
SIMAGE: Secure and Link-Quality Cognizant
Image Distribution for Wireless Sensor Networks

Ramalingam K. C., Venkatachalam Subramanian, A. Selcuk Uluagac and Raheem Beyah
Communications Assurance and Performance Group

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332, USA

{ramalingam.chandrasekar, venkat.subbu}@gatech.edu
{selcuk, rbeyah}@ece.gatech.edu

Abstract—Wireless sensor networks (WSNs) are used in a
range of critical domains (e.g., health care, military, critical
infrastructure) where it is necessary that the nodes be
reprogrammed with a new or modified code image without
removing them from the deployment area. Various protocols
have been developed for the dissemination of code images
between sensors in multi-hop WSNs, where these sensor nodes
may have varying levels of link quality. However, the code
dissemination process in these protocols is hindered by the
nodes with poor link quality. This results in an increased
number of retransmissions and code dissemination time. Also,
in several of the techniques, the code dissemination process
is not secure and can be eavesdropped or disrupted by a
malicious wireless sensor node in the transmission range. In this
paper, we propose a simple approach, Secure and Link-Quality
Cognizant Image Distribution (SIMAGE), to enhance the existing
code dissemination protocol using the available resources in the
sensors. Specifically, our approach adapts to the varying link
conditions via dynamic packet sizing to reduce the number
of retransmissions and overall code dissemination time. Our
approach also provides confidentiality and integrity to the code
dissemination process by utilizing energy-efficient encryption
and authentication mechanisms with RC4 and the CBC-MAC.
We have evaluated SIMAGE in a network of real sensors and
the results show that adjusting the packet size as a function of
link quality reduces the retransmitted data by 93% and the
image transmission time by 35% when compared to the existing
code dissemination protocols. The trade-offs between reliability,
security overhead, and overall transmission time for SIMAGE
are also discussed.

Index Terms - Wireless Sensor Networks, Secure Code Dis-
semination, Link Quality Indicator (LQI)

I. INTRODUCTION

Sensors are deployed in various locations such as underwa-
ter, volcano regions and underground, making them hard to
recover or replace. Due to this diverse deployment of wireless
sensor networks (WSNs) and many functionalities provided
by them, reprogramming the deployed sensor nodes through
wireless links becomes a necessary and desirable task. For
instance, if software running on the node requires an update
as a result of a security patch or additional functionality, it
would be necessary to replace the existing code on the node
with the new updated code. This process of disseminating code
over wireless links is called code dissemination. Moreover,

under hostile conditions, an attacker might try to modify or
get access to disseminated code. The attacker could also attack
the dissemination process itself by injecting malicious code
dissemination packets to exhaust the limited energy of the
sensor nodes. Therefore, it is imperative that the dissemination
process be secured.

In addition to security, code dissemination protocols should
address the variation in link quality between nodes. The nodes
with poor link quality would hinder other nodes in the network
from proceeding forward in the code dissemination process.
Moreover, such nodes with poor links would yield increased
retransmissions which would further degrade the security of
the system as an attacker would have multiple opportunities
to intercept the disseminated packets. In this paper, we intro-
duce a Secure and Link-Quality Cognizant Image Distribution
(SIMAGE) technique for WSNs which aims at reducing the
number of retransmitted code dissemination packets. SIMAGE
also provides energy efficient security services, confidentiality
using the RC4 [1], [2] encryption algorithm and integrity
using the CBC-MAC provided by the CC2420 [3] transceiver
module of the sensors (e.g., MICAz and TelosB). The results
from our experiments using real sensors show that code dis-
semination using SIMAGE is more efficient than other existing
code dissemination protocols, in terms of code dissemination
time and total number of retransmissions. The experimental
results show that SIMAGE reduces the retransmission bytes by
93% and the image transmission time by 35% when compared
with the existing code dissemination protocols under poor link
quality conditions.

The contributions of our work are three-fold: 1) We design
and implement a secure code dissemination protocol - SIM-
AGE; 2) we consider link quality between nodes during the
dissemination process; and 3) we dynamically adapt the packet
size based on link quality. As a result, our scheme outperforms
previously proposed techniques.

The paper proceeds as follows: existing code dissemination
protocols for WSNs are discussed in Section II. To motivate
our work, an analysis of the problems encountered by the
existing code dissemination protocol is provided in Section
III. Section IV discusses the proposed scheme, SIMAGE,
and explains its implementation in detail. The performance



evaluation of SIMAGE and comparison of SIMAGE with the
existing code dissemination protocols are shown in Section V.
Section VI summarizes the benefits of SIMAGE over existing
code dissemination protocols and concludes the paper.

II. RELATED WORK

Deluge [4] is the most widely used code dissemination
protocol and is included in recent TinyOS distributions [5].
Deluge is a page-by-page code dissemination protocol pro-
posed for WSNs. The base node advertises the new version of
code and receiver node in response sends a request message
for the new version. Next, the base station broadcasts the first
page of the code image to the receiver nodes, with fixed sized
data packets. Once all receiver nodes have received all the
packets corresponding to that page, the next page transmission
begins. In case a receiver node has lost some packets in the
first page, all the lost packets will be retransmitted prior to the
transmission of the next page. The code dissemination is not
secure and can be eavesdropped on by an attacker. Moreover,
as Deluge does not consider the link quality between nodes,
the retransmissions between nodes with poor link quality will
severely delay the propagation of the code image.

The Secure Network Programming Protocol [6] uses public-
private key encryption to sign the advertisement packets of
the code image and SHA-1 for computing the hash of each
packet. In this work, the computed hash of one future packet is
embedded into the payload of the previous packet in sequence
and the hash of the first packet is embedded into the adver-
tisement packet which is signed. So, a receiver node, upon
authenticating the advertisement packet, verifies the integrity
of the next received packet immediately and saves or discards
the packet based on the computed hash. However, in the case
of out-of-order delivery, the receiver needs to cache the packet
and wait for the previous packet in sequence to verify the
cached packets. This can be used by the attacker to inject
fake packets and deplete the cache memory of the receiver
node resulting in a denial-of-service attack.

Seluge [7] is essentially a secure version of Deluge and
therefore, it preserves the page-by-page propagation method
of Deluge. Similar to [6], a hash of each packet in a page
is computed using SHA-1 and this value is embedded in the
correspondingly sequenced packet of the previous page. So,
once all the packets in a page are received, the receiver has
all the hash values for the packets in the next page. Seluge also
uses the Elliptic Curve Digital Signature Algorithm (ECDSA)
to sign the initial code image advertisement. However, the
SHA-1 and the ECDSA algorithm used are time consuming
processes [8]–[10]. Note [6] and [7], similar to [4], do not
consider the link-quality between nodes in the network.

Another recent work on the code dissemination process in
WSNs, DiCode [11], provides a secure and distributed code
dissemination protocol. As opposed to the aforementioned
centralized approaches [4], [6], [7], the key difference in
this technique is the usage of distributed control for code
dissemination. However, the security features used in this
approach are similar to that of Seluge. The experimental results

also indicate that DiCode has longer propagation delays when
compared to Deluge and Seluge. Although [11] proposes a
distributed code dissemination protocol, it does not address
any of the inter-node link quality issues.

Nonetheless, as discussed in [12] with experimental results,
link quality prediction is important for better system provi-
sioning and resource management. Moreover, the experiments
conducted on IEEE 802.15.4 Zigbee radios with the CC2420
chipset illustrate that the Link Quality Indicator (LQI) is lin-
ear with respect to the instantaneous SNR. Finally, it is shown
that LQI can be used as an effective parameter to predict
instantaneous link quality between nodes [12].

Therefore, in this paper, we propose SIMAGE, which pro-
vides secure and link-quality aware code image dissemination
for WSNs.

III. BACKGROUND AND MOTIVATION

A common problem in many wireless networks is varying
and poor link quality of the channel between the communicat-
ing nodes [12]. During communication, a reduction in the link
quality increases the number of retransmissions between the
nodes to transfer useful information. The increased retrans-
missions have a significant impact on WSNs which consists
of resource-constrained sensor nodes. The code dissemination
protocol in TinyOS, Deluge [4], uses a fixed packet size to
transmit the code image between the wireless sensor nodes
and is susceptible to increased packet loss under poor link
quality conditions. For the same code image size, due to the
increased packet loss rate, the code dissemination protocol in
TinyOS [4] will need more retransmission bytes to disseminate
the code image as analyzed in Section V. This, in turn will
increase the total code dissemination time between the nodes.

The code dissemination protocol included in TinyOS dis-
tributions is a page-by-page transmission protocol, where a
code image is split into pages of 1024 bytes. Each page is
divided into an equal number of packets with a packet size
value set by the user. If the base station has a newer version
of the code image, it advertises this information to the network.
Upon receiving the advertisement, nodes in the network send a
request for a particular page. If there is packet loss during the
transfer of the page from the base station, the receiver makes a
request for the lost packets until all of the packets are received.
For instance, consider that there are two receiver nodes which
are one hop away from the base station and the first node has a
channel with good link quality and second node has a channel
with poor link quality. Then, during the dissemination process
from the base station, the first node receives all the packets
with less retransmission rounds when compared to the second
node. The first node, before sending a request message for
the next page, has to wait until the second node receives all
the packets of the current page. Thus, the code dissemination
time for the entire network will be affected by the increased
retransmissions of the node with the poor link.

In order to analyze this, we conducted a simple preliminary
experiment to calculate the packet retransmission rate for
various packet sizes with different link quality conditions



(a) Packet Retransmission Ratio (ψ) vs. Packet Size (b) Number of bytes retransmitted per page vs. Packet size

Fig. 1. Experimental results of Packet Retransmission Ratio (ψ) and number of bytes retransmitted per page

between a pair of MICAz motes. The link quality of the
channel is estimated using the LQI value in the MICAz mote.

In the experimental setup, the first mote transmits 50 packets
and the number of retransmissions is calculated. The experi-
ment is repeated 10 times, with the same packet size and link
quality condition. The average retransmission per 50 packets
is calculated and the average Packet Retransmission Ratio
(ψ) is calculated with the average retransmission value using
Equation 1, where, ϕ is the number of retransmitted packets
and τ is the total number of packets transmitted, including the
retransmitted packets:

ψ =
ϕ

τ
(1)

The procedure is repeated to calculate the ψ for various
packet sizes and various link quality values. Figure 1(a) shows
the variation of ψ for an increase in packet size for four
different LQI ranges. The graph shows that for a poor LQI
range, value of ψ worsens as the packet size increases and
becomes nearly equal to one. For the average LQI range, the
value of ψ increases with an increase in packet size. For the
good and best LQI ranges, the ψ value remains nearly equal to
zero for a packet size increase up to 45 bytes. However, beyond
45 bytes the value of ψ for the good LQI range increases
steadily while the value of ψ remains zero for the best LQI
range.

Using the ψ value, computed from the experiment for
various packet sizes and LQI values, the number of packets
retransmitted per page can be calculated using Equation 2:

φ =

γ−1∑
i=o

(ψ ∗ n)(ψ)i (2)

where, φ is the cumulative number of retransmitted packets per
page, γ is the total number of retransmission requests needed
to transmit the entire page of size 1024 bytes, which can be
computed using Equation 3:

d(n ∗ ψ(γ+1))

dγ
= 0 (3)

In Equation 3, γ is the minimum integer value, starting from
zero, that satisfies the equation and n is the number of packets
per page. Figure 1(b) shows the number of retransmitted
bytes per page in the code dissemination protocol for various
packet sizes in different LQI ranges. The figure shows that for
an increase in packet size up to 55 bytes, the retransmitted
bytes per page remains zero for the good and best LQI
ranges. However, when the packet size exceeds 55 bytes, the
retransmissions increase gradually for the good LQI range,
while it remains zero for all packet sizes in the best LQI range.

Since transmitting a page with minimum retransmissions
reduces the code dissemination time, to achieve better code
dissemination under fluctuating link quality conditions, we
propose a LQI based adaptive packet size code dissemination
protocol. This protocol samples the LQI of all the receivers
and determines the optimal packet size for disseminating a
page. The details of the scheme is explained in Section IV.

IV. PROPOSED SCHEME

Our technique, SIMAGE, which builds upon the code dis-
semination protocol of TinyOS, Deluge [4], was implemented
and tested in a network of MICAz sensor motes. SIMAGE has
two specific features. First, is the dynamic, adaptive packet
size estimation, which determines an optimal packet size
for transmitting a page using the LQI values of the request
messages. Second, it provides security for code dissemination
with energy efficient, stream cipher RC4 encryption [2] and
integrity using the CBC-MAC. The details of the implemen-
tations are explained below.

A. Dynamic Adaptive Packet Size Algorithm

The experiments in Section III illustrate that different LQI
ranges have different optimal packet sizes. So, using an
adaptive packet size in the code dissemination process is
instrumental to reduce the per page dissemination time. Hence,
from the experiment in Section III, the optimal data packet
size values for different LQI ranges have been determined
and are shown in Table I. Note that the data packet size in



TABLE I
OPTIMAL PAYLOAD SIZE FOR DIFFERENT LQI RANGES

LQI LQI Value Range Optimal Payload Size (Bytes)
Poor LQI < 90 5

Average LQI 90 - 99 20
Good LQI 100 - 104 40
Best LQI 105 - 110 80

Algorithm 1 Receiver Node

for each received data message do
if DataPktSize ! = CurrPktSize then
modify parameters()

end if
end for

function modify parameters()
δ ← DataPktSize/CurrPktSize
CurrPktSize← DataPktSize
NewBitvectorSize← CurrPktSize/δ
NewBitvector ← Bitvector(δ)

end function

the table does not include the 7 byte data header overhead
and the security header overhead.

The link quality between nodes in the network is measured
using the LQI provided by the CC2420 transceiver module
of the sensors. When the base station receives the request
message, it stores the source ID and the LQI values of the
requester node. While sending the first data message, the base
station computes the average LQI of all the requester nodes
and this gives a estimation of the link quality of the channel
around the base station. Based on the measured average
LQI, the size of the packets in the corresponding page is
dynamically adapted to reduce the number of retransmissions
involved. The algorithm for adaptive packet-sizing used in the

Algorithm 2 Transmitter Node

for each request message receieved do
lqi← LQI(RcvdPkt)
map〈src id, lqi〉 lqi map← (SrcId, lqi)

end for
for first data message transmission do

if retransmission then
compute ρ(lqi map)
DataPktSize← DataPktSize(ρ)
modify parameters()

else if not retransmission then
compute ρ(lqi map)
MA← ρ ∗ sf + (1− sf) ∗MA
DataPktSize← DataPktSize(MA)
modify parameters()

end if
end for

receiver and transmitter nodes are shown in Algorithm 1 and
Algorithm 2 respectively.

In the transmitting node, if it is a first round of data trans-
mission for a page, the moving average (MA) is calculated as
a function of the average LQI (ρ) and scaling factor (sf) as
the following:

MA = ρ ∗ sf + (1− sf) ∗MA (4)

In Equation 4, the scaling factor (sf) is chosen such that the
current LQI sample is given more weight than the previous
LQI samples and any temporary fluctuation in the current LQI
sample does not immediately affect the packet size estimation.
Hence, the scaling factor (sf) is given a value of 0.4 based on
our experiments. Note, for values less than 0.4 the moving
average took longer to converge to an optimal LQI estimate,
whereas, for values greater than 0.4 there are increased fluc-
tuations in the LQI estimate. The data message packet size
(DataPktSize) is determined by the estimated moving average,
according to the data mapping in Table I. In the case of
retransmission, only the nodes with poor LQI will request
more packets. So to reduce packet losses, the DataPktSize
during retransmission is determined according to the current
average LQI (ρ) estimate instead of the moving average.

δ =
New packet size

Current packet size
(5)

After determining the new packet size, the
multiplication factor (δ) is calculated using Equation 5.
If the new packet size is greater than the current packet size,
then δ number of current packets will be combined together
into a single packet and transmitted. If the new packet size
is less than the current packet size, then the current packet
will be split into 1

δ number of packets and transmitted. In
SIMAGE, the current packet can be divided into smaller
packets or, two or more current packets can be combined
into a single packet. To facilitate this, the payload size value
for different LQI ranges in Table I are chosen such that the
bigger packet size values are a multiple of all other smaller
packet size values. After determining the new packet size,
the transmitter communicates it to the receiver using the
data packet header. So, there is an one byte overhead in
the data packet in our scheme when compared to the code
dissemination protocol in TinyOS, Deluge [4].

On receiving the first data packet of a page, the receiver
will check for a change in packet size. If the new packet
size value is greater or less than the current packet size,
the receiver computes the δ value and populates the new
bit-vector, which consists of the packet identifiers of packets
to be transmitted, based upon the packets requested in the
old bit-vector and δ value. After updating the new bit-vector,
it checks whether the packet number of the received packet
is requested by this node. If it was requested by this node, it
stores the data, otherwise, it discards it.

B. Secure Dissemination

The three different types of messages involved in the code
dissemination process are advertisement messages, request



(a) Average retransmitted bytes for various LQI ranges (b) Page transmission time for various LQI ranges

Fig. 2. Experimental results of average retransmitted bytes and page transmission time

messages and data messages. Securing each of these message
types protects against different types of attacks. For instance,
securing only the data messages and not providing integrity for
the request messages or advertisement messages will enable
an attacker to perform a denial-of-service attack by flooding
the nodes with request messages or advertisement messages,
respectively. In SIMAGE, we ensure an increased level of
security by encrypting all three types of messages using RC4
encryption and provide integrity using the CBC-MAC. The
CBC-MAC integrity check is fast as it is provided by the
CC2420 hardware module. We use a 64-bit key for CBC-MAC
which adds only 8 bytes of overhead to the overall payload.
Whereas, RC4 encryption uses a 128-bit key and being a
stream cipher technique, it performs an in-place encryption
and does not add any data header overhead.

V. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of SIMAGE
(with and without the security) under varying link quality
conditions and compare it to the existing code dissemination
protocols for TinyOS - Deluge [4] and Seluge [7]. Two
different experiments were performed in order to analyze and
expose the benefits of SIMAGE:
Experiment 1: An experimental setup consisting of two

MICAz sensor motes is used. A binary image of 35,276 bytes
is transferred between the nodes using the default code dis-
semination protocol (Deluge) [4], SIMAGE without security
and SIMAGE with security. The three techniques mentioned
above are compared with respect to the average number of
retransmitted bytes per page and the average transmission
time per page. This experiment is performed for different link
quality conditions.

Figures 2(a) and 2(b) illustrate the results obtained from
the first experiment. As seen in Figure 2(a), for the best LQI
range, the default code dissemination protocol [4], SIMAGE
with security and SIMAGE without security do not exhibit
any retransmissions. Similarly, for the good LQI range, only a
small amount of retransmissions are encountered by all three

techniques. As the link quality decreases, Deluge experiences
increased retransmissions as compared to SIMAGE with and
without security. Furthermore, at very poor link quality condi-
tions, Deluge exhibits a steep increase in the number of bytes
retransmitted, whereas SIMAGE with and without security
maintains an almost steady number of retransmitted bytes.
Moreover, under such low link quality cases, the number of
bytes retransmitted using SIMAGE without security is less
than Deluge because the packet size is dynamically reduced to
a minimal value. It can also be seen that SIMAGE with secu-
rity has a higher number of retransmitted bytes than SIMAGE
without security due to the fact that the former experiences
additional security overhead for each packet transmitted.

Figure 2(b) depicts the same experiment illustrating the
variations in the average time taken per page transfer. Under
very good link quality conditions, SIMAGE without security
proves to provide much faster page transmission than Deluge
as larger packets are transmitted with relatively small packet
loss rate. SIMAGE with security also proves to be faster
than Deluge. However, SIMAGE with security becomes slower
than SIMAGE without security due to the additional security
overhead in each packet. As the link quality condition de-
grades, the time taken per page transfer by all three techniques
tends to increase. This can be attributed to the fact that the
number of retransmissions also increase. In the average link
quality condition, Deluge and SIMAGE have almost equal
page transfer times. This is due to the fact that under average
link quality conditions, both protocols transmit packets of
almost equal sizes (Deluge has 23 bytes and SIMAGE has 20
bytes). Again, due to the security overhead in each packet,
SIMAGE with security takes slightly longer to transfer a
page than the other two schemes. When the link quality
further deteriorates and reaches the poor link quality condition,
Deluge suffers a large number of retransmissions and takes a
very long time to transfer a page. Whereas, it can be seen
that SIMAGE with and without security transfers a page in a
relatively short time. For performance reasons, Deluge keeps
the radio switched on during code dissemination [4] and any



decrease in the code dissemination time will reduce the energy
consumed by all the nodes in a network. So, reduction in the
per page transmission time by SIMAGE, in turn reduces the
energy consumption of the nodes and proves that SIMAGE is
more energy efficient than Deluge.

Furthermore, Seluge [7], consumes more time to do the
integrity check using the SHA-1 algorithm. SHA-1 takes
around 15 milliseconds to compute the hash of a packet
and the inter-packet transmission time is increased from 2 to
17 ms in order to accommodate the computation time [7],
which will increase the per page transmission time. Using
the performance results from Seluge [7], a comparison of per
page transmission time is shown in Figure 2(b). SIMAGE with
security outperforms both Deluge and Seluge under poor link
quality conditions.
Experiment 2: The second experiment consisted of three

levels of sensor nodes with two MICAz sensor motes at each
level, where each level is seperated by a distance of one hop.
While the previous experiments show the benefits of SIMAGE
under various link quality conditions, the primary motive of
this experiment was to prove the effectiveness of SIMAGE
over the default code dissemination protocol [4] under very
good link quality conditions as well. The time taken by the
node in the last level to receive the entire binary image (35,276
bytes) is evaluated for both the default code dissemination
protocol [4] and SIMAGE.

The results obtained from the second experiment are pre-
sented in Table II. The total time taken for the binary image
transfer from source node to intermediate nodes and from
source node to sink nodes are evaluated. All the nodes in
the experiment are maintained under very good link quality
conditions such that the retransmissions are largely reduced.
This experiment reiterates that SIMAGE performs better than
Deluge in terms of total transmission time for the entire binary
image even under good link quality conditions. This also
illustrates that SIMAGE makes better use of the channel when
the link quality between nodes is good, whereas, Deluge does
not make optimum use of the channel under good link quality
conditions.

TABLE II
CODE DISSEMINATION TIME TAKEN BY DELUGE AND SIMAGE IN A

MULTI-HOP NETWORK

Protocol Node Total Image Transfer Time (seconds)
Deluge intermediate 147.492

sink 296.379
SIMAGE intermediate 96.572

sink 198.216

VI. CONCLUSION

Wireless sensor nodes are always deployed in groups and
the link quality between different pairs of nodes is not the same
in the deployed area. Also, the code is disseminated hop-by-
hop in a multi-hop WSN, where the delay in disseminating
the code between the nodes with poor link quality hinders the
overall code dissemination time. Our experimental results with
real sensors show that using a fixed packet size in the current

code dissemination protocols will increase the retransmissions
between the nodes with poor link quality and hinder the overall
code dissemination time. Our code dissemination protocol
SIMAGE, samples the link quality of the channel using LQI
as a metric and determines the optimal packet size before
transmitting a page. The performance analysis of SIMAGE
in the experiments show that by dynamically adapting the
packet size, retransmission bytes are reduced by 93% and the
per page transmission time is reduced by 35% for poor LQI
values. Results also show that SIMAGE, during the good link
quality condition, exploits the channel and disseminates the
code faster when compared to the other code dissemination
protocols.

SIMAGE with security uses the simple energy efficient
stream cipher encryption algorithm RC4 [2] and a hardware
based hashing function CBC-MAC for providing secure code
dissemination. Since SIMAGE uses a dynamic adaptive packet
size technique, the overhead of providing secure dissemination
is reduced when compared to Seluge [7]. Our experimental
results also show that SIMAGE with security outperforms the
TinyOS code dissemination protocols Deluge [4] and Seluge
[7] under the poor LQI ranges.

In our future work, we will improve the performance of
SIMAGE in the average LQI ranges, where it performs similar
to the default TinyOS code dissemination protocol. Also,
calculating the average LQI value at both the transmitting and
receiving ends will yield a better link quality estimate in a
bidirectional channel.

VII. ACKNOWLEDGEMENTS

This work is partially supported by NSF Grant #CNS-
1052769.

REFERENCES

[1] B. A. Forouzan, Cryptography and Network Security (1st edition).
McGraw-Hill, 2007.

[2] A. S. Uluagac, R. A. Beyah, Y. Li, and J. A. Copeland, “Vebek: Virtual
energy-based encryption and keying for wireless sensor networks,” IEEE
Transactions on Mobile Computing, vol. 9, 2010.

[3] “CC2420 datasheet,” http://focus.ti.com/lit/ds/symlink/cc2420.pdf.
[4] J. W. Hui and D. Culler, “The dynamic behavior of a data dissemination

protocol for network programming at scale,” in Proceedings of the 2nd
international. ACM Press, 2004.

[5] “Tinyos documentation,” http://docs.tinyos.net/.
[6] P. K. Dutta, J. W. Hui, D. C. Chu, and D. E. Culler, “Securing the deluge

network programming system,” in Proceedings of 5th IPSN, 2006.
[7] S. Hyun, P. Ning, and A. Liu, “Seluge: Secure and dos-resistant code

dissemination in wireless sensor networks,” in Proceedings of the 7th
IPSN, 2008.

[8] M. Passing and F. Dressler, “Experimental performance evaluation of
cryptographic algorithms on sensor nodes,” in IEEE MASS, oct. 2006.

[9] R. Venugopalan, P. Ganesan, P. Peddabachagari, A. G. Dean, F. Mueller,
and M. L. Sichitiu, “Encryption overhead in embedded systems and
sensor network nodes: modeling and analysis.” in CASES, 2003.

[10] “Ecdsa performance evaluation,” http://discovery.csc.ncsu.edu/.
[11] D. He, C. Chen, S. Chan, and J. Bu, “Dicode: Dos-resistant and

distributed code dissemination in wireless sensor networks,” IEEE
Transactions on Wireless Communications, vol. PP, no. 99, 2012.

[12] G. Zheng, D. Han, R. Zheng, C. Schmitz, and X. Yuan, “A link
quality inference model for ieee 802.15.4 low-rate wpans,” in IEEE
GLOBECOM, dec. 2011.


