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Abstract—As an objective reality, the social behavior pattern
of Primary Users (PUs) has significant impacts on the design
and management of the secondary network. However, most
of the existing works overlook this fact by simplifying the
spectrum whitespace assumption. In this paper, we study the joint
routing and time-domain scheduling problem for Cognitive Radio
Networks (CRNs) by considering the social behaviors of PUs.
Our main contributions consist of four aspects. First, we analyze
the social pattern of PUs based on two practical data traces.
According to the obtained social pattern, the available spectrum
whitespace is derived for SUs. Subsequently, in terms of previous
analysis, we propose a centralized joint routing and time-
domain scheduling framework with global provable ε-optimality
(ε ∈ [0, 1]) by employing the branch-and-bound technique, where
ε indicates the expected closeness of our solution to the optimum
solution. The solution of this centralized algorithm can serve
as a theoretical benchmark for developing future routing and
scheduling algorithms for CRNs. Third, we design a distributed
primary behavior-aware routing and scheduling algorithm with
local performance guarantee, where the routing and scheduling
fairness, the available bandwidth, the potential interference, etc.
are taken into account. Finally, simulation results confirm our
assertion that primary behaviors have significant impacts on the
spectrum whitespace, and demonstrate that primary-behavior-
aware joint routing and scheduling design can utilize spectrum
whitespace efficiently.

I. INTRODUCTION

Recently, to improve the utilization efficiency of the pre-

cious wireless spectrum, Cognitive Radio Networks (CRNs)

as a new communication paradigm attract numerous research

interests. As in traditional wireless networks, routing and

scheduling are two of the most fundamental issues in CRNs.

However, new challenges appear in the design of routing and

scheduling algorithms for CRNs due to the dynamical spec-

trum supply characteristic, i.e., the available spectrum bands

for a Secondary User (SU) is dynamic over time and maybe

different from its neighbors. Therefore, traditional routing and

scheduling algorithms cannot achieve satisfiable performance

since they do not consider such spectrum dynamics. Aiming at

efficient routing and scheduling for CRNs, many efforts have

been spent to propose heuristic and optimization-based routing

and scheduling schemes [8]-[13].

However, to the best of our knowledge, the existing routing

and scheduling algorithms do not consider the social behaviors

of Primary Users (PUs), which are the objective realities in

the Primary Network (PN) and have significant impacts on

the design and management of the Secondary Network (SN)

[15]. For instance, the PN consisting of cell phone users (e.g.,
AT&T) follows some evident social pattern in weekdays: (i)
the primary activity is heavier during [10:00-22:00] (denoted

in the 24-hour manner) compared with other time slots; and

(ii) the primary activity is heavier during [9:00-17:00] in the

activity area and [18:00-23:00] in the residential area [2]-[7].

Furthermore, as indicated by many social studies (see the

references in [15]), the social behaviors/patterns of PUs are

considerably stable physical phenomenons over a long term.

Therefore, the social pattern of PUs in different time periods

can guide us to obtain insight on understanding the dynamic

available spectrum, namely the spectrum whitespace, for SUs,

which leads to the possible design of more effective routing

and scheduling algorithms.

In this paper, for the first time, we propose to study the

joint routing and scheduling problem for CRNs by consider-

ing the social behaviors of PUs. Towards this direction, we

first investigate the social pattern of PUs by analyzing two

well-known typical data traces. Based on the primary social

behaviors, more accurate analysis on the existing spectrum

whitespace for SUs can be derived which demonstrates that the

spectrum whitespace is a function depending on the primary

social behaviors, current time, the distributions of PUs and

SUs, etc. It clearly distinguishes our work from the existing

works where the social behaviors of PUs are overlooked [10]-

[12].

After deriving the primary social behavior aware spectrum

whitespace for SUs, we study the joint routing and time-

domain based scheduling issue for CRNs by proposing both

a centralized algorithm with global provable ε-optimality

(ε ∈ [0, 1]) and a distributed algorithm with local performance

guarantee. For our centralized algorithm, we first mathemati-

cally formalize the problem as a time-dependent Mixed-Integer

Linear Program (MILP), which is NP-complete in general.

Subsequently, by carefully examining the upper and lower

bounds of the time-dependent MILP, we apply the branch-and-
bound technique to design a joint routing and scheduling algo-

rithm with ε-optimality, where ε is the expected ratio between

our solution and the optimum solution. Similar as [10], the

centralized algorithm can work in some long-term-stable CRN

applications and serve as a performance benchmark for joint978-1-4673-7331-9/15/$31.00 c© 2015 IEEE



routing and scheduling solutions in multihop CRNs. On the

other hand, for the CRNs preferring distributed algorithms, we

propose a distributed joint routing and scheduling framework.

In this framework, the distance to the destination, available

spectrum bandwidth, potential traffic, etc. are jointly consid-

ered for routing, and the data flow rate aware smart carrier-

sensing is considered for scheduling.

Note that, different from most of existing works [10]-[13]

where scheduling is considered in the frequency-domain, we

conduct scheduling in the time domain since the spectrum

whitespace is time dependent. Nevertheless, as indicated in

[10]-[13], the time-domain based scheduling methods can be

extended to the frequency-domain. In addition, our algorithm

can work with the frequency-domain scheduling methods in

[10]-[13] together in the time-frequency-domain.

Finally, by conducting simulations, we demonstrate that the

primary-behavior-aware joint routing and scheduling design

can utilize spectrum whitespace efficiently to induce higher

network throughput and lower transmission latency.

II. SYSTEM MODEL

We consider a dense-scaling SN coexisting with a PN

deployed in a square area of size A = cn
logn , where c is a

changeable constant value and n is the number of SUs.

PN: The PN consists of N Poisson distributed PUs with

density λ denoted by Si (1 ≤ i ≤ N). The transmission

and interference radii of PUs are assumed to be R and RI ,

respectively (without loss of generality, RI > R). The network

time is slotted with each time slot of length τ . At the very

beginning of each time slot, each PU either transmits some

data or keeps silent during that time slot. Furthermore, since

we focus on scheduling in the time-domain, we assume there is

only one abstract primary spectrum band shared by PUs and

SUs, i.e. we study the spectrum dynamics over time while

do not consider the scheduling in the frequency domain. The

bandwidth of the abstract primary spectrum is assumed to

be W , which can be treated as the aggregated bandwidth

of all the actual primary spectrum bands. This assumption is

reasonable since we conduct the time-domain scheduling and it

has been widely recognized [1]. According to this assumption,

the available spectrum for SUs at time t is denoted by W t,

which is a time and primary behavior dependent parameter

(see derivation in Section III).

SN and Problem Description: The considered SN consists

of n independently and identically distributed SUs denoted

by si (1 ≤ i ≤ n). The transmission and interference radii

of SUs are r and rI respectively (without loss of generality,

rI > r). Let D(·, ·) represent the Euclidean distance between

two nodes. Then, there exists a link/edge from si to sj if

D(si, sj) ≤ r. Thus, the SN can be modeled as a graph G =
(V,E), where V = {si|1 ≤ i ≤ n} is the node set and E
is the set of all the possible links formed by nodes in V .

For si, its neighbor set and interference set are defined as

Vi = {sj |D(si, sj) ≤ r, sj �= si} and V I
i = {sj |D(si, sj) ≤

rI , sj �= si}, respectively.

For our problem, we study how to route and schedule the

data transmission for a set of communication sessions L within

time T in a SN, where L = {l|l is a session from source SU ls
to destination SU ld with data rate requirement γ(l)}. Similar

to [10], our objective is to maximize a scaling factor κ ≥ 0
such that each session under our algorithm can achieve a data

transmission rate of at least κ · γ(l). As indicated in [10],

this objective is more general which can cover the objectives

of maxmin throughput and maximizing each session’s rate
proportional to its minimum rate requirement.

III. SOCIAL BEHAVIOR ANALYSIS OF PUS

In terms of recent empirical studies [2][3], it can be seen

that the utilization of primary spectrum is very inefficient.

For instance, over 96% (> 542.4 MHz) of spectrum in-

terval [960MHz, 1525MHz] is underutilized. Therefore, it is

reasonable for SUs to opportunistically access the primary

spectrum to improve the spectrum utilization efficiency. Now,

we have two natural and related questions: (1) how does the

spectrum whitespace/opportunities distribute over time? and

(2) how to utilize primary spectrum effectively and meanwhile

minimizing harmful impacts on primary activities? Taking

the spectrum interval [806MHz, 902MHz] (assigned to cell

phones, SMR) as an example, on average, 45.2% (43.4 MHz)

of this spectrum interval is available for SUs. However, is

it appropriate for SUs to access these 43.4 MHz spectrum

equi-probably over time? Can the optimal performance be

achieved by the existing routing and scheduling algorithms if

43.4 MHz is taken as a fixed available bandwidth parameter?

To answer the above two questions, more in-depth research

should be conducted on analyzing the behaviors of PUs, which

is overlooked in most of the existing routing and scheduling

works.

On the other hand, PUs tend to follow some stable social

pattern [15] since they are humans or operated by humans,

e.g., cell phone users, TV viewers. Consequently, we propose

to analyze the spectrum whitespace for SUs from a social per-

spective, which can provide us new insights on understanding

spectrum dynamics over time followed by designing efficient

routing and scheduling algorithms. We start our analysis based

on two representative data traces, the MIT Reality trace [6] and

the UCSD trace [7], which record contacts through Bluetooth

or WiFi interfaces among mobile device users on campus.

The MIT Reality trace involves 97 mobile device holders.

A contact between two holders is recorded if their devices

are connected through Bluetooth. In total, the MIT Reality

trace recorded 114046 contacts spanning 246 days. The UCSD

trace contains 123225 WiFi contacts generated by 275 mobile

devices spanning 77 days. A contact is recorded if two devices

are connected via a WiFi access point. These two traces can

be viewed as two small PNs on campus (without loss of

generality, the contacts in these two traces are very similar

to that of cell phone users and PUs in cellular networks [4]).

Since these two traces are recorded on campus and con-

sidering students’ behaviors, intuitively, the users are more

active during the daytime. By a close check on the MIT
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(a) MIT Reality trace.
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(b) UCSD trace.

Fig. 1. Probability distribution of a user to be active. The dot lines show the
normal distributions of the MIT Reality trace and UCSD trace, respectively.

reality trace, we find that the data generally follows a one-day-

based periodical distribution, i.e., the contacts distributions

over each day are almost the same. On average, over 90%
contracts happened during time [8:00-20:00]. Particularly, the

peak hours are [10:00-18:00] during which over 80% contacts

happened. Similar skew distribution can also be found in the

UCSD trace.

In terms of the active user distribution, the probability

distributions of a user to be active over time in the MIT

Reality trace and UCSD trace are shown in Fig.1. In Fig.1,

we make a translation on the time index (x-axis) by starting

from 4:00 with the purpose of making a better curve fitting.

From Fig.1, the probability distribution of a user to be active

in the two traces can be approximated by normal distributions

N (μ = 10.5, σ = 3.6) and N (μ = 9.5, σ = 4.6) respectively,

where μ is the expectation and σ is the standard deviation
of the corresponding normal distribution. By checking the

real distributions and the approximate normal distributions,

the Root-Mean-Square Error (RMSE) is 0.0084 for the MIT

Reality trace and 0.0140 for the UCSD trace. Therefore, it is

reasonable to exploit a normal distribution to approximately

describe the primary behaviors.

Based on the analysis of the primary social behaviors, it

is reasonable to assume that the probability distribution of a

PU to be active follows a normal distribution N (μ, σ). In the

following, we derive the available spectrum whitespace for

SUs in terms of the primary behaviors. First, we give some

preliminary knowledge on Poisson distribution and Normal

distribution as follows. For a random variable X , we use

X ∼ P(λ), X ∼ B(k, p), and X ∼ N (μ, σ) to denote that

X follows a Poisson distribution with parameter λ, a binomial

distribution with parameters k and p, and a normal distribution

with parameters μ and σ, respectively. Then, we have the

following properties.

Property 1: If X ∼ P(λ) and Y conditional on X = k is

Y |(X = k) ∼ B(k, p), then Y ∼ P(λ · p).
Property 2: Let X ∼ N (μ, σ), and f(X = x) and

F (X = x) be the probability density function (pdf) and

Cumulative Distribution Function (CDF) of the normal dis-

tribution, respectively. Then, f(x) = 1
σ
√
2π

e−
(x−μ)2

2σ2 and

F (x) =
∫ x

−∞ f(t) · dt = Φ(x−μ
σ ), where Φ(·) is the CDF

of N (0, 1).

Now, we are ready to derive the spectrum whitespace

for SUs by considering the primary social behaviors, where

the probability distribution of a PU to be active is given

by a normal distribution N (μ, σ). Let p([t1, t2]) denote the

probability of a PU to be active during time [t1, t2], and

variable Y t denote the number of active PUs during the t-
th time slot. Then, we have the following lemma. Due to the

space limitation, we omit the proof of Lemma 1.

Lemma 1: (1) p([t1, t2]) = Φ( t2−μ
σ ) − Φ( t1−μ

σ ); and (2)

Y t ∼ P(λ · ptp), where ptp = Φ( tτ−μ
σ ) − Φ( (t−1)τ−μ

σ ) is the

probability that a PU is active during the t-th time slot.

Based on Lemma 1, we can obtain the expected available

spectrum whitespace, for a secondary link from si to sj at

time slot t, denoted by W t
ij , as shown in Lemma 2. For

convenience, we define a function A(x, y) = x2 cos−1( yx ) −
y
√
x2 − y2. Furthermore, due to the space limitation, we omit

the proof of Lemma 2.

Lemma 2: Let d1 =
D(si,sj)

2+r2I−R2
I

2D(si,sj)
, d2 =

D(si,sj)
2−r2I+R2

I

2D(si,sj)
, and aij = A(rI , d1) + A(RI , d2). Then,

W t
ij = W · ptij , where ptij = e−pt

pλ(π(r
2
I+R2

I)−aij) is the

probability of a spectrum opportunity from si to sj without

causing interference to PUs.

Remarks: From Lemma 2, the expected whitespace for a

secondary link is time and primary social behavior depen-

dent. Compared with the traditional static assumption on the

spectrum whitespace, W t
ij is more accurate by considering the

dynamic primary social behaviors. Note that, it is possible that

PUs might follow some other social pattern, which practically

depends on the considered PN. Our primary social behavior

aware idea and analysis could be extended to other types of

PNs to aid the design of more efficient protocols.

IV. JOINT ROUTING AND TIME-DOMAIN SCHEDULING

A. Time-Domain based Scheduling

We consider the scheduling in the time domain which con-

sists of T time slots. Let NT = {1, 2, · · · , T}. To determine

whether a link from si to sj is scheduled during time slot

t ∈ NT , we define an indicator θtij as follows. θtij = 1 if si is

scheduled to transmit data to sj during time slot t; otherwise,

θtij = 0.

From the transmission/reception perspective, every transmit-

ter/receiver si can only transmit/receive data to/from one node

during any time slot t, i.e.,
∑

sj∈Vi

θtij ≤ 1,
∑

sk∈Vi

θtki ≤ 1, (t ∈ NT ). (1)

Furthermore, ∀si ∈ V , si cannot be both transmitter and

receiver simultaneously, i.e.,
∑

sj∈Vi

θtij +
∑

sk∈Vi

θtki ≤ 1, (t ∈ NT ). (2)

By checking constraints (1)and (2) carefully and considering

θ-variables (the sum of θ-variables is also a non-negative

integer), it can be verified that constraint (2) implies constraint

(1), i.e., if (2) is satisfied, then (1) is also satisfied.



To obtain a feasible schedule, we have to guarantee all the

scheduled transmissions in a time slot are interference-free,

i.e.,

θtij +
∑

sq∈Vk

θtkq ≤ 1, (sk ∈ V I
j , sk �= si, t ∈ NT ). (3)

B. Routing

Similar as the objective in [10], our routing and scheduling

objective is to maximize a scaling factor κ such that each

session l in L can achieve a data transmission rate of at least

κ ·γ(l). We define a variable f t
ij(l) denoting the allocated data

rate on the link from si to sj for session l in time slot t. Then,

from the routing perspective, the balance of data flow of each

session should be maintained at each node. Consequently, for

l ∈ L, if si = ls, then we have constraint

T∑

t=1

∑

sj∈Vi

f t
ij(l) = κ · γ(l), (l ∈ L, si = ls). (4)

If si is an intermediate forwarding node for l ∈ L, we have

T∑

t=1

∑

sj∈Vi

f t
ij(l) =

T∑

t=1

∑

sk∈Vi

f t
ki(l), (si �= ls, si �= ld). (5)

If si = ld, we have

T∑

t=1

∑

sk∈Vi

f t
ki(l) = κ · γ(l), (l ∈ L, si = ld). (6)

Besides the flow balance constraints, the scheduled data

transmission on a link during a time slot should not exceed

the affordable transmission capability of that link, i.e.,
∑

l∈L
f t
ij(l) ≤ c0 · θtij ·W t

ij , (si �= ld, sj �= ls, t ∈ NT ), (7)

where W t
ij is the dynamic primary social behavior aware

spectrum whitespace (Lemma 2), and c0 is a user-defined

adjustable constant value which can provide routing and

scheduling flexibility depending on the transmission path loss,

noise, etc.

C. Mathematical Formulation

By considering routing and scheduling together, our prob-

lem can be mathematically formalized as follows.

max κ
s.t. constriants (2)− (7),W t

ij = W · ptij (t ∈ NT )
κ ≥ 0, f t

ij(l) ≥ 0, θtij = {0, 1} (l ∈ L, sj ∈ Vi)

In the above formulation, κ and f t
ij(l) are nonnegative

variables, θtij are 0/1 variables, and W t
ij are time-dependent

nonnegative variables. Thus, the optimization problem is a

Mixed-Integer NonLinear Program (MINLP) problem, which

is NP-hard in general. Fortunately, the social pattern of in-

dividuals is a pretty stable physical phenomenon in a long

term [15]. Therefore, the social pattern of the PN can be

derived from historical PU behaviors. It follows that W t
ij can

be obtained beforehand in terms of similar analysis shown in

Section III and be viewed as known values in the optimization

problem. After such an analysis and derivation, the above

MINLP problem can be reduced to a Mixed-Integer Linear

Program (MILP) problem, denoted by P. However, P is still

NP-complete in general. Hence, we will design dedicated

provable centralized solution and workable distributed solution

in the following sections.

V. ε-OPTIMAL SOLUTION

A. Solution Framework

Our ε-optimal solution is based on the classical branch-and-
bound technique. Here, we extend this technique to seek an

ε-optimal solution.

When employing the branch-and-bound technique to resolve

the MILP problem, e.g., P in the previous section, there

are three key points: determining the upper bound of P,

determining the lower bound of P, and partitioning P into

subproblems. The basic idea of branch-and-bound is to narrow

down the gap between the upper bound and the lower bound

by iterations, i.e., decreasing the optimization space, until

a satisfiable and feasible solution is achieved. During each

iteration, from the perspective of branching, if we cannot find

a satisfiable solution for the current problem, we partition this

problem into two subproblems by giving more constraints, e.g.,
fixing the value of an integer variable in P to be 0 or 1 in

each subproblem and add the new generated problems to the

problem list to start a new iteration. For bounding, we ignore

the problem that cannot produce a desired solution during each

iteration.

Our Branch-and-Bound (BB) framework is shown in Alg.

1. In Alg. 1, Ψ is the set of problems which initially contains

P. ω and o denote the current lower and upper bounds of

P. βω is the corresponding solution of ω. LP (P ) represents

the linearized version of P (Section V-A1). o(P ) denotes the

upper bound of P and we show how to obtain o(·) in Section

V-A1. ω(P ) and β(P ) represent the lower bound and the

corresponding solution of P , which can be obtained by Alg.

Lower-Bound(P ) (Section V-A2). Alg. Branching(P, P1, P2)

partitions P into subproblems P1 and P2 (Section V-A3).

Algorithm 1: Branch-and-Bound (BB) framework.

1 Ψ = {P}, ω = −∞, βω = ∅, o = o(P);
2 while ω < εo ∧Ψ �= ∅ do
3 ∀P ∈ Ψ, if � a feasible solution of LP (P ) or

ω ≥ ε · o(P ), then Ψ = Ψ \ {P};

4 select P s.t. o(P ) = max{o(x)|x ∈ Ψ}, let o = o(P );
5 obtain β(P ) and ω(P ) by Lower-Bound(P );

6 if ω(P ) > ω, then ω = ω(P ), βω = β(P );
7 if ω ≥ ε · o, then return the ε-optimal solution βω;

8 create two subproblems by Branching(P, P1, P2);

9 Ψ = (Ψ \ {P}) ∪ {P1, P2};

10 return βω;

The general idea of BB is as follows. We first initialize

the lower and upper bounds of P and then start the iteration



process. During each iteration, the problems without feasible

solutions or cannot produce desired solutions are removed

for further consideration (bounding). This bounding technique

distinguishes this method from the brute-force exhaustive

searching, by which many unqualified problems are removed

so that the problem space is reduced [10]. Subsequently, the

problem with the maximum upper bound in Ψ, denoted by P ,

is selected for consideration. By employing Lower-Bound(P ),

a feasible solution β(P ) and the corresponding lower bound

ω(P ) can be obtained for P . ω(P ) is then compared with the

current lower bound ω to see whether ω can be improved.

Next, if the current best feasible solution βω is an ε-optimal

solution, it is returned. Otherwise, two new subproblems P1

and P2 are generated from P by adding more constraints

(branching).

1) Upper Bound of P : As discussed before, the formulated

problem is NP-complete. The difficulty lies on the integral

constraints on variables θtij . To obtain an upper bound of the

problem, we can relax θtij in P to real numbers in [0, 1].
Evidently, the relaxed version of P , denoted by LP (P ), is

a Linear Program, which can be addressed efficiently within

polynomial time. The solution of LP (P ) is an upper bound

of P since the optimization space is enlarged.

2) Lower Bound of P : Although every feasible solution

of P corresponds to a lower bound of P , we want to find

a lower bound of P closer to the overall optimal solution

of P during each iteration, and thus Alg. 1 can be further

accelerated. Therefore, we have two concerns when seeking

β(P ) and ω(P ): β(P ) is a feasible solution and ω(P ) is close

to the optimal solution of P (equivalently, close to o(P )).
To guarantee the feasibility of β(P ), the difficulty lies on

satisfying the integral constraints, i.e., to obtain a feasible

link scheduling. On the other hand, the optimality of β(P )
is determined by how optimal the link scheduling and routing

are. Since the optimal routing part can be obtained by a Linear

Program as long as the scheduling is fixed, we propose a

fast greedy algorithm Lower-Bound(P ) as shown in Alg. 2

to determine β(P ) and ω(P ) in Alg. 1. In Alg. 2, c1 and

c2 are user-defined adjustable constants. f t
ij is defined as

the aggregate traffic from si to sj during time slot t, i.e.,

f t
ij =

∑
l∈L

f t
ij(l).

The basic idea of Alg. 2 is as follows. To obtain a feasible

solution of P with a nice lower bound, multiple iterations

might be needed. During each iteration, a greedy idea is

employed to determine one scheduling link and many non-

scheduling links. In each iteration, we first solve the linear

version of P determining its upper bound. If the solution

of LP (P ) happens to satisfy all the integral constraints of

P , β(P ) and ω(P ) are determined and returned. Otherwise,

there are some θ variables having non-integer values, i.e.,
with values in (0, 1). Then, we set the θ variable with the

maximum c1
ft
ij

max{1,W t
ij} + c2

ft
ij

θt
ij

value with integer 1 and add

it to problem P as a new constraint for the next iteration.

For determining the scheduling link θtxy , we consider the

Algorithm 2: Lower-Bound(P ).

1 solve LP (P ), denote the solution by

β(P ) = {θtij , f t
ij(l)|D(si, sj) ≤ r, t ∈ NT };

2 if β(P ) satisfies all the integral constraints in P then
3 return β(P ) and the correspondingω(P );

4 let θtxy = argmax
θt
ij

{c1 ft
ij

max{1,W t
ij} + c2

ft
ij

θt
ij

| 0 < θtij <

1, θtij ∈ β(P )};

5 β(P ) = (β(P ) \ {θtxy}) ∪ {θtxy = 1};

6 P = P ∪ {θtxy = 1};

7 for ∀θtij ∈ β(P ) s.t. si ∈ V I
y ∧ si �= sx and ∀θtij ∈ β(P )

s.t. sj ∈ V I
x ∧ sj �= sy , do P = P ∪ {θtij = 0};

8 go to step 1;

following two factors: (i) c1
ft
ij

max{1,W t
ij} which reflects how

much available bandwidth can be used if we schedule this link

(the link with higher spectrum utilization ratio is preferred);

and (ii) c2
ft
ij

θt
ij

which indicates the efficiency contributed to

the scheduling scheme if we schedule this link. Basically,

the greedy criteria is to determine a scheduling link which

can maximize the scheduling and data transmission efficiency

during each iteration until no more links can be scheduled

in time slot t. After determining the scheduling link θtxy ,

all the θ variables corresponding to the links which are

interfered with sy or interfered by sx are set to be 0 and

added to P as constraints. In this manner, many θ variables

will be assigned fixed appropriate integer values, which can

significantly accelerate the iteration process and thus obtain

a feasible solution and a lower bound for P (mathematical

analysis is available in Section V-B).

3) Partition of P : To design an effective

partition/branching algorithm, the first step is to find an

appropriate partition variable. In our branching algorithm, as

shown in Alg. 3, our criteria to choose the partition variable is

based on the impacts on the scheduling and routing solution

if this variable is determined. Specifically, we select the most

free θ variable (whose value is close to 0.5 while far from

the desired integer 0/1) to partition problem P . In Alg. 3,

to accelerate the overall branch-and-bound process, we add

more integral constraints derived from θtxy = 1 to subproblem

P2 (see the analysis in Section V-B).

Algorithm 3: Branching(P , P1, P2).

1 solve LP (P ), denote the solution by φ(P );
2 choose θtxy s.t.

θtxy = arg min
0<θt

ij<1
{|θtij − 0.5| · W t

ij

max{1,ft
ij} |θ

t
ij ∈ φ(P )};

3 P1 = P ∪ {θtxy = 0}, P2 = P ∪ {θtxy = 1};

4 for ∀θtij ∈ φ(P ) s.t. si ∈ V I
y ∧ si �= sx and ∀θtij ∈ φ(P )

s.t. sj ∈ V I
x ∧ sj �= sy , P2 = P2 ∪ {θtij = 0};



B. Performance Analysis

In this subsection, we analyze the correctness and optimality

of the designed BB framework. First, we give the fastness

analysis on Lower-Bound(P ).

Lemma 3: In Lower-Bound(P ), (i) if we set θtxy = 1, the

number of θ variables set to 0 in one iteration, i.e., the number

of θtij = 0, is lower bounded by Ω(log2 n); and (ii) the number

of iterations is upper bounded by min{O( nT
(rI−r)2 logn ),

nT
2 }.

Proof Sketch: To analyze how many θ variables are set to 0

in one iteration in Alg. 2, we start from deriving the number of

nodes in V I
y . Since all the SUs are deployed in a square area

with size A, then �(sy, rI) ∩ A ≥ πr2I
4 . Furthermore, consid-

ering that SUs are independently and identically distributed,

the probability that a SU is located at the interference area

of sy is p = Pr(si ∈ V I
y ) = πr2

4A = πr2 logn
4cn . Let X be a

random variable denoting |V I
y |. Then, X ∼ B(n, p) (here, we

do not consider sx and sy particularly which is reasonable for

large n). In addition, let c3 max
ξ<0

πr2(eξ−1)
4cξ + 2

ξ be a positive

value depending on c. Applying the Chernoff bound and for

any ξ < 0, we have Pr(X ≤ c3 log n) ≤ min
ξ<0

E[eξX ]
eξc3 log n =

min
ξ<0

(1+(eξ−1)p)n

eξc3 log n ≤ min
ξ<0

exp((eξ−1)np)
eξc3 log n ≤ exp(−2 lnn) = 1

n2 .
∑

n>0
1
n2 = π2

6 is an upper bounded Riemann zeta func-
tion with parameter 2. Thus, according to the Borel-Cantelli

Lemma, the event X ≥ c3 log n happens with probability 1.

Employing the similar technique, we can prove |Vi| ≥ c4 log n,

where c4 is a constant value. Therefore, the number of θtij = 0
for si ∈ V I

y ∧ si �= sx in one iteration of Alg. 2 is lower

bounded by Ω(c3c4 log
2 n). Similarly, the number of θtij = 0

for sj ∈ V I
x ∧ sj �= sy in one iteration of Alg. 2 is lower

bounded by Ω(log2 n).
We now prove the upper bound on the number of iterations

in Alg. 2. To this end, we only have to figure out how many 1’s

can be set since in each iteration of Alg. 2, only one θ variable

is set to 1. We consider one specific time slot t. In t, each

transmitter sx corresponds to one interference disk �(sx, rI),
within which no other receiver should appear except for sy .

Therefore, there is no other transmitter in disk �(sx, rI − r)
except for sx, i.e., for any two concurrent transmitters sx
and sq , �(sx,

rI−r
2 ) and �(sq,

rI−r
2 ) are not overlapping.

Furthermore, any disk �(sx,
rI−r
2 ) must locate in a square

area with side length of
√
A + rI − r. It follows that the

number of transmitters during a time slot is upper bounded by
(
√
A+rI−r)2

π(rI−r)2/4 = O( n
(rI−r)2 logn ). Consequently, within T time

slots, the number of transmitters (1’s or iterations) in Alg. 2

is upper bounded by O( nT
(rI−r)2 logn ). When rI ≈ r, we can

conclude that the number of transmitter-receiver pairs is upper

bounded by n/2 in a time slot, which implies the number of

iterations in Alg. 2 is also upper bounded by nT
2 . �

From Lemma 3, we can see that the lower bound decision

process for problem P can be accelerated by fixing the values

of more θ variables. Now, we show the correctness of Lower-

Bound(P ) as follows. Due to the space limitation, we omit the

proof of Lemma 4.

Lemma 4: Alg. 2 produces a feasible solution β(P ) with

lower bound ω(P ) for problem P .

Now, we analyze the fastness of Branching(P, P1, P2).

Based on similar proof technique in Lemma 3, the following

corollary can be proved. Corollary 1 indicates the designed

branching scheme can accelerate the overall branch-and-bound

process by considering more derived constraints1.

Corollary 1: The number of θtij = 0 constraints added to

subproblem P2 is lower bounded by Ω(log2 n) in Alg. 3.

For problem P which is partitioned into subproblems

{Pi}, we define this partition as meaningful and scheduling-
consistency preserved if (i) at least one new constraint is added

to each subproblem Pi; and (ii) the newly added constraints

to each subproblem are confliction-free with the constraints in

P . Now, we show the correctness of Alg. 3 as follows. Due

to the space limitation, we omit the proof of Lemma 5.

Lemma 5: Branching(P, P1, P2) can correctly and meaning-

fully partition P with scheduling-consistency preservation.

Let oi and ωi be the upper and lower bounds of P in the i-
th iteration, respectively. Then, the following lemma indicates

the decreasing property of oi and increasing property of ωi.

Due to the space limitation, we omit the proof of Lemma 6.

Lemma 6: In the BB framework, oi+1 ≤ oi and ωi+1 ≥ ωi.

Now, we are ready to show the correctness and optimality

of the designed BB framework.

Theorem 1: The BB framework obtains an ε-optimal solu-

tion for problem P within finite time.

Proof Sketch: This theorem can be proved in three steps:

(i) each iteration can be correctly executed; (ii) the number

of iterations is finite; and (iii) the final solution is ε-optimal.

First, based on the correctness analysis of Alg. 2 and 3 in

Lemmas 4 and 5, we can conclude that each iteration in Alg.

1 can be correctly executed. Second, if all the θ variables in

P is determined, P is reduced to an LP problem which can

be solved in polynomial time. During each iteration in Alg. 1,

either an ε-optimal solution is found or some θ variable can

be determined by generating new subproblems. Furthermore,

the number of θ variables is upper bounded by O(n(n−1)T )
and the possible value of a θ variable is 0/1, which implies the

number of iterations in Alg. 1 is finite. Third, since the number

of iterations is finite and the upper bound (respectively, lower

bound) of P is non-increasing (respectively, non-decreasing)

as shown in Lemma 6, we can conclude that the ε-optimal

solution can be found by Alg. 1. �

Discussion: Note that, in Alg. 1, the time consumption for

each iteration is of polynomial complexity (mainly caused

by solving LP (P )). However, the problem space |Ψ| can

be of exponential order in the worst case. Fortunately, by

applying the multi-fold bounding techniques, e.g., removing

some problems for further consideration (Alg. 1), adding

more derived integral constraints to the subproblem (Alg. 3,

Corollary 1, Lemma 5), etc, the branch-and-bound process

1Note that, in Alg. 3, although the constraints θtij = 0 added to subproblem

P2 might already exist, it is still meaningful when a θtij = 0 constraint is
explicitly added to a subproblem for the first time.
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can be significantly accelerated to find the desired ε-optimal

solution. As indicated in [10], the solution of Alg. 1 can be

exploited as a reference optimal result/performance benchmark

to guide the development of future routing and scheduling

algorithms. Specifically, it has been shown in [10] that this

kind of branch-and-bound based algorithms are effective and

feasible in offering performance benchmark for static CRN-

s. Therefore, as the first work on joint routing and time-

domain scheduling with PU social behavior consideration, the

designed BB framework is meaningful for static multi-hop

CRNs.

VI. DISTRIBUTED SOLUTION

A. Solution Framework

As the BB framework which provides a provable ε-optimal

solution is a centralized algorithm, in this section, we design a

distributed joint routing and time-domain scheduling algorithm

with PU social behavior consideration.

At time t, the amount of data of session l ∈ L at su (su �=
ld) waiting for transmission is dtu(l). Define Lt

u = {l|dtu(l) >
0}. For l ∈ Lt

u, the elapsed time since the last time that su
transmits data for l is denoted by τu(l). If su never transmits

data for l before, τu(l) is defined as the elapsed time since the

time that su received/generated data of l.
To relay data for l ∈ Lt

u, we define an α-forwarding
sector as follows2. An α-forwarding sector Aα

u(l) for l
at su is a sector of disk �(su, r) with central angle α
(α ∈ (0, 2 arccos r

2D(su,ld)
])3 and angle bisector suld as

shown in Fig.2. We also define an α-forwarding set of l
at su as Nα

u (l) = {si|si ∈ Aα
u(l)}. When su transmits

data for l at time slot t, it selects the next relay sv from

Nα
u (l) with the highest forwarding score f t

uv(l) defined as

f t
uv(l) =

c5(D(su,ld)−D(sv,ld))(W
t
uv+1)

c6 max{1,|V I
v |}+c7 max{1,∑�∈L dt

v(�)} , where ci (5 ≤
i ≤ 7) are some user defined adjustable positive constant

values, and term W t
uv + 1 is to guarantee f t

uv(l) > 0 when

D(sv, ld) < D(su, ld). From the definition of the forwarding

score, we can see that su prefers the next hop sv such that sv
is closer to the destination, more available bandwidth from su
to sv , less interference at sv , and less traffic at sv .

To deal with the interference in scheduling, we employ the

previous CSMA-like controlling strategy [8]. Based on the

previous work [8], we let SUs work on the re-start mode (a

receiver can switch to receive stronger signal on the re-start

mode) and set the Carrier Sensing Range (CSR) of each SU as

max{(1+ c8)
R
r , 1+ c9} ·r where c8 and c9 are some constant

2We assume D(su, ld) > r. Otherwise, su forwards data to ld directly.
3Note that, since 2 arccos r

2D(su,ld)
> π

2
, α can be easily determined.

values depending on the path loss exponent and the signal-to-
interference-plus-noise ratio at SUs and PUs. Then, as proven

in the previous work (Lemmas 2 and 3 in [8]), (i) a SU only

has to carrier sense the communication environment within its

CSR; and (ii) it can successfully conduct data transmission

without interfering other concurrent primary and secondary

transmitters as long as there is a spectrum opportunity within

its CSR.

Algorithm 4: DRS framework at su

1 su updates Lt
u;

2 select l such that τu(l) = max{τu(�)|� ∈ Lt
u};

3 select forwarding node sv from Nα
u such that

sv = argmax
sv

{f t
uv(l) > 0|sv ∈ Nα

u (l)};

4 su carrier senses with CSR max{(1 + c8)
R
r , 1 + c9} · r;

5 if there is a spectrum opportunity then
6 su transmits min{W t

uv, d
t
u(l)} data to sv;

7 dtu(l) = dtu(l)−min{W t
uv, d

t
u(l)}, τu(l) = 0;

Our Distributed Routing and Scheduling (DRS) algorithm

at su during time slot t is shown in Alg. 4. From DRS, we can

see that both scheduling and routing fairness are considered.

It is because that when scheduling data transmission at su, the

session waiting for the longest time has the highest priority,

and when selecting the routing relay, the SU with lower traffic

is preferred. Furthermore, the available spectrum bandwidth,

potential interference, and distance to the destination are also

considered in the routing. Note that, DRS also preserves the

dynamic (multi-path) routing characteristic since su might

choose different relays based on f t
uv(l) at different time slots.

B. Correctness Analysis
First, we show that the routing strategy in DRS is proper,

which implies that in DRS (i) an intermediate node can always

find a next-hop relay; and (ii) there is no routing loop. First,

we show that a next-hop relay can be found in Lemma 7. We

omit the proof due to the space limitation.
Lemma 7: In DRS, su can find a forwarding node sv such

that sv = argmax
sv

{f t
uv(l) > 0|sv ∈ Nα

u (l)}.

We show that DRS does not produce any routing loop in

Lemma 8.
Lemma 8: DRS does not produce any routing loop.
Proof: Suppose for contradiction there is a routing loop,

denoted by · · · → su → sv → sw → · · · → si → su,→ · · · ,

on the route of session l. Then, according to DRS, we must

have f tu
uv(l) > 0, f tv

vw(l) > 0, · · · , f ti
iu(l) > 0. It follows we

have D(su, ld) < D(sv, ld) < D(sw, ld) < · · · < D(si, ld) <
D(su, ld). It is a contradiction. Thus this lemma holds. �

Based on Lemmas 7 and 8, the routing in DRS is proper.

Furthermore, according to the previous result (Lemmas 2 and

3 in [8]), interference can be effectively avoided by letting SUs

work with a proper CSR. Consequently, we can demonstrate

the correctness of DRS as follows.
Theorem 2: DRS produces proper routing and interference-

free scheduling for the communication sessions in L.
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Fig. 3. Expected available bandwidth for SUs.

VII. SIMULATIONS AND ANALYSIS

In this section, we validate the impacts of PUs’ behaviors on

the available spectrum bandwidth for SUs and the performance

of the proposed algorithm. The centralized BB framework is

based on LP and mainly for providing a provable theoretical

benchmark. Currently, we already have multiple successful

commercial softwares to solve LP. Similar as [10], our BB

framework is easy to be implemented on top of these soft-

wares, e.g., CPLEX. Therefore, we focus on examining the

performance of our distributed solution DRS in this section.

We consider a randomly distributed SN coexisted with a Pois-

son distributed PN in a square area with size A. We employ the

MIT trace and the UCSD trace to model the social behaviors

of PUs, i.e., PUs follow the same social/active pattern of users

in MIT and UCSD. As analyzed in Section III, the activities in

MIT and UCSD generally follow a one-day-based periodical

distribution. Therefore, we assume the network time is slotted

with each time slot of length normalized to 1 minute, which

implies a periodical circle has Tc = 24 × 60 = 1440 time

slots. The density of SUs is defined as ρ = n
A . We assume

there are |L| random sessions in the network. For session

li ∈ L (1 ≤ i ≤ |L|), its source generates (10+5i) amount of

data every Γ time slots, which is defined as the data generation
interval. For all the other system parameters, they are specified

in each group of simulations and the default settings are:

W = 100, N = 100, A = 10×10, ρ = 5, r = 1, rI = RI = 2,

δ = 0.8, |L| = 6, and Γ = 10.

The compared algorithm is Coolest [14], which is a recently

proposed routing algorithm. In Coolest, the path with the

lowest spectrum utilization by PUs is preferred for data

transmission. For fairness, we incorporate the same scheduling

algorithm as in DRS into Coolest for scheduling and interfer-

ence avoidance. In the following, each group of simulations is

repeated for 100 times and the results are the average values.

Available Bandwidth Analysis: The available spectrum

bandwidth for SUs under different circumstances is shown in

Fig.3. In Fig.3(a), we show the bandwidth for SUs during

one periodical circle Tc (24 hours). The results confirm our

assertion since primary behaviors do have significant impacts

on the available bandwidth for SUs (changes from > 95 to

< 20 for MIT and from > 90 to < 30 for UCSD). Therefore, it

is more reasonable to design routing and scheduling algorithms

for CRNs with consideration of primary social behaviors.

We also examine the average available bandwidth at a SU

when Time Index = 5 versus the number of PUs N (Fig.3(b)).

From Fig.3(b), we can see that the available bandwidth for

a SU decreases when N increases. The reason is straightfor-

ward. More PUs imply more primary activities, and thus less

spectrum whitespace is left for SUs.

Throughput Analysis: We analyze the throughput perfor-

mance of DRS and Coolest versus the number of PUs N ,

network size A, the number of sessions |L|, and the licensed

spectrum width W as shown in Fig.4(a)-(d) respectively (by

default |L| = 6). Here, we measure the throughput by the

success delivery ratio δ within one PU behavior periodical

circle Tc. δ is defined as the average ratio between the amount

of data been successfully delivered to destinations and the

amount of data been generated by sources. From Fig.4(a), we

can see that when the number of PUs increases, δ shows a

decreasing trend for DRS and Coolest under both the MIT

pattern and the UCSD pattern. The reason is that more PUs

imply less spectrum opportunities and bandwidth for SUs and

thus low δ is induced. Furthermore, DRS has better perfor-

mance than Coolest. The reasons are as follows: (i) Coolest

prefers the path with the lowest spectrum utilization by PUs.

Consequently, many SUs might find overlapped pathes when

routing which causes the data congestion and accumulation

problem followed by low data delivery ratio; and (ii) on the

other hand, when DRS determines its routing, it considers

the routing and scheduling fairness (including traffic at the

next-hop relay), available spectrum bandwidth (primary social

behaviors), potential interference, etc. Furthermore, DRS also

preserves the dynamic routing property. Therefore, the pathes

selected in DRS have higher transmission concurrency, fol-

lowed by high data delivery ratio.

From Fig.4(b), when A increases, δ demonstrates decreasing

trend for DRS and Coolest. The reason is that we randomly

generate these communication sessions. When the network be-

comes larger, the average distance from sources to destinations

increases while Tc is fixed. Therefore, δ decreases. Again,

DRS leads to higher δ than Coolest since primary behavior is

considered and the paths in DRS are more balanced.

From Fig.4(c), when |L| = 1, both DRS and Coolest can

successfully deliver all the data to the destination. This is

because the traffic in the SN is light. However, with the

increase of |L|, δ decreases for DRS and Coolest. This comes

from the fact that more traffic appears. DRS produces better

performance than Coolest since it is primary behavior-aware

and utilizes spectrum opportunities more effectively.

From Fig.4(d), when W increases, δ increases for both DRS

and Coolest. This is because a larger W implies more potential

available bandwidth for SUs when the activity pattern of PUs

is fixed, followed by higher data delivery ratio. Again, DRS

has better performance than Coolest.

Latency Analysis: We also examine the latency perfor-

mance of DRS and Coolest by fixing the expected δ of each

session to be no less than 0.8. The results are shown in

Fig.4(e)-(h). From Fig.4(e), we can see that when N increases,

the number of the consumed time slots of DRS and Coolest
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Fig. 4. Throughput and latency of DRS and Coolest.

also increase. This is because more PUs imply less spectrum

whitespace for SUs and thus high latency for data delivery.

Since DRS considers routing and scheduling fairness as well

as traffic balance and potential interference, DRS consumes

fewer time slots than Coolest. In Fig.4(f), when A increases,

the average transmission distance of each session becomes

longer, thus more hops are needed from the source to the

destination, inducing higher latency for both DRS and Coolest.

DRS produces better performance than Coolest because of its

fair routing and scheduling scheme and the consideration of

the primary behavior pattern. Fig.4(g) shows that when |L|
increases, there is more traffic in the network. Consequently,

the induced latency of DRS and Coolest increases. When |L|
becomes larger, the advantage of DRS over Coolest is more

significant. This confirms that DRS incorporates routing and

scheduling fairness into the design. Again, DRS has better

performance because of efficient utilization of spectrum oppor-

tunities. Fig.4(h) shows that larger W implies more spectrum

whitespace followed by less time consumption on delivering

data for both algorithms. Due to the reasons analyzed before,

DRS consumes less time than Coolest.

VIII. CONCLUSION

In this paper, we study the joint routing and scheduling

problem for CRNs by considering the social behaviors of

PUs. We first analyze the social pattern of PUs based on two

practical data traces and then derive the available spectrum

whitespace for SUs. Subsequently, we study the joint routing

and time-domain scheduling problem for CRNs by proposing

both a centralized algorithm with global provable ε-optimality

and a distributed algorithm with local performance guarantee.

Finally, we conduct extensive simulations to validate our

assertion as well as the performance of the proposed algorithm.
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