@Article{Hong2018, author="Hong, Zhen and Shao, Qian and Liao, Xiaojing and Beyah, Raheem", title="A secure routing protocol with regional partitioned clustering and Beta trust management in smart home", journal="Wireless Networks", year="2018", month="Dec", day="15", abstract="With the emergence of the Internet of Things (IoT) in recent years, the security has been significantly called more and more people's attention on wireless communication between the devices and the human-beings, as well as the devices to devices. Smart home (SH), as a small-scale example of the smart application-based field, has benefited from the concept of IoT since it uses an indoor data-centric sensor network. In SH, routing schemes are widely utilized for data aggregation purposes. However, there are three main issues, which can considerably affect the current execution of routing protocol in SH: (1) lack of technical methods for precisely regional division of the network, (2) the difficulty of differentiating data among various functional regions, and (3) the vulnerability of network with advanced internal routing attacks. To address the aforementioned issues, in this paper, a two-layer cluster-based network model for indoor structured SH and a novel Beta-based trust management (BTM) scheme are proposed to defend various types of internal attacks by integrating the variation of trust value, threshold, and evaluation. The proposed structure forms a secure hierarchical routing protocol called SH-PCNBTM to effectively support the data transmission service in SH networks. The performance of SH-PCNBTM is thoroughly evaluated by using a set of comprehensive simulations. We will show that the proposed routing protocol not only ensures the even distribution of cluster-heads in each sub-region, but it also identifies and isolates the malicious sensor nodes accurately and rapidly compared with other trust-based hierarchical routing protocols.", issn="1572-8196", doi="10.1007/s11276-018-01916-1", url="https://doi.org/10.1007/s11276-018-01916-1" }