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Abstract—Social networks are important mediums for
spreading information, ideas, and influences among individuals.
Most of existing research work focus on understanding the
characteristics of social networks, investigating spreading infor-
mation through the “word of mouth” effect of social networks,
or exploring social influences among individuals and groups.
However, most of existing work ignore negative influences
among individuals or groups. Motivated by alleviating social
problems, such as drinking, smoking, gambling, and influence
spreading problems (e.g., promoting new products), we take
both positive and negative influences into consideration and
propose a new optimization problem, named the Minimum-
sized Positive Influential Node Set (MPINS) selection problem,
to identify the minimum set of influential nodes, such that
every node in the network can be positively influenced by these
selected nodes no less than a threshold θ. Our contributions are
threefold. First, we propose a new optimization problem MPIN-
S, which is investigated under the independent cascade model
considering both positive and negative influences. Moreover,
we claim that MPIMS is NP-hard. Subsequently, we present
a greedy approximation algorithm to address the MPINS
selection problem. Finally, to validate the proposed greedy
algorithm, extensive simulations are conducted on random
Graphs representing small and large size networks.

I. INTRODUCTION

A social network (e.g., Facebook, Google+, and MyS-
pace) is composed of a set of nodes (such as individuals or
organizations) that share the same interest or purpose. The
network provides a powerful medium of communication for
sharing, exchanging, and disseminating information, and for
spreading influence beyond the traditional social interaction-
s. Ever since social networks came to exist, they significantly
enlarge our social circles, and they become a bridge to
connect our daily physical life and the virtual web space.
With the emergence of social applications (such as Flickr,
Wikis, Netflix, and Twitter), there has been tremendous
interests in how to effectively utilize social networks to
spread ideas or information within a community [1]–[4].
Capturing the dynamics of a social network is a complex
problem that requires an approach to analyze the dynamics
of positive and negative social influences resulting from
individual-to-individual and individual-to-group interactions.
In a social network, individuals may have both positive

and negative influence on each other. For example, within
the context of gambling, a gambling insulator has positive
influence on his friends/neighbors. Moreover, if many of an
individual’s friends are gambling insulators, the aggregated
positive influence is exacerbated. However, an individual
might turn into a gambler, who brings negative impact on
his friends/neighbors. For example, in the social network
shown in Fig. 1, the social influences are represented by
weights assigned to edges. If Jack and Bob (marked by the
person with the red tie) are gambling insulators, then they
have positive influence on their neighbors. To be specific,
Jack has a positive influence on Chris with probability
60%. Similarly, Mary has a negative influence on Tony with
probability 90%, since Mary is a gambler. Moreover, in
the community shown in Fig. 1, only Tony has not been
influenced by any gambling insulator. Hence, motivated by
alleviating social problems, such as drinking, smoking, and
gambling, this work aims to find a Minimum-sized Positive
Influential Node Set (MPINS), which positively influences
every individual in a social network no less than a pre-
defined threshold θ.

One application of MPINS is described as follows. A
community wants to implement a smoking intervention
program. To be cost effective and get the maximum ef-
fect, the community wishes to select a small number of
influential individuals in the community to attend a quit-
smoking campaign. The goal is that all other individuals in
the community will be positively influenced by the selected
users. Constructing an MPINS is helpful to alleviate the
aforementioned social problem, and it is also helpful to
promote new products in the social network. Consider the
following scenario as another motivation example. A small
company wants to market a new product in a community.
To be cost effective and get maximum profit, the company
would like to distribute sample products to a small number of
initially chosen influential users in the community. The com-
pany wishes that these initial users would like the product
and positively influence their friends in the community. The
goal is to have other users in the community be positively
influenced by the selected users no less than θ eventually.
To sum up, the specific problem we investigate in this work
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Figure 1: A social network with social influences on edges.

is the following: given a social network and a threshold
θ, identify a minimum-sized subset of individuals in the
network such that the subset can result in a positive influence
on every individual in the network no less than θ.

A related work [5] to our research finds a minimum-sized
Positive Influence Dominating Set (PIDS) D, so that every
other node has at least half of its neighbors in D. In this
work, only positive influence from neighbors is considered
while the negative influence is totally ignored. Moreover, the
authors in [5] studied the PIDS selection problem under the
deterministic linear threshold model, in which the influence
from a pair of nodes is represented by a weight and an
individual can be positively influenced when the sum of the
weights exceeds a pre-determined threshold. To be specific,
the authors in [5] assume that the influence of a pair of
nodes is always 1, and an individual can be positively
influenced when at least half of its neighboring nodes are
in D. Nevertheless, the deterministic linear threshold model
cannot fully characterize the social influence between each
pair of nodes in a real social network. This is because,
in the physical world, the strength of the social influence
between different pairs of nodes may be different and is
actually a probabilistic value [6]–[9]. Hence, we explore the
MPINS selection problem under the independent cascade
model considering both positive and negative influences,
where individuals can positively or negatively influence their
neighbors with certain probabilities.

In this paper, first we formally define the MPINS problem
and then propose a greedy approximation algorithm to solve
it. Particularly, the main contributions of this work are
summarized as follows:

1) Taking into consideration both positive and negative
influences, we introduce a new optimization problem,
named the Minimum-sized Positive Influential Node
Set (MPINS) selection problem, for social networks,
to identify the minimum-sized set of influential nodes,

that could positively influence every node in the net-
work no less than a pre-defined threshold θ. We claim
that it is a NP-hard problem under the independent
cascade model.

2) We define a contribution function using a greedy
approximation algorithm, called MPINS-GREEDY, to
address the MPINS selection problem. The correctness
of the proposed algorithm is also analyzed in the paper.

3) We conduct extensive simulations to validate the pro-
posed algorithm. The simulation results show that
the proposed greedy algorithm works well to solve
the MPINS selection problem. More importantly, the
solutions obtained by the greedy algorithm are very
close to the optimal solution of MPINS in small scale
networks.

The rest of the paper is organized as follows: Section
II introduces the network model and then formally defines
the MPINS selection problem. The greedy algorithm and
theoretical analysis of its correctness are presented in Section
III. The simulation results are presented in Section IV
to validate the proposed algorithm. Finally, the paper is
concluded in Section V.

II. PROBLEM DEFINITION AND HARDNESS ANALYSIS

In this section, we first introduce the network model. Sub-
sequently, we formally define the MPINS selection problem.
Finally we make some remarks on the proposed problem.

A. Network Model

We model a social network by an undirected graph
G(V, E ,P(E)), where V is the set of n nodes, denoted by
ui, and 0 ≤ i < n. i is called the node ID of ui. An
undirected edge (ui, uj) ∈ E represents a social tie between
the pair of nodes. P(E) = {pij | if (ui, uj) ∈ E , 0 <
pij ≤ 1, else pij = 0}, where pij indicates the social
influence between nodes ui and uj

1. It is worth mentioning
that the social influence can be categorized into two groups:
positive influence and negative influence. For example, in
the smoking intervention program, an individual initially
chosen to attend the quit-smoking campaign has positive
influence on all neighbors; while the smokers definitely have
negative influences on their neighbors. The formal definition
of positive influence and negative influence will be given in
Definition II.5 and Definition II.6. For simplicity, we assume
the links are undirected (bidirectional), which means two
linked nodes have the same social influence (i.e., pij value)
on each other.

B. Problem Definition

The objective of the MPINS selection problem is to
identify a subset of influential nodes as the initial nodes.
Such that, all the other nodes in a social network can

1This model is reasonable since many empirical studies have analyzed
the social influence probabilities between nodes [6]–[9].



be positively influenced by these nodes no less than a
threshold θ. For convenient, we call the initial nodes as
active nodes, otherwise, inactive nodes. Therefore, how to
define positive influence is critical to solving the MPINS
selection problem. In the following, we first formally define
some terminologies, and then give the definition of the
MPINS selection problem.

Definition II.1. Positive Influential Node Set (I). For social
network G(V, E ,P(E)), the positive influential node set is
a subset I ⊆ V , such that all the nodes in I are initially
selected to be the active nodes.

Definition II.2. Neighboring Set (B(ui)). For social network
G(V, E ,P(E)), ∀ui ∈ V , the neighboring set of ui is defined
as:

B(ui) = {uj | (ui, uj) ∈ E , pij > 0}.

Definition II.3. Active Neighboring Set (AI(ui)). For social
network G(V, E ,P(E)), ∀ui ∈ V , the active neighboring set
of ui is defined as:

AI(ui) = {uj | uj ∈ B(ui), uj ∈ I}.

Definition II.4. Non-active Neighboring Set (N I(ui)). For
social network G(V, E ,P(E)), ∀ui ∈ V , the non-active
neighboring set of ui is defined as:

N I(ui) = {uj | uj ∈ B(ui), uj /∈ I}.

Following Definition II.3 and Definiton II.4, we know
that the set AI(ui) includes all the active neighboring
nodes of ui and the set N I(ui) includes all the non-
active neighboring nodes. How those neighboring nodes
collaboratively influence each individual is critical to solving
the MPINS selection problem. Next, we define some other
terminologies as follows:

Definition II.5. Positive Influence (pui
(AI(ui))). For social

network G(V, E ,P(E)), a node ui ∈ V , and a positive
influential node set I, we define a joint influence probability
of AI(ui) on ui, denoted by pui(AI(ui)) as

pui(AI(ui)) = 1−
∏

uj∈AI(ui)

(1− pij).

Definition II.6. Negative Influence (pui(N I(ui))). For so-
cial network G(V, E ,P(E)), a node ui ∈ V , and a positive
influential node set I, we define a joint influence probability
of N I(ui) on ui, denoted by pui(N I(ui)) as

pui(N I(ui)) = 1−
∏

uj∈NI(ui)

(1− pij).

Definition II.7. Ultimate Influence (ϱI(ui)). For social
network G(V, E ,P(E)), a node ui ∈ V , and a positive
influential node set I, we define an ultimate influence of
B(ui) on ui, denoted by ϱI(ui) as

ϱI(ui) = pui(AI(ui))− pui(N I(ui)).

Moreover, if ϱI(ui) < 0, we set ϱI(ui) = 0. If ϱI(ui) ≥ θ,
where 0 < θ < 1 is a pre-defined threshold, then ui is said
to be positively influenced. Otherwise, ui is not positively
influenced.

Here, we assume that the ultimate influence of any active
nodes is greater than or equal to θ, i.e., ∀ui ∈ I, ϱI(ui) ≥ θ.
Moreover, if I = ∅, then ∀ui ∈ V, ϱI(ui) = 0. Finally,
we are ready to give the formal definition of the MPINS
selection problem.

Definition II.8. Minimum-sized Positive Influential Node Set
(MPINS). For social network G(V, E ,P(E)), the MPINS
selection problem is to find a minimum-sized positive in-
fluential node set I ⊆ V , such that ∀ui ∈ V \ I , ui is
positively influenced, i.e.,

ϱI(ui) = pui(AI(ui))− pui(N I(ui)) ≥ θ,

where 0 < θ < 1.

In this paper, we study the MPINS selection problem
under independent cascade model. First, we analyze the
complexity of the problem, which is NP-hard. The authors in
[5] prove that the minimum-sized Positive Influence Dom-
inating Set (PIDS) selection problem, which to guarantee
that every other node has at least half of its neighbors in
PIDS, is NP-hard. As we mentioned in Section I, PIDS
is investigated under deterministic linear threshold model
taking only positive influences into consideration. Hence,
we claim that MPINS is NP-hard, since it is studied under a
more general and practical scenario, i.e., under independent
cascade mode considering both positive and negative influ-
ences. Subsequently, we propose a greedy algorithm, called
MPINS-GREEDY, to solve the problem.

III. GREEDY ALGORITHM AND PERFORMANCE
ANALYSIS

Before introducing MPINS-GREEDY, we first define a
useful contribution function as follows:

Definition III.1. Contribution Function (f(I)). For social
network G(V, E ,P(E)), and a positive influential node set
I, the contribution function of I to G is defined as:

f(I) =
|V|∑
i=1

max[min(ϱI(vi), θ), 0].

Based on the defined contribution function, we propose a
heuristic algorithm, which has two phases.

1) We find the node ui with the maximum f(I), where
I = {ui}. After that, we select a Maximal Indepen-
dent Set (MIS)2 induced by a Breadth-First-Search

2MIS can be defined formally as follows: given a graph G = (V,E),
an Independent Set (IS) is a subset I ⊂ V such that for any two vertex
v1, v2 ∈ I , they are not adjacent, i.e., (v1, v2) /∈ E. An IS is called an
MIS if we add one more arbitrary node to this subset, the new subset will
not be an IS any more.



(BFS) ordering with respect to ui as the root node
[11]–[13].

2) We employ the pre-selected MIS, denoted by M,
as the initial active node set to perform the greedy
algorithm MPINS-GREEDY as shown in Algorithm
1. MPINS-GREEDY starts from I = M. Each time,
it adds the node having the maximum f(·) value into
I. The algorithm terminates when f(I) = |V|θ.

Algorithm 1 MPINS-GREEDY Algorithm
Require: Social network G(V, E ,P(E)); a pre-defined

threshold θ.
1: Initialize I = M
2: while f(I) < |V|θ do
3: choose u ∈ V \ I to maximize f(I

∪
{u})

4: I = I
∪

{u}
5: end while
6: return I

To better understand the proposed heuristic algorithm, we
use the social network represented by the graph shown in
Fig. 2(a) to illustrate the selection procedure as follows. In
this example, θ = 0.8. Since u1 has the maximum f({ui})
value, we construct a BFS tree rooted at u1, as shown in Fig.
2(b). With the help of BFS ordering, we find the MIS set
M = {u1, u6}. Next, we go to the second phase to perform
Algorithm 1.

1) First round: I = M = {u1, u6}.
2) Second round: we first compute f(I =

{u1, u2, u6}) = 4.45, f(I = {u1, u3, u6}) = 3.018,
f(I = {u1, u4, u6}) = 3.65, f(I = {u1, u5, u6}) =
3.65, and f(I = {u1, u6, u7}) = 3.778.
Therefore, we have I = {u1, u2, u6}, which
has the maximum f(I) value. However,
f(I = {u1, u2, u6}) = 4.45 < 7 ∗ 0.8 = 5.6.
Consequently, the selection procedure continues.

3) Third round: we first computer f(I =
{u1, u2, u3, u6}) = 4.45, f(I = {u1, u2, u4, u6}) =
5.6, f(I = {u1, u2, u5, u6}) = 5.6, and
f(I = {u1, u2, u6, u7}) = 4.45. Therefore,
we have I = {u1, u2, u4, u6}3. Since
f(I = {u1, u2, u4, u6}) = 7∗0.8 = 5.6, the algorithm
terminates and outputs set I = {u1, u2, u4, u6} as
shown in Fig. 2(c), where black nodes represent the
selected influential nodes.

It is easy to check that u3, u5 and u7 are all positively
influenced. Hence, the constructed I is a feasible solution
for the MPINS selection problem.

The proposed algorithm starts searching from an MIS set
(M) instead of an empty set, so that the algorithm conver-
gent time should be shorten. Next, we theoretically show the
correctness of Algorithm 1 in the following theorem.

3If there is a tie on the f(I) value, we use the node ID to break the tie.

Theorem 1. Algorithm 1 produces a feasible solution for
the MPINS selection problem. To be specific,

1) Algorithm 1 terminates for sure.
2) f(I) = |V|θ if and only if I is a positive influential

node set, such that every node (i.e., ∀ui ∈ V) is
positively influenced by nodes in I no less than θ.

Proof: For 1), Based on Algorithm 1, in each iteration,
only one node is selected to be added into the output set I.
In the worst case, all nodes are added into I in the |V|-
th iteration. Then, f(I) = f(V) = |V|θ and Algorithm
1 terminates and outputs I = V . Therefore, Algorithm 1
terminates for sure.

For 2), ⇒: if f(I) = |V|θ, then ∀ui ∈ V , ϱI(vi) ≥
θ followed by Definition III.1. Therefore, all nodes in the
network are positively influenced.

⇐: if ∀ui ∈ V, ϱI(vi) ≥ θ, then we obtain
∀ui ∈ V,min(ϱI(vi), θ) = θ. According to the
definition of the contribution function III.1, f(I) =
|V|∑
i=1

max[min(ϱI(vi), θ), 0] = |V|θ.

Based on the above two aspects, Algorithm 1 must pro-
duce a feasible solution for the MPINS selection problem.

IV. PERFORMANCE EVALUATION

Currently, there is no existing work studying the MPINS
selection problem under the independent cascade model. The
simultion results of MPINS-GREEDY (denoted by MPINS)
are compared to the related work [5] (denoted by PIDS),
and the optimal solution of MPINS (obtained by exhaustive
search, denoted by OPTIMAL). To ensure the fairness
of comparison, the termination condition of the algorithm
proposed in [5] is changed to find a PIDS, such that every
node in the network is positively influenced no less than the
same threshold θ in MPINS.

A. Simulation Setting

We build our own simulator to generate random
graphs based on the random graph model G(n, p) =
{G |G has n nodes, and an edge between any pair of nodes
is generated with probability p}. For G = (V,E) ∈
G(n, p), ui, uj ∈ V , and (ui, uj) ∈ E, the associated social
influence 0 < pij ≤ 1 is randomly generated. For each
specific setting, 100 instances are generated. The results are
the average values of these 100 instances. Below, we show
the simulation results under different scenarios.

B. Simulation Results

The objectives of MPINS and PIDS are both to minimize
the size of the constructed subsets. In this subsection, we
check the size of the solutions for MPINS, PIDS and OP-
TIMAL under different scenarios in random graphs. In this
simulation, we consider the following tunable parameters:
the network size n, the possibility to create an edge p in
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Figure 2: Illustration of MPINS-Greedy algorithm.

the random graph model G(n, p), and the user pre-defined
influence threshold θ. Since we adopt exhaustive search
to find the optimal solution for MPINS, it is impractical
to test on large scale networks. Hence, we first run a set
of simulations on small scale networks of network size
changing from 10 to 20 nodes, and the results are shown
in Fig. 3.

The impacts of n, p, and θ on the size of the solutions
for MPINS, PIDS, and OPTIMAL are shown in Fig. 3(a),
(b), and (c), respectively. From Fig. 3(a), we can see that
the sizes of the solutions for all three algorithms increase
when n increases. This is because more nodes need to be
influenced when the network size increases. Additionally,
for a specific network size, PIDS produces larger sized
solution than MPINS. This is because MPINS tries to find
the most influential MIS of the network first, and then add
the node which has the largest f(I) value in each iteration,
while PIDS gives the node with the largest degree the
highest priority instead. However, a large degree does not
necessarily imply high ultimate influence on the individuals
in the network, since some neighbors may have high negative
influences on the individuals. Moreover, MPINS selects an
MIS first, which avoids the nodes selection bias to some
specific region, so that more nodes need to be added into the
subset to influence all the nodes in the network. Furthermore,
we can see that the size of MPINS solution is very close to
the optimal result. To be specific, on average, MPINS pro-
duces 1.07 more nodes than the optimal solution, while PIDS
produces 3.75 more nodes than the optimal solution. The
results imply that our proposed greedy algorithm MPINS-
GREEDY can produce a very close approximation solution
to the optimal solution in small scale networks.

From Fig. 3(b), we can see that there is no obvious
trend on the solution sizes for all three algorithms when
p increases. This is because when p increases means more
edges in the network, so that one specific node may have
more negative or positive neighbors. In a very crowded

network, it is hard to tell the pattern of the sizes of selected
influential node sets. On the other hand, for a specific p,
PIDS produces larger sized solutions than MPINS. This is
because the objective of PIDS is not aimed to obtain the
most influential and no-regional-biased nodes in the network.
MPINS again can construct the solution with similar size of
the optimal solution. On average, MPINS only produces 1.6
more nodes than the optimal solution, while PIDS produces
3.16 more nodes than the optimal solution.

From Fig. 3(c), we can see that the solutions sizes for
all solutions increase when θ increases, since large θ value
means that more nodes need to be put into the initial active
node set to influence all other nodes. Furthermore, MPINS
has similar performance with optimal, and has a better
performance than PIDS since the greedy criterion of PIDS is
node with highest degree first. On average, MPINS produces
1.3 more nodes than the optimal solutions, while the sizes
of PIDS solutions are a little away from the optimal results.
On average, PIDS produces 3.7 more nodes than the optimal
solution. The reason is similar as we mentioned above.

Additionally, we ran a set of simulations on large scale
networks of network size changing from 100 to 1000 nodes.
The impacts of n, p, and θ on MPINS and PIDS are shown
in Fig. 4. From Fig. 4(a), we can see that the solution sizes of
MPINS and PIDS are both increase when n increases. This
is because more active influential nodes are needed for larger
social networks. Moreover, with n increases, the difference
between the sizes of MPINS and PIDS increases also. At a
specific n, MPINS can find a positive influential node set that
is smaller than that of PIDS. This is because in small scale
network (i.e., n < 500), the initial active node set size is
small (no more than 30 from Fig. 4). Hence, the differences
between the two methods are not very obvious. However,
in large scale network, say n = 1000, our proposed MPINS
has a significant improvement on the size of the initial active
node set compared to PIDS. The reason is similar as we
mentioned earlier. On average, MPINS produces a positive
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Figure 3: The size of solutions on small scale networks. The default setting are n = 15, p = 0.5, and θ = 0.5.

influential node set of size 22.5 less than PIDS.
From Fig. 4(b), we can see that the solution sizes of PIDS

and MPINS decrease when p increases. p increases means
that the number of edges in the network increases, which
further implies that the average number of neighbors of each
node increases. Hence, one selected active node may influ-
ence more nodes when p increases. For a specific p, PIDS
again produces larger sized solution than MPINS. When
the solution size is small, it is hard to tell which method
outperform the other. However, MPINS clearly outperforms
PIDS on the sparse network, such as p = 0.1. It is worth to
mention that the decreasing trend of PIDS is very fast when
p increases. This is because when p is small, the degrees
of all nodes are small. Hence, PIDS may find a solution
through many iterations till it find a solution satisfying that
every node in the network is positively influenced by the
solution no less than θ. When p is large, larger degree
nodes could be added into the solution first, so that PIDS
might terminate quicker, resulting in a smaller sized positive
influential node set. On average, PIDS produces 31.52 more
nodes than MPINS.

Similar to Fig. 3(c), we can see in Fig. 4(c) that the solu-

tion sizes for PIDS and MPINS increase when θ increases.
Moreover, PIDS outputs more and more nodes than MPINS
when θ increases. On average, PIDS produces 23.2 more
nodes than that of MPINS.
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Figure 4: The size of solutions on large scale networks: The default settings are n = 15, p = 0.5, and θ = 0.5.

One big difference between MPINS and PIDS is that
MPINS starts the greedy search on a pre-selected influential
MIS set, while PIDS starts searching from an empty set.
Moreover, PIDS uses node degree as the greedy search
criterion which might lead to finding some regional-biased
nodes, so that the final size of the solution may be in-
creased. Our proposed MPINS method selects a Maximal
Independent Set (MIS) first which avoids the aforementioned
dilemma. Fig. 5, Fig. 6, and Fig. 7 try to compare the size
of MIS, MPINS, and PIDS when n, p, and θ changes. All
these results indicate that after selecting an influential MIS,
only a small number of iterations of MPINS-GREEDY are
needed to find a solution for MPINS. However, the number
of iterations for the greedy algorithm proposed for solving
PIDS is considerable larger compared to the number of
iterations of MPINS-GREEDY.

V. CONCLUSION

In this paper, we study the Minimum-sized Positive In-
fluential Node Set (MPINS) selection problem which has
useful commercial applications in social networks. First, we
claim that MPINS is NP-hard under the independent cascade

model, and then propose a greedy algorithm, called MPINS-
GREEDY, to solve the problem. Subsequently, we validate
our proposed algorithm through simulations on random
graphs repersenting small size and large size networks. The
simulation results indicate that MPINS-GREEDY can con-
struct smaller initial active node sets than the latest related
work PIDS [5]. Moreover, for small scale network, MPINS-
GREEDY performance is close to the optimal solution of
MPINS. Furthermore, MPINS-GREEDY considerably out-
performs PIDS in large scale networks, sparse networks, and
for high threshold θ.
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