sensitive profile can be created. The
Approximated Coefficients can be used to obtain an energy value
for each time series and the Detailed Coefficients can be used to
obtain a visual of the delays present in each time series. Together

Figure 6. Energy Plot for Multiple Sets of UDP Time Series

for Utilized 64MB node.

Figure 7. Energy Plot for Multiple Sets of UDP Time Series for

Utilized 128MB node.

these two pieces of information comprise a delay sensitive profile
that could be used to numerically or visually classify time series
created by nodes of different memory utilization states; further
elaboration on the use of this delay sensitive profile and the
experimental setup is given in Section 4.

7. DISCUSSION AND RESULTS
The DWT is used as an analysis tool to create a delay sensitive

profile, which contains visual information about transients from
network traffic; also the profile contains an energy value, which is
used to quantitatively characterize the memory utilization of the
sending node. Further, by using the Haar Wavelet this method
reduces to a very simple algorithm that can be easily implemented
in hardware or software [16].
As mentioned in Section 5, the delays detected by the DWT
correspond to various events that occur within a node. Two
scenarios are investigated below to test the feasibility of this
method.

Figure 8. Energy Plot for Multiple Sets of UDP Time Series for

Utilized 192MB node.

7.1 Detection of Over Utilized Resources-
Scenario 1

To investigate the feasibility of using the proposed technique to
discern between over utilized and under utilized resources, a set of
45 trails were conducted using a node with 64MB, 128MB and
192MB of physical memory with over utilized memory (70%).
Figures 6-8 display the trials for nodes with under utilized versus
over utilized memory, and tables 2 and 3 display the numerical
results of correct classification. Simple energy threshold values are
chosen such that the under utilized experiments are separated from
the over utilized experiments. The results confirm the discussion in
Section 5. The proposed technique detects the delays associated
with the process of paging, buffering and CPU use in the nodes
with under utilized memory, and it also detects the delays
associated with the process of paging, buffering and CPU use in the
nodes with over utilized memory. However, the nodes with over
utilized memory are subjected to more delays because of the over
utilization of memory. These additional delays are detected by our
technique as an increase in the energy value; therefore Figures 6-8
display a relativity large gap in energy between trials with under
utilized memory and over utilized memory. The technique was
extended to the use of ICMP traffic to increase its flexibility and
robustness. This investigates the feasibility of pinging nodes that
hardly produce traffic on the network to ascertain their state. The
use of this option does increase network traffic used on the Cluster
Grid; therefore it should only be used when absolutely necessary.
The results are similar because the same process occurs within the
node as for UDP traffic and is propagated in the ICMP traffic as
well (The results are not shown because of space limitations);
therefore the technique can be applied to ICMP traffic to discern
nodes with under utilized memory from nodes with over utilized
memory.

7.2 Detection of Available Memory in Under
Utilized Resources-Scenario 2

To investigate the feasibility of using the proposed technique to
detect available memory in under utilized resources, a set of 45

Under Utilized Memory
versus

Over Utilized Memory
% Correct Classification

64 MB 100%
128 MB 100%
192 MB 100%

Table 2. Results of 45 trials using UDP Traffic

Table 3. Results of 45 trials using ICMP Traffic

Figure 9. Energy Plot for Multiple Sets of UDP Time Series.

trails were conducted using a node with 64MB, 128MB and
192MB of physical memory. These nodes have no additional
utilization applied to memory other than the memory utilization
applied by the operating system. The results from these trials are in
agreement with the discussion in Section 5. From the boot-up of a
node, the Linux Memory Manager allocates the available memory
in the node according to its internal algorithm. In under utilized
nodes, paging and buffering across large swap files is the major
contributor to delays. Nodes with small swap files or none at all are
subject to similar delays while creating and sending network
packets onto the network.

The more memory that is available in a node the less delays
contributed by the process of paging and buffering. This is true up
to the point the Linux Memory Manager engages a swap file.
Consider the following discussion, the Linux Memory Manager
allows the cache to grow until all available memory is used up in
the node then it may engage a swap file. The use of virtual memory
(swap file) increases delays in accessing the contents of memory.
The results are displayed in Figures 9 and 10 and numerically in
tables 4 and 5 where the percent of correct classification is given.
Simple energy threshold values are chosen such that the
experiments are best separated into the appropriate grouping (under
utilized 64 MB, 128 MB and 192 MB). The low correct
classification rate is attributed to the above-explained behavior of
the nodes due to the actions of the Linux Memory Manager. If the

Table 4. Results of 45 trials using UDP Traffic

Table 5. Results of 45 trials using ICMP Traffic

Figure 10. Energy Plot for Multiple Sets of ICMP Time Series.

node has access to excessive physical memory the cache is allowed
to continue to grow and virtual memory (swap file) is small or not
used. Thus nodes with excessive physical memory will experience
similar delays while creating network packets. These similar delays
will produce similar energy values across different physical
memory sizes by the proposed technique, and therefore lessens the
technique’s ability to discern between them. However, nodes with
little or no available memory will engage a large swap file, which is
a major contributor to delays. These nodes are easier to identify
using the proposed method as compared to nodes with small or no
swap files. The above discussion explains why errors in Tables 4
and 5 are so large for the 128 MB and 192 MB node, but is small
for the 64MB node. Again, results are listed for ICMP traffic to
increase the flexibility and robustness of this technique.
Overall, results suggest that the technique is less effective in
determining the specific amount of available memory in under
utilized nodes; but is very effective in discerning between nodes
with under utilized memory and nodes with over utilized memory.

8. CONCLUSION
The main contribution of this technique is its ability to passively

distinguish between under utilized and over utilized resources due
to memory bound processes by analyzing network traffic generated
by the resource of interest. The end result is a reduction of network
traffic on the High Performance Cluster Grid. This method could be
used as an enhancement to existing intrusive methods; this hybrid
method would possess the passive nature of the proposed method
along with the ability to fully characterize Cluster or Desktop Grid
resources.

We are also investigating the applicability of this method to
passive malware detection by identifying nodes with over utilized
CPUs due to infection. Further, we plan to determine the amount of
data needed to improve accuracy metrics. There is also the
possibility of enhancing the method by using more complex
wavelets for feature extraction, which would be used as input to a
neural network classifier. This would allow for the use of the
Detailed Coefficients that reside in the delay sensitive profile.

Under Utilized Memory
versus

Over Utilized Memory
% Correct Classification

64 MB 100%
128 MB 100%
192 MB 100%

Memory Size % Correct Classification
64 MB 93.3%

128 MB 66.7%
192 MB 82.2%

Memory Size % Correct Classification
64 MB 97.8%

128 MB 66.7%
192 MB 60.0%

These enhancements may prove helpful while extending the
technique to include TCP traffic.

Ultimately, we plan to implement this method in the Georgia
State University (GSU) Grid Network so further study of the
method can be performed.

9. REFERENCES
[1] I. Foster. GRIDToday, “What is the Grid? A Three Point
Checklist.” July 22, 2002: VOL. 1 NO. 6.
[2] Juan Li and Son Vuong. “A Semantics-based Routing Scheme
for Grid Resource Discovery”,Proceedings of the 1st IEEE
International Conference on e-Science and Grid Computing,
eScience2005 , December, 2005, Melbourne, Australia.
[3] Jeff Mausolf. “Grid in Action: Monitor and discover grid
services in an SOA/WebServices”,
http://www128.ibm.com/developerworks/grid/library/gr-
gt4mds/index.html?ca=drs, Grid Computing Initiative,06 Sep 2005.
[4] Sivadon Chaisiri, Putchong Uthayopas.“Survey of Resource
Discovery in Grid Environments”,
https://hpcnc.cpe.ku.ac.th/Members/sivadonc/RS_GRID_SURVEY
[5] Maheswaran, M. and Krauter, K.“A Parameter-Based
Approach to Resource Discovery in Grid Computing System.”
Proceedings of the First IEEE/ACM international Workshop on
Grid Computing, December 17, 2000, R. Buyya and M. Baker, Eds.
Lecture Notes In Computer Science, vol. 1971. Springer-Verlag,
London, 181-190.
[6] Cherita Corbett, Raheem Beyah, and John Copland. “A Passive
Approach to Wireless NIC Identification.” Appeared, Proceedings
of IEEE International Conference on Communication (ICC), June
2006.
[7] Cherita Corbett, Raheem Beyah, and John Copeland.“Using
Active Scanning to Identify Wireless NICs.”, Appeared,
Proceedings of IEEE Information Assurance Workshop (IAW),
June 2006.
[8] Alefiya Hussain, John Heidemann, and Christos Papadopoulos.
“A Framework for Classifying Denial of Service Attacks”
Proceedings of ACM SIGCOMM 2003.
[9] Patrice Abry and Darryl Veitch.“Wavelet Analysis of Long-
Range-Dependent Traffic”, IEEE Transactions on Information
Theory, VOL. 44, NO. 1, January 1998.
[10] P. Huang, A. Feldmann, and W. Willinger.“A non-intrusive,
wavelet-based approach to detecting network performance
problems”,Proceedings of ACM SIGCOMM Internet Measurement
Workshop (2001), pp. 213-227.
[11] John Sadowsky.“Investigation of Signal Characteristics Using
the Continuous Wavelet Transform”, John Hopkins APL Technical
Digest Volume 17, Number 3 (1996).
[12] Gilbert Strang and Truong Nguyen.“Wavelets and Filter
Banks”, Wellesley-Cambridge Press, 1996, pp. 28-34 and 183-193.
[13] I. W. Selesnick, R. G. Baraniuk, and N. Kingsbury.“The dual-
tree complex wavelet transform - A coherent framework for
multiscale signal and image processing.”,IEEE Signal Processing
Magazine, 22(6):123-151, November 2005.
[14] H. Kim, V. Pai, S. Rixner.“Exploiting Task-Level
Concurrency in a Programmable Network Interface”,ACM
SIGPLAN Symposium on Principles and Practices of Parallel
Programming (PPoPP), San Diego, CA, (June 2003).
[15] Richard W. Stevens, Bill Fenner, Andrew M. Rudoff.“Unix
Network Programming, Vol. 1: The Sockets Networking API”,
Third Edition, Addison-Wesley Professional, 22 October, 2003.

[16] Lanier Watkins, Kenneth R. Perry, John S. Hurley, B.Olson
and B. Pain.“Wavelet Transform Image Compression Prototype”,
1999 Technical Proceedings of the International Conference on
Modeling and Simulation of Microsystems, pg 671-674.
[17] “Memory Performance Study”, Mindcraft White Paper 2003,
http://www.kingston.com/branded/server_memory.asp.
[18] Chao-Tung Yang; Chuan-Lin Lai.“Apply cluster and grid
computing on parallel 3D rendering”,2004. ICME '04. 2004 IEEE
International Conference on Multimedia and Expo,Volume 2, 27-
30 June 2004 Page(s):859 - 862 Vol.2.
[19] Mustafee, N.; Taylor, S.J.E.“Using a desktop grid to support
simulation modeling”,.; International Conference on Information
Technology Interfaces, 2006. 28th, 2006 Page(s):557 – 562.
[20] Xiaojuan Ren; Seyong Lee; Eigenmann, R.; Bagchi, S.
“Resource Availability Prediction in Fine-Grained Cycle Sharing
Systems”,2006 15th IEEE International Symposium on High
Performance Distributed Computing, June 19-23 2006 Page(s):93 –
104.
[21] Anglano, C.; Canonico, M.“A Comparative Evaluation of
High-Performance File Transfer Systems for Data-intensive Grid
Applications”13th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 2004.
WET ICE 2004, 14-16 June 2004 Page(s):283 – 288.
[22] Jigang Wang; Guochang Gu; Shibo Xie; Lifeng Xu.“Reliable
and Efficient Data Transfer Protocol Based on UDP in Cluster
System”,First International Multi-Symposiums on Computer and
Computational Sciences, 2006. IMSCCS '06. Volume 1, 20-24
June 2006 Page(s):518 – 524.
[23] G. Cooperman, Xiaoqin Ma and Viet Ha Nguyen.“Static
Performance Evaluation for Memory-Bound Computing: the
MBRAM Model”,Proc. of the 2004 International Conference on
Parallel and Distributed Processing Techniques and Applications
(PDPTA'04), 2004.
[24] Matsuda, M.; Kudoh, T.; Ishikawa, Y.“Evaluation of MPI
implementations on grid-connected clusters using an emulated
WAN environment”,; 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid, 2003 Proceedings. CCGrid 2003.
12-15 May 2003 Page(s):10 – 17.

