
Shepherding Loadable Kernel Modules through

On-demand Emulation

Chaoting Xuan1, John Copeland1, and Raheem Beyah1,2

School of Electrical and Computer Engineering, Georgia Institute of Technology
Department of Computer Science, Georgia State University

Abstract. Despite many advances in system security, rootkits remain
a threat to major operating systems. First, this paper discusses why
kernel integrity verification is not sufficient to counter all types of ker-
nel rootkits and a confidentiality-violation rootkit is demonstrated to
evade all integrity verifiers. Then, the paper presents, DARK, a rootkit
prevention system that tracks a suspicious loadable kernel module at a
granite level by using on-demand emulation, a technique that dynami-
cally switches a running system between virtualized and emulated exe-
cution. Combining the strengths of emulation and virtualization, DARK
is able to thoroughly capture the activities of the target module in a
guest OS, while maintaining reasonable run-time performance. To ad-
dress integrity-violation and confidentiality-violation rootkits, we create
a group of security policies that can detect all avialiable Linux rootkits.
Finally, it is shown that normal guest OS performance is unaffected. The
performance is only decreased when rootkits attempt to run, while most
rootkits are detected at installation.

Keywords: Rootkit Prevention, Virtual Machine Monitor, Emulator,
On-demand Emulation.

1 Introduction and Background

The security issue of the operating system extensions has been studied for years.
Unfortunately, the fact is that many commodity operating systems (e.g., Win-
dows XP and numerous Linux distributions) don not provide the defense against
those malicious kernel extensions. In recent years, academics propose a ”Out-
of-the-Box” approach [2][3][4][5][6][32][35][36][37] to protect detection software
by placing it outside the target (guest) OS, e.g. hypervisors (virtual machine
monitor), external co-processor. This approach creates strong isolation between
detection software and malware such that the former is ”invisible” to the latter,
(most likely) surviving its attacks accordingly.

Rutkowska [7] proposed a taxonomy that classifies rootkits according to how
they interact with operating systems. Type I rootkits refers to those that tamper
with the static part of an operating system, e.g. kernel text, system call table
and IDT; Type II rootkits refers to those that modify the dynamic part of an op-
erating system, e.g., the data section. Since contemporary OSs are not designed

U. Flegel and D. Bruschi (Eds.): DIMVA 2009, LNCS 5587, pp. 48–67, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Shepherding Loadable Kernel Modules through On-demand Emulation 49

to be verifiable, a large amount of dynamic kernel objects that can potentially
be exploited by type II rootkits present challenges to security communities [8].
Recent progresses made in rootkit researches [9][10][11][13][14] reveal that hack-
ers may take advantage of some hardware features to construct stealthy rootkits
to beat the existing rootkit detectors.

Kernel run-time protection mechanisms can be categorized as detection and
prevention. Inherent limitations of rootkit detection mechanisms are discussed
in Section 2. Previous run-time rootkit prevention approaches [31][32] focus on
protecting the benign kernel code and thwarting malicious kernel code. One key
issue here is how to determine the goodness and trustworthiness of any piece of
kernel code. Unfortunately, previous approaches did not give in-depth analysis
of this problem and just simply assume it is a priori knowledge to end users
or protection systems, which is not true in practice. To date, there is no such
commodity operating system that strictly control the kernel code loading based
on both goodness and trustworthiness of kernel code. Even Microsoft’s driver
code signing [34] is just employed for the identification of driver code authors,
but not for assuring the goodness of signed drivers [33]. The effectiveness and
robustness of this mechanism are still being questioned [1][33]. In the end, people
have to make decision on whether to install a useful but potentially unsecure
driver, which is a challenge that is not addressed by previous approaches.

In this paper, we propose a rootkit prevention approach that tackles the chal-
lenge above, while enhancing the existing prevention approaches. The basic idea
is to sandbox a suspicious loadable kernel module in an emulator and to assure
its goodness by enforcing a group of well-selected security policies. Based on open
source software Qemu and Kqemu [12], we designed and implemented a software
system, namely DARK that uses on-demand emulation to provide powerful de-
fense against kernel malware. In DARK, when a rootkit tampers with a kernel
object or hardware object, its illegal behavior is captured and blocked. In the
meanwhile, VM emulation takes place only at the time that a suspicious module
is executed. Further, most operations of the VM are performed in virtualization
mode. Thus, the substantial execution overhead caused by emulation is avoided.
Our contribution in this work includes:

1. Identification of non-integrity-violation rootkits that can escape kernel in-
tegrity verifiers.

2. Implementation of a novel rootkit prevention system based on on-demand
emulation to sandbox a suspicious kernel module.

3. Creation of a group of security policies to detect and block all rootkits we
collected.

The rest of paper is structured as follows. First, we explain the limitation
of current rootkit detection mechanisms in Section 2. Section 3 presents the
design and implementation of on-demand emulation. Section 4 and 5 describe
the details of creating and enforcing security policy. We present the security
and performance evaluation results in Section 6 and introduce related work in
Section 7, while Section 8 concludes the paper.

50 C. Xuan, J. Copeland, and R. Beyah

2 Limitations of Rootkit Detection Techniques

Run-time rootkit detection methods proposed by researchers can be divided into
two categories: specific rootkit detection and generic rootkit detection. Methods
in the first category focus on capturing specific type of rootkits. For example,
Cross-view diff-based method [6][25] just targets rootkits that conceal disk ob-
jects (files and registries); Lycosid [35] is intended to discover hidden process
only. On the contrary, methods in the second category are designed to counter
broad types of rootkits. To the best of our knowledge, the most generic rootkit
detectors known to the public are kernel integrity verifiers [2][3][4][5][21][24][37].
Kernel integrity verifiers concentrate on examining the states of some kernel ob-
jects to ensure that illegal tampering of these objects don not occur. They are
effective at defeating integrity-violation rootkits. Unfortunately, theses kernel
integrity verifiers suffer two fundamental weaknesses: incompleteness of assur-
ing the integrity of dynamic kernel objects; inability of detecting non-integrity-
violation rootkits, like confidentiality-violation rootkits and hardware-exploiting
rootkits. These two weaknesses are discussed in detail below.

2.1 Dynamic Kernel Objects

Most kernel rootkits are implemented in the form of kernel modules (drivers).
Hence, they share the same virtual memory environments as operating system.
No matter whether a kernel object (structure, list, text and so on) is exported
or not by the OS, a rootkit can always directly access and tamper with it after
being loaded to the kernel. In fact, direct kernel object manipulation (DKOM)
is one common technique employed by rootkit writers [28]. A kernel object could
reside on either permanent memory area (text, dss) or transient memory area
(stack and heap); its content could be constant or changeable. A kernel object
is static if its memory address is permanent. Otherwise, this object is dynamic.
Defending a static kernel object is straightforward, as its location and content
are relatively easy to identify. On the other hand, protecting a dynamic object
could become challenging due to the following four reasons. First, in comparison
with static objects, the population of dynamic objects is much larger, and enu-
merating all dynamic kernel objects at any time could be impractical. Second,
since integrity verifiers have to wake up to work periodically, they miss catch-
ing lots of short-lived dynamic objects, e.g., local variables in stacks. Third, a
detector’s recognition of dynamic objects can be attacked by rootkits so that
those objects are invisible to the detector. For examples, rootkits can alter the
page table to hide kernel objects from detectors, or remove an element from a
link list to make it untraceable. Last, the content of a kernel object can be un-
predictable and detectors are unable to differentiated good and bad values. One
such example is the entropy pool of Linux kernel, which can be manipulated by
rootkits to compromise Linux Pseudo-Random Number Generator (PRNG) [8].
In summary, kernel integrity verifiers cannot assure the integrities of all dynamic
objects in a kernel.

Shepherding Loadable Kernel Modules through On-demand Emulation 51

Fig. 1. Key data flow in Linux desktop

2.2 Non-integrity-violation Rootkits

Non-integrity-violation rootkits are rootkits that launch attacks while not ma-
nipulating any kernel objects, so kernel integrity verifiers can not catch them.
One type of non-integrity-violation rootkits is hardware-exploiting the rootkit,
which misuses hardware feature or configuration to achieve their goals. Another
type of non-integrity-violation rootkits: confidentiality-violation rootkits. They
break the kernel data confidentiality while preserving the data integrity. One
class of candidates for the confidentiality-violation rootkits is data theft rootkits,
e.g., keyloggers and network sniffers. Next, we demonstrate one confidentiality-
violation rootkit: a Linux keylogger (called darklogger) that can sniff keystrokes
without illegally changing any kernel object.

Today, common Linux desktop environments like Gnome and KDE use X
window systems to manage terminal service: interacting with the keyboard and
mouse, drawing and moving windows on the screen. The key data flow in a typical
X window system is shown in figure 1. On the X server, the key reading path from
keyboard to user space consists of at least two threads working in tandem: a top
thread originating from a user process that issues read requests, and a bottom
thread originating from the interrupt service routine that reads the key data from
the keyboard. Two kernel buffers, tty flip buffer (tty_struct.flip.char_buf)
and tty read buffer (tty_struct.read_buf), store the key data (interpreted by
keyboard driver) and provide the synchronization between the top thread and
the bottom thread. When the top thread asks for data and the tty flip buffer is
empty, the thread goes to sleep; when the bottom thread fills new key data to

52 C. Xuan, J. Copeland, and R. Beyah

the tty flip buffer, it awakens the top thread who copies the new data from the
tty flip buffer to tty read buffer and then to user space. In figure 2, when a key
is generated by keyboard and travels to the shell, it may be kept in four kernel
buffers. By adding hooks or patching code, traditional keyloggers hijack the
control flow of kernel’s processing key data. Darklogger takes a passive approach
based on the observation that tty read buffer is a large-size circular buffer and a
char data, representing a key, in the buffer is not wiped off until the head pointer
of the buffer moves back to its location, where a new char data is written. Since
human’s keystroke speed is relatively slow (less than 30 characters/second) and
the size of tty read buffer is large (4k), it takes more than 2 minutes to fill up
the entire buffer. Darklogger is a kernel thread that wakes up every 10 seconds
to read the tty read buffer and acquire all key data. Based on the positions of
the head and tail pointers in the buffer, Darklogger is able to extract the key
data of the last period. Because Darklogger just uses the legal kernel APIs and
does not maliciously hook any function or modify any kernel data object, it can
evade all kernel integrity verifiers.

Following the spirit of sandboxing program [29], DARK captures the inter-
actions between a rootkit and the rest of a kernel. The kernel objects visited
(memory read, write and function call) by a rootkit are recorded and analyzed
regardless of their locations, lifespan and contents. To DARK, the rootkit defense
is an access control problem and its success depends on the effectiveness of the
security policies. Last, it should be pointed out that DARK is not designed to
withstandrookits that access the kernel in abnormal ways, e.g., directly writing
kernel memory or injecting malicious code to kernel by exploiting the vulnerabil-
ities of benign kernel code. These attacks have been well addressed by previous
rootkit prevention systems [31][32].

3 On-demand Emulation

Virtual Machine Monitors (VMM) and emulators are two types of hypervisors
that support and manage multiple virtual machines (VM). A VMM seeks to
achieve high performance by directly executing most instructions of a VM on the
host (physical) CPU. In contrast, an emulator translates each VM’s instruction
to host instructions so to provide different types of virtual CPUs to its VMs,
paying the cost of poor performance. Due to their deep inspection capabilities,
some researchers use emulators to perform various security related tasks, e.g.
malware detection and analysis.

DARK is a hybrid system that combines the strengths of VMMs and emulators
to offer better system security and performance. It contains three components:
a VMM, an emulator and a virtual machine (VM) where a guest OS is installed.
In virtualization mode, the virtual machine runs on top of the VMM to gain
nearly native speed. When a suspicious module is to be executed in the VM, the
VMM is informed to take control of the VM. Then, the VMM collects the virtual
CPU state and MMU status data, and sends them to the emulator. Thus, DARK
is switched to emulation mode. Once receiving the VMM’s virtual CPU state,

Shepherding Loadable Kernel Modules through On-demand Emulation 53

the emulator restores the VM’s operation and start monitoring the module’s
activities and enforcing the security policies accordingly. When the execution of
the module’s code is completed, the emulator suspends the VM and passes its
control back to VMM with the current virtual CPU state and MMU status data.
The VMM restores the VM and DARK is switched to virtualization mode. The
emulation is required only when the target module is executed, and most of VM
codes still run on VMM.

3.1 Design

The primary task of the on-demand emulation is to trap the module execution in
a VM. However, a module may have many non-privilege instructions and their
executions in a VM cannot trigger exception or interrupt, which is the only
way of transferring the control from VM to VMM in a virtual machine system.
DARK addresses this problem by exploring the paging mechanism of operating
systems. A present bit in the page table entry indicates whether a virtual page
has been assigned a physical page frame. When the CPU accesses a virtual page
whose present bit is 0, memory management unit (MMU) generates a page fault.
Then, an interrupt routine is invoked to allocate a physical page frame and copy
the page data from the swap area or disk file (demand paging) to this physical
page frame. As Linux never swaps kernel codes to disk, the present bits of kernel
code pages are always set to 1. DARK can trap a module by clearing the present
bits of its code pages in the virtualization mode. Later, when the module is to
be executed, VM issues a page fault. Thus, the VMM of DARK intercepts the
exception and passes the control to emulator, who sets those present bits back
to 1 and starts executing and monitoring the module in the emulation mode.
To maintain the integrity of the existing page fault mechanisms, the page fault
handler of guest OS should be modified to properly deal with these manipulated
page faults.

Before loading a module to guest OS, the DARK user decides whether to
monitor the module or not. If yes, the emulator is notified of the module name.
To change the present bits of the module before its execution, the guest OS
issues a software interrupt through instruction ”int 0x90”. The VMM catches
the interrupt, and hand it over to the emulator. Then, the emulator fetches
the module name from the VM image and compares it with the one defined
by DARK user to decide if the current module is right target. If two names
are different, DARK gives up monitoring and switches back to virtualization.
Otherwise, DARK kicks off the monitoring with the following steps. First, the
emulator queries the text (code) range of the target module from the module list
of the guest OS, and sends it to the VMM. Then, it clears the module present
bits and transfers the control to VMM, forcing the system into the virtualization
mode. Later, when the module is to be executed, the VM generates a page
fault, which is trapped to the VMM. The VMM uses the text range of the
module to identify that the faulty instruction comes from the target module,
and transfers the VM control to emulator. After setting the module present
bits to 1, emulator restores the VM sessions and starts the monitoring process

54 C. Xuan, J. Copeland, and R. Beyah

Fig. 2. Partial on-demand emulation process

again. In this way, DARK moves the VM control between VMM and emulator
back and forth depending on if the VM executes module code. Figure 2 depicts
this on-demand emulation process. When the module is unloaded, DARK turns
off on-demand emulation by cleaning up their monitoring records and set the
corresponding present bits in the VM to 1.

3.2 Implemenation

DARK is built on Qemu and Kqemu [12], who run on any X86 CPU regardless
of the hardware virtualization support. Both the guest OS and the host OS are
Redhat Linux. Qemu is a hardware emulator that uses binary translation to sim-
ulate processor and peripherals, while maintaining a reasonable speed. Kqemu is
a kernel module that works with Qemu to provide virtual machine monitor func-
tion. In the full virtualization mode of a Qemu/Kqemu system, all user-mode
instructions and some kernel-mode instructions of a VM can be directly executed
on the host CPU. For security reason, the kernel-mode instructions for memory
accesses in the VM have to be intercepted and interpreted by Kqemu. This is
done by clearing the global descriptor table (GDT) and local descriptor table
(LDT) when VM runs in kernel mode. Thus, any kernel-mode memory access in
the VM will cause a general protection fault. Kqemu captures these faults and
interprets the instructions in the kernel. Because Kqemu needs Qemu to handle
some corner cases such as interpreting HLT instruction, some components of
the on-demand emulation framework are already available in orginal Qemu and
Kqemu software. To enable the module tracking, DARK modifies the switch con-
trol code of the existing on-demand emulation framework. In particular, DARK
adds the following business logics to the interrupt handler and V-to-E (virtual-
ization to emulation) control code (in common/module.c and common/kernel.c)
of Kqemu:

Shepherding Loadable Kernel Modules through On-demand Emulation 55

1. If an interrupt vector number is 0x90 or 0x91, perfom emulation switching
2. For a page fault, if the faulty instruction address is within the text range of

target module, perfom emulation switching.

Moreover, we add one boolean variable to Qemu’s E-to-V (emulation to virtu-
alization) control code to ensure that virtualization switch is disabled when the
current instruction is from the target module and vice versa.

In addition, we instrument the guest OS kernel (Linux version 2.4.18):
adding two assembly instructions to sys_init_module and sys_delete_module
functions in kernel/module.c. The first instruction issues a software interrupt
0x90 before loading a module; the second one issues the interrupt 0x91 after
unloading a module. DARK obtains a module name by reading the module de-
scriptor from the kernel module list. Further, we modify the Linux module loader
(insmod.c) to put the module text range in the runsize and kernel_data fields
of the module descriptor, which allows DARK to read the text range later. In
Linux, all processes share one kernel page table that can be accessed from the
kernel master page global directory swapper_pg_dir. We use this global variable
to locate the page table entries of the target module and rewrites the module
present bits as described in Section 3.1. Last, we alter the page fault handler of
the guest OS such that it ignores the page faults caused by the target module
execution.

4 Security Policy

DARK does not aim to build perfect security policies to catch all rootkits. In fact,
modern operating systems are not designed to be traceable and verifiable, so the
creation of such ”perfect” policies may be impossible. Rather, similar to SELinux
[30], DARK provides a policy framework that gives security administrators the
flexibility to write their own security policies. To demonstrate the effectiveness of
DARK, we compose a group of security policies that are good enough to detect
most existing Linux rootkits and raise the bar for future kernel exploits.

4.1 Policy Framework

DARK treats the rootkit detection as an access control problem: a malicious
module needs to illegally access the other part of kernel to perform the attack.
DARK’s security policy is composed of a group of access control rules whose
format is given in table 1.

In table1, subject is a kernel module that is to be monitored. A module’s
home space contains: object (code and global data) section, stack and heap.
Any instruction issued from a module space is regarded as a representative of
this module, and should be monitored. Note DARK can apply various policies
to different modules, which is discussed later. Operation indicates the way that
a module interacts with the rest of kernel. DARK tracks three types of opera-
tions performed by a module: read, write and call. First two are memory access

56 C. Xuan, J. Copeland, and R. Beyah

Table 1. Rule format of Dark

Subject Operation Object Action

{module a, b, c
. . . } {read, write, call} {hardware objects, kernel

objects} {reject, alarm}

operations; call is an action where a module invokes functions exported by OS
and other modules. Although a module may influence the kernel objects in other
means, e.g., return of an external call, creating a system exception, these three
operations are sufficient for DARK to detect the rootkits we know.

Object refers to those system resources and services accessed by a module.
Two types of system objects are included in DARK: hardware objects and ker-
nel objects. The former contains dedicated registers, IO ports and IO mapped
memory. Many of these hardware objects are crucial to system security. For ex-
ample, the register IDTR holds the linear address of interrupt descriptor table
which is used by CPU to transfer an interrupt to the corresponding Interrupt
handler. Hijacking this register allows hacker to amount various attacks, e.g.,
installing a virtual-machine-monitor based rootkits [13][14]. Kernel object is
a software concept, and one kernel object is a group of kernel data or code that is
semantically meaningful to software developer such as a pointer and a function.

In DARK, a policy rule that contains a hardware object is called system rule;
a rule whose object field is a kernel object is called kernel rule. A hardware object
that has only one representation in DARK, and it may be a register name, or
IO port number or memory address. One kernel object has two representations:
one is software-level representation such as variable names and function names,
which is used by DARK users to make policies; the other is hardware-level rep-
resentation and it is a memory address of the corresponding software object.
Since DARK enforce policy at hardware level, fore a kernel rule, it’s necessary
to translate its software-level representation to the hardwarelevel representation,
which is called policy translation.

DARK’s kernel rules may contain both static kernel objects and dynamic
kernel objects. A static kernel object’s memory address is determined when the
kernel is build, so this object’s location is fixed all the time, e.g., system call
table. Conversely, a dynamic kernel object’s location can only be decided at run
time, e.g., a process’ page table. A kernel rule containing a static object is called
static kernel rule; a kernel rule containing a dynamic object is called dynamic
kernel rule. Unlike static kernel rules whose policy translation can be performed
before a VM is powered on, policy translation of the dynamic kernel rules has
to be postponed to run time.

DARK takes two actions on a policy violation: reject and alarm. Reject de-
notes that DARK immediately stops executing the target module and prevents
any further damages. In Linux, removing a module is more complex and risky
than deleting a process from the system, and the former can corrupt the OS’s
operation integrity and reliability. Current implementation of reject action ter-
minates the VM, and writes a warning message to a log file on the host OS.

Shepherding Loadable Kernel Modules through On-demand Emulation 57

Granular failure remediation is of the future work. DARK’s alarm action only
requires generating the logging messages instead of turning off the whole system.
Determination of a reject or alarm action for a rule is based on the consider-
ation of multiple factors: severities to system security, reliability and stability.
For those attacks that not only compromise the security but also greatly degrade
the system reliability and satiability, reject should be the choice, e.g., runtime
patching of the kernel text; For other attacks, terminating the current system
operation is not necessary, and alarming is probably sufficient such as sniffing
network traffics.

4.2 Established Rules

DARK’s policies are constructed based on common knowledge of the OS security
and observation of attack patterns of the existing rootkits. Total 19 kernel rules
were created and shown in table 2. Among them, four read rules and one call rule
are used to address the data theft rootkits as discussed in 2.2. The remaining
14 write rules deal with kernel integrity. Eleven dynamic rules employ seven
global variables as the starting points of policy translation. Among them, six
global variables are single/double linked lists and the other one (proc_root) is
associated with binary tree data structure. Note these global variables should be
write-protection as well. Otherwise, rootkits may modify the variables to hinder
the policy translation. We found that early-stage rootkits tend to manipulate the
static kernel objects such as system call table and kernel text. These objects are
critical to the system reliability and stability, any illegal modification of them
should be rejected at once. Kernel objects contained in Rule 5 and 17 are such
examples. On the other hand, some kernel rules are devised to counter the threats
in the future, while not being hit by any existing Linux rootkit. For example, it
has been reported that some Windows rootkits tamper with the kernel memory
management system to hide some kernel objects. It can be foreseen that hackers
may apply the same technique to Linux rootkits down to the road. Rule 6 and
10 are designed to achieve such purpose. Rule 9 and 16 in table 3 are optional,
because many normal networking drivers may violate them and enforcing these
rules possibly generates false alarms. The usages of optional rules depend on
user’s knowledge to the target modules. In addition to kernel rules, we created
11 system rules, and most of them are applied to special system instructions
that handle critical system-level functions, e.g., SGDT and WRMSR.

5 Enforcement

DARK stores the security rules to a local file called policy.dat. This file contains
the system rules, static kernel rules and software-level dynamic rules. When a
VM is started, DARK forks a thread that performs three tasks: 1. loading the
policy.dat to the RAM; 2. periodically translating dynamic kernel rules to the
hardware-level representation; 3. transforming all memory-access rules to the hash-
table based rules as discussed in Section 5.1. This thread stores all the rules in
several global variables, which are used to enforce the policy at run time.

58 C. Xuan, J. Copeland, and R. Beyah

Table 2. Kenrel Rules of Dark

ID Name Operation Kernel Object Data Type Action Dynamic Optional

1
Console
TTY
Buffer

Read console_table tty_struct Alam No No

2
Exception
Table

Write __start_ext__table Exception_table_entry Alarm No No

3
GDT Ta-
ble

Write gdt_table Array Reject No No

4
IDT Ta-
ble

Write idt_table Array Reject No No

5
Kernel
Text

Write _text N/A Reject No No

6 MM List Write init_task mm_struct Alarm Yes No

7
Module
List

Write module_list Module Alarm Yes No

8
Module
Text

Write module_list N/A Reject Yes No

9
Netfilter
Hooks

Call nf_rejister_hook N/A Alarm No Yes

10
Page Ta-
ble

Write init_task N/A Reject Yes No

11
Proc Dir
Entry
List

Write proc_root proc_dir_entry Alarm Yes No

12
Proc Inod
Ops List

Write proc_root proc_inode_operation Alarm Yes No

13
Proc file
Ops List

Write proc_root Proc_file_operation Alarm Yes No

14
PTM
TTY
Buffer

Read ptm_table tty_struct Alarm Yes No

15
PTS
TTY
Buffer

Read ptm_table tty_struct Alarm Yes No

16
Socket
Buffer
List

Read skbuff_head_cache sk_buff Alarm yes Yes

17
Syscall
Table

Write syscall_table Array Reject No No

18 Task List Write init_task task_struct Alarm Yes No

19
Task
State
Segment

Write init_tss Array Reject No No

Shepherding Loadable Kernel Modules through On-demand Emulation 59

When a suspicious module is to be executed, the emulator takes control of the
VM and begins policy enforcement. Concretely, DARK intercepts all memory ac-
cess instructions and some system instructions at the binary translation of Qemu.
Note an alternative method is to change the Qemu’s simulated MMU to capture
the memory accesses. However this method cannot enjoy the benefit of code caching
and suffers more performance penalty. For each of the monitored instructions,
DARK checks the corresponding rules. If an instruction hit a rule, DARK takes
the action defined in the rule. For alarm, DARK writes one warning messages to
the system log on the host machine. The message includes the module name, the
instruction’s address and the rule id. For reject, DARK generates an alarm and
then power off the VM by terminating the current Qemu process.

5.1 Hash Table

The data structures that hold memory access rules should be selected pruden-
tially, as inappropriate data structure might hurt system performance. DARK’s
memory access rules are initially defined as a series of memory intervals. One
memory interval, like (0xC03254fa, 0xC03256a0), is called one memory bucket.
Some dynamic rules, like socket buffer descriptors, comprise a large amount of
memory buckets. If they are stored in linked lists, DARK needs traverse thou-
sands of memory buckets (with various sizes) to inspect one instruction in linear
time of n. We present a data transformation method that converts a link list of
memory buckets to two hash tables. Since hash table lookups have the complex-
ity of O(1), it can significantly reduce the enforcement overhead.

Similar to the OS concept of a 32-bit page frame, DARK uses 10-bit and 5-bit
page frames in the transformation. The memory interval of a bucket is broken
into multiple 10-bit or 5-bit page frames and each page frame has one entry in a
hash table. Two hash tables stores 10-bit and 5-bit page frame rules respectively.
Figure 3 lists the C implementation of the converting routine. The selection of
10 and 5 bit page frames is based on the observation that most memory buckets
created by DARK are either large (at the page level) or small (less than 200
bytes). This division ensures that each hash table is not overwhelmed due to the
hash conflictions. Given a target memory address, DARK first computes its 5-bit
page frame address by removing last 5 bit of the memory address, and searches
the frame address from the 5-bit hash table; if not found, it then does the same
check for 10-bit hash. Thus, only two bit operations and two hash table lookups
are needed at most.

5.2 Code Cache

To reduce the emulation overhead, DARK takes advantage of the performance
optimization in Qemu. The key technique is to cache the translated code se-
quences so that they can be directly executed in the future. Each sequence of
instructions ending with a single control transfer instruction is called a block.
Qemu translates a block in each main control loop and places the translated
block to a code cache. All the translated blocks are organized as a hash table
and a cached block can be found fast. A block can be linked to another one if

60 C. Xuan, J. Copeland, and R. Beyah

Fig. 3. Source code of the memory bucket transformation routine

it does not contain the indirect branches, avoiding the extra loop cost. DARK
only performs the security check at binary translation, so once a block of code is
put into the cache, DARK does not examine it any more. Finally, when the code
cache is full, Qemu simply purges all blocks in the cache and refills the cache
with new blocks. Since DARK’s emulator only caches small-size module code,
the chance of overflowing the cache is small.

5.3 Security Log

DARK provides the logging capability that keeps record of the interactions be-
tween a module and the rest of the kernel. The log includes: memory write and
read, function call and IO operations. For memory read and write, DARK prints
out the instruction address, and target memory address and content. For func-
tion invocation, DARK records the function address, calling instruction address,
the first two parameters and return value of the function. However, parameter
semantics of a function are unknown, so DARK logs the first 16 bytes in the stack
parameter area of the function. Note that DARK only logs the external memory
accesses and function invocation. In addition, we create a tool that interprets
log records, identifies all heaps that are assigned to the module, and removes
them from the log. Combining this logging capability with Qemu’s snapshot can
provide the abundant data sources for forensic analysis.

6 Evaluation

This section presents the empirical results of the DARK system. The evaluation is
composed of two subsections. In the first subsection, the functional effectiveness

Shepherding Loadable Kernel Modules through On-demand Emulation 61

of DARK is investigated: whether the security policies are made properly in terms
of false positive and false negative detection rates. Then, we conduct the perfor-
mance evaluation and study the performance impact of on-demand emulation on
the VM. DARK is built based on the QEUM 0.8.2 and KQEMU 1.3.0prell. All the
experiments are performed on a Dell machine with Intel P4 CPU (2.8 GHz) and 1
GB RAM. The host OS is Fedora Core 5.0 and the guest VM was assigned 256M
RAM and 6G hard drive; Guest OS is Red Hat Linux 8.0 with 2.4.18-14 kernel.

6.1 Security

Beside the classification of rootkits given by [7], Petroni [5] classified the rootkits
according to their intentions: user-space object hiding (HID), privilege escalation
(PE), reentry/backdoor (REE), reconnaissance (REC), and defense neutraliza-
tion (NEU). In this experiment, we collect 18 rootkits that cover a wide range
of attacks. Among them, there are 10 type I rootkits, 8 type II rootkits, 8 HID
rootkits, 7 PE rootkits, 3 REE rootkits, 5 REC rootkits and 3 NEU rootkits.
In addition, one rootkit from [15] is devised to attack the hardware resources
(system BIOS). Unfortunately, the Qemu’s BIOS is not updatable, so the rootkit
cannot be successfully installed to the test VM. The other 17 rootkits are listed
in table 6. A rootkit may have several operation modes and different modes may
use different attack tactics. For example, with the technique described in [16],

Table 3. Detection Result of Dark

ROOTKIT
FUNCTION

TYPE
HIT KERNEL RULES

ACTION
HID PE REE REC NEU Load Operation

Adore X X I 17 18 Reject

Adore-ng X X X II 7,12,13 18 Alarm

Adore-ng(hidden) X X X II 7,12,13 18 Alarm

Darklogger X II 15 Alarm

Exception X X I 2 18 Reject

fileh-lkm X I 17 Reject

Hookstub X I 4 18 Reject

Hp X X II 18 7,12,13 Alarm

KIS X X I 17 Reject

Knark X X X I 17 18 Reject

Linspy2 X I 16 Reject

Nfsniffer X II 9 16 Alarm

Nushu X II 16 Alarm

Pizzaicmp X II 9 16 Alarm

Prrf X X II 11,12,13 18 Alarm

Sebek X I 7,17 Reject

Srookit X I 5 Reject

Vologger X I 17 14 Reject

Vologger(local) X II 1 Alarm

62 C. Xuan, J. Copeland, and R. Beyah

Adore-ng can optionally hide itself into a benign module, forming a ”combo”
module. We test the regular Adore-ng and hidden Adore-ng separately. To com-
prehensively understand the rootkits’ behavior, we run several Linux utilities
like ls, ps, netstat and ssh to verify whether a rootkit works as expected after
its installation. Moreover, when a rootkit violates a reject rule, we intentionally
instruct DARK not to shutdown the guest VM and make the rootkit continue
to run until all testing utilities are finished. Thus, we can catch all security rules
that the rootkit hits.

The test result in table 3 suggests that DARK is able to detect all the rootkits
with the security rules in table 3. Some rootkits violate multiple rules at the
loading stage and operation stage. System call table (rule 17) and task list (rule
18) are primary kernel objects that rootkits target on. Several type I rootkits
hijack system call table to hide user-space objects or steal private data. IDT table
and kernel exception table are another two static kernel objects that the rootkits
tamper with in the test. To type II HID rootkits, proc file system provides
exploitable kernel objects that are alternatives to system call table: two such
rootkits (adore-ng and prrf) alter the relevant data objects of the proc system
to hide processes and network connections. All the PE rootkits modify the user
id and group id in the task_struct objects to raise a process’ privilege level.
Another observation is that all rootkits are captured at the loading stage except
the Darklogger and Nushu. As we pointed out before, Darklogger is a non-
integrity-violation rootkit and does not illegally change any kernel object in the
kernel. It just creates a kernel thread and initializes some data structures at
the loading stage. Yet, its reading of the PTS buffer is caught by DARK at the
operation stage. Nushu manipulates the packets from/to local network adapters
by indirectly registering hooks to the kernel through the function dev_add_pack.
Because this function is not defined in table 3, Nushu escapes the loading-stage
inspection. But DARK detects the intrusion when it reads socket buffers at the
operation stage. Note that powerful kernel integrity verifiers are still likely to
catch the Nushu due to its hooking behavior.

In the experiment, Adore-ng is embedded in the module iptables_filter
to create a combo module. By comparing the hidden Adore-ng with the regular
Adore-ng, we find that they hit the same set of rules. However, the combo module
can not be unloaded from the kernel even after we flush the iptable rules and
stop the iptable service. After further investigation, we found the reason. Both
hidden Adore-ng and the regular Adore-ng modify the kernel module list, which
is a list of module objects. The regular Adore-ng changes the next fields of the
previous and next module objects with the purpose of hiding itself, while the
combo module alters the uc.usecount field of the current module object to
persist its existence in the kernel. Vlogger is also tested in two operation modes.
Although the regular mode offers more powerful features than local mode, the
latter turns out to be stealthier: it only alters the dynamic kernel objects and is
a type II rootkit.

To estimate the false positive rate of the detection system, we choose 7 cate-
gories and total 20 drivers from the Linux source, and execute them in the DARK

Shepherding Loadable Kernel Modules through On-demand Emulation 63

system. When we test the network drivers, we deactivate the optional rules 9
and 16 to avoid the false alarms. The test result indicates that 19 of 20 drivers
pass the test. The failed module is jdb and it is a journaling block device driver
used by Ext3 file system for data recovery. This driver alters the journal_info
filed of two process’ task_struct objects, leading to the violation of rule 18.
This false alarm implies that the rule 18 is too restrictive and should be revised
to only include the sensitive fields that task list members. But, on the other side,
this violation does not incur the system termination and we believe that overall
quality of the security rules is good.

6.2 Performance

Performance evaluation is intended to measure the impact of on-demand emu-
lation on overall system performance. The module iptable_filter from Linux
source is chosen to be monitored. First, this module operates at the kernel net-
work stack, which is one of major attacking targets of rootkits. Second, running
this module in emulation mode is expected to only degrade the performance of
the network subsystem in the kernel, and other subsystems should not be af-
fected. Iptable_filter registers three hooks to netfilter and applies the iptable
rules to network traffics at three guarding points of the netfilter: input, output
and forward. We write a number of input and output iptable rules and neither
of them actually blocks the network traffics during the test. Three benchmarks:
bonnie [17], iperf [18] and lmbench [19], are performed to examine the perfor-
mance of disk IO, network IO and the entire system respectively.

Comparing with VMM-only system (pure virtualization system), DARK’s over-
head comes from on-demand emulation, which is composed of two parts: 1. Con-
text switch between virtualization and emulation; 2. Execution overhead in em-
ulator, including binary translation, policy enforcement and execution of trans-
lated code sequences. To identify the contribution of each part to the overall cost,
we devise another test system: DARK-CS. It does the context switch from vir-
tualization to emulation when an iptable_filter function starts to run. Then,
emulator returns the control back to VMM immediately and the iptable_filter
function is actually executed over VMM. Therefore, context switch between vir-
tualization and emulation is the only overhead of DARK-CS. In the experiment,
we run each benchmark in DARK, DARK-CS and VMM-only system.Table 4
shows the test result of bonnie. It’s observed that the three systems have little

Table 4. Bonnie test result for 100 M files

SEQUENTIAL OUTPUT SEQUENTIAL INPUT — RANDOM

Per Char block Rewrite Per Char block Seeks

K/Sec %CPU K/Sec %CPU K/Sec %CPU K/Sec %CPU K/Sec %CPU /Sec %CPU

VMM 8528 64 12755 45 19082 53.0 15805 75 129292 71 3515 84

DARK-CS 8038 61 11715 41 17402 48.2 16860 80 130266 74 4969 85

DARK 8168 67 13949 43 18742 49.8 14480 73 125493 72 5117 83

64 C. Xuan, J. Copeland, and R. Beyah

Table 5. Bonnie test result for 100 M files

VM as Server (M/Sec) VM as Client (M/Sec)
TCP UDP TCP UDP

VMM 21.81.2 1.050.1 26.82.3 1.130
DARK-CS 19.730.5 1.010 23.991.4 1.080.1
DARK 19.600.6 1.000.1 24.051.0 1.080.1

performance difference when running bonnie. This is because bonnie just accesses
the files on disk and iptable_filter is not being executed. Bonnie’s test result
suggests that DARK’s overall performance is same as VMM-only system when
on-demand emulation doesn’t take place.

The iperf test result in table 5 reveals the impact of on-demand emulation
on overall system performance. TCP and UDP throughputs of DARK-CS are
slightly (about 10%) lower than VMM-only’s, which indicates that the overhead
of context switching is non-negligible but not significant. CPU state transfer-
ring, shadow page table synchronization and page fault handling are three main
components of context switching in DARK. However, It is still unknown which
component should take the responsibility of performance penalty at the moment.
Further, it seems that neither component has much room left for performance
improvement. Table 5 also suggests that DARK and DARK-CS have indistin-
guishable TCP and UDP throughputs. This result can be explained by the code
caching technique introduced in section 5.2: to a block of module code, binary
translation and policy enforcement are performed only at the first time this block
of code is executed, and its translated code sequence in the code cache plays the
primary role of deciding the performance in the long run. So code caching is
effective to reduce the emulation overhead. We also did the performance test
with the Lmbench, and test result confirmed the conclusions we draw above. We
can not present the test result under the space constraint.

7 Related Work

Ho [20] proposed the concept of On-demand Emulation that can be used to solve
the security problems. His system modified the emulator’s hardware support to
enable the data tainting at the system level. The system was built on Qemu and
Xen VMM, and its main application is prevention of malicious code injection
by tracking data received from the network as it propagates through the target
VM. DARK does not tamper with any VM’s hardware setting, and focuses on
kernel rootkit detection.

Kernel Integrity Verification [4][5][21][22][24][37] is one popular rootkit de-
tection approach that follows the spirit of Tripwire [23] in protecting the file
systems. It builds a baseline database for the measurable objects (e.g., text,
static data) of the target guest and periodically queries current states of those
measurable objects to detect intrusions by comparing them with the baseline
database. As we mentioned before, these integrity verification methods suffers

Shepherding Loadable Kernel Modules through On-demand Emulation 65

dealing with dynamic kernel objects and are also incapable of detecting non-
integrity-violation rootkits.

Kruegel [27] and Limbo [26] use static and dynamic program analysis tech-
niques to inspect the innocence of a driver off-line. Similar to DARK, both
systems create a group of security policies and monitor module behavior. How-
ever, they are not run-time rookit detection system, so they suffer fundamental
hurdles to static and dynamic program analysis, e.g., code obfuscation, or inac-
curate and incomplete analysis result. HookFinder [38] and HookMap [39] are
two systems that explore hooking behavior. The former employs the dynmic
data tainting to caputer the hooks implanted by rookits, and the later uses the
data slicing to identify all potential hooks on the kernel-side execution paths of
testing programs such as ls, and netstat.

SecVisor [31] and NICKLE [32] are two rootkit prevention systems that rely
on trusted VMM to enforce life-time kernel integrity. A trusted VMM ensures
that only authenticated code can execute in kernel mode, which is a stronger se-
curity property than Vista’s driver signing. Both systems can protect kernel from
code injection attacks including zero-day kernel exploits. DARK is intended to
handle the unauthenticated drivers. As long as these drivers follow the behavior
specification (security policies) defined in DARK, they are allowed to run in the
kernel. So, DARK is an enhancement to the existing prevention solutions.

8 Conclusion

In this paper, we presented a rootkit prevention system to dynamically moni-
tor a suspicious module using on-demand emulation. In addition, we develop a
group of security rules to effectively detect rootkits that we gathered, which was
demonstrated in the security evaluation. In the end, we show that the perfor-
mance of a VM is not affected for the majority of system operations. Context
switches between emulator and VMM slightly decrease the system performance.

References

1. Rutkowska, J.: Subverting Vista Kernel for Fun and Profit (2006),
http://www.invisiblethings.org/papers.html

2. Garfinkel, T., Rosenblum, M.: AVirtual Machine Introspection Based Architec-
ture for Intrusion Detection. In: Proceedings of the Symposium on Network and
Distributed System Security, NDSS (2003)

3. Zhang, X., van Doorn, L., Jaeger, T., Perez, R., Sailer, R.: Secure Coprocessor-
based Intrusion Detection. In: Proceedings of the ACM SIGOPS European Work-
shop (2002)

4. Petroni, N.L., Fraser, T., Molinz, J., Arbaugh, W.A.: Copilot - a Coprocessor-
based Kernel Runtime Integrity Monitor. In: Proceedings of the USENIX Security
Symposium (2004)

5. Petroni, N.L., Hicks, M.: Automated Detection of Persistent Kernel Control-Flow
Attacks. In: Proceedings of the ACM Conference on Computer and Communica-
tions Security, CCS (2007)

http://www.invisiblethings.org/papers.html

66 C. Xuan, J. Copeland, and R. Beyah

6. Jiang, X., Wang, X., Xu, D.: Stealthy Malware Detection through VMM-Based
”Out-of-the-Box” Semantic View Recontruction. In: Proceedings of the ACM Con-
ference on Computer and Communications Security, CCS (2007)

7. Rutkowska, J.: Introducing Stealth Malware Taxonomy (2006),
http://www.invisiblethings.org/papers.html

8. Baliga, A., Kamat, P., Iftode, L.: Lurking in the Shadows: Identifying Systemic
Threats to Kernel Data. In: Proceedings of IEEE Symposium on Security and
Privacy (2007)

9. BroFrancis, M.D., Ellick, M.C., Jeffery, C.C., Roy, C.: Cloaker: Hardware Sup-
ported Rootkit Concealment. In: Proceedings of IEEE Symposium on Security
and Privacy (2008)

10. Heasman, J.: Implementing and Detecting a PCI Rootkit. Technical report, next
Generation Security Software Ltd. (November 2006)

11. Heasman, J.: Implementing and Detecing an ACPI BIOS Rootkit. In: Black Hat
Europe, Amsterdam (March 2006)

12. Bellard, F.: Qemu and Kqemu (2008), http://fabrice.bellard.free.fr/qemu/
13. King, S.T., Chen, P.M., Wang, Y.M., Verbowski, C., Wang, H.J., Lorch, J.R.:

SubVirt: Implementing malware with virtual machines. In: Proceedings of the IEEE
Symposium on Security and Privacy, Washington, DC, USA, pp. 314–327. IEEE
Computer Society, Los Alamitos (2006)

14. Blue Pill, http://bluepillproject.org/
15. Scythale. Hacking deeper in the system, http://www.phrack.com/
16. Truff. Infecting Loadable Kernel Module, http://www.phrack.com/
17. Bonnie, http://www.textuality.com/bonnie/
18. Iperf, http://dast.nlanr.net/Projects/Iperf/
19. McVoy, L.W., Staelin, C.: Lmbench: Portable Tools for Performance Analysis. In:

Proceedings of the USENIX Annual Technical Conference, pp. 279–294 (1996)
20. Ho, A., Fetterman, M., Clark, C., Warfield, A., Hand, S.: Practical Taint-

Based Protection using Demand Emulation. In: Proceedings of the ACM
SIGOPS/EuroSys European Conference on Computer Systems (2006)

21. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer: Verify-
ing Code Integrity and Enforcing Untampered Code Execution on Legacy Systems.
In: Proceedings of the ACM Symposium on Operating systems Princeiples, SOSP
(2005)

22. Microsoft. Windows Kernel Patch Protection (2008),
http://www.microsoft.com/whdc/driver/kernel/64bitpatching.mspx

23. Kim, G., Spafford, E.: The Design and Implementation of Tripwire: A File system
Integrity Checker. Technical report, Purdue University (1993)

24. Petroni, N.L., Fraser, T., Walters, A., Arbaugh, W.A.: An Architecture for
Specification-Based Detection of Semantic Integrity Violations in Kernel Dynamic
Data. In: Proceedings of the USENIX Security Symposium (2006)

25. Wang, Y.M., Beck, D., Vo, B., Roussev, R., Verbowski, C.: Detecting Stealth Soft-
ware with Strider GhostBuster. In: Proceeding of International Conference on Den-
pendable Network Systems, DSN (2005)

26. Wilhelm, J., Chiueh, T.: A Forced Sampled Execution Approach to Kernel Rootkit
Identification. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 219–235. Springer, Heidelberg (2007)

27. Kruegel, B.C., Robertson, W., Vigna, G.: Detecting Kernel-Level Rootkits Through
Binary Analysis. In: Proceedings of the 20th Annual Computer Security Applica-
tions Conference, ACSAC (2004)

http://www.invisiblethings.org/papers.html
http://fabrice.bellard.free.fr/qemu/
http://bluepillproject.org/
http://www.phrack.com/
http://www.phrack.com/
http://www.textuality.com/bonnie/
http://dast.nlanr.net/Projects/Iperf/
http://www.microsoft.com/whdc/driver/kernel/64bitpatching.mspx

Shepherding Loadable Kernel Modules through On-demand Emulation 67

28. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. Addison-Wesley
Professional, Reading (2005)

29. Kiriansky, V., Bruening, D., Amarasinghe, S.P.: Secure execurtion via program
shepherding. In: Proceedings of the USENIX Security Symposium (2002)

30. Security-Ehanced Linux, http://www.nsa.gov/selinux/
31. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A Tiny Hypervisor to Guar-

antee Lifetime Kernel Code Integrity for Commodity OSes. In: Proceedings of the
ACM Symposium on Operating Systems Principles, SOSP (2007)

32. Riley, R., Jiang, X., Xu, D.: Guest-Transparent Prevention of Kernel Rootkits with
VMM-based Memory Shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

33. Windows Vista Security Blog,
http://blogs.msdn.com/windowsvistasecurity/archive/2007/08/16/

driver-signing-kernel-patch-protection-and-kpp-driver-signing.aspx

34. Windows Driver Signing, http://www.microsoft.com/
35. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: VMM-based hidden pro-

cess detection and identification using Lycosid. In: Proceedings of the 4th Interna-
tional Conference on Virtual Execution Environments (VEE) (March 2008)

36. Litty, L., Lagar-Cavilla, H.A., Lie, D.: Hypervisor Suppot for Idnetifying Covertly
Executing Binaries. In: Proceedings of the USENIX Security Symposium (2008)

37. Baliga, A., Ganapathy, V., Iftode, L.: Automatic Inference and Enforcement of
Kernel Data Structure Invariants. In: Proceedings of the 24th Annual Computer
Security Applications Conference, ACSAC (2008)

38. Yin, H., Liang, Z., Song, D.: Hookfinder: Identifying and understanding malware
hooking behaviors. In: Proceeding of the Annual Network and distributed System
Security Symposium, NDSS (2008)

39. Wang, Z., Jiang, X., Cui, W., Wang, X.: Countering Persistent Kernel Rootkits
Through Systematic Hook Discovery. In: Lippmann, R., Kirda, E., Trachtenberg,
A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 21–38. Springer, Heidelberg (2008)

http://www.nsa.gov/selinux/
http://blogs.msdn.com/windowsvistasecurity/archive/2007/08/16/driver-signing-kernel-patch-protection-and-kpp-driver-signing.aspx
http://blogs.msdn.com/windowsvistasecurity/archive/2007/08/16/driver-signing-kernel-patch-protection-and-kpp-driver-signing.aspx
http://www.microsoft.com/

	Shepherding Loadable Kernel Modules through On-demand Emulation
	Introduction and Background
	Limitations of Rootkit Detection Techniques
	Dynamic Kernel Objects
	Non-integrity-violation Rootkits

	On-demand Emulation
	Design
	Implemenation

	Security Policy
	Policy Framework
	Established Rules

	Enforcement
	Hash Table
	Code Cache
	Security Log

	Evaluation
	Security
	Performance

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

