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Abstract—Counterfeit devices are wreaking havoc in the in-
dustry today and are causing billions of dollars of loss in revenue
to companies. These devices usually have fake components or
have components that are re-marked as better ones. Illegitimate
workshops even manufacture counterfeit devices on a large scale.
Hence, counterfeit detection is of utmost importance. However,
most counterfeit detection techniques today have complex and
expensive setups that are slow in generating results. Some
methods are also destructive to the device under test, and can
hence only be applied to a small portion of the suspect devices.
Most methods are also usually intended to target a specific set of
devices. In this paper, we propose a simple and cheap technique
of counterfeit detection, which we believe is a first-of-its-kind,
network-based solution. Being network-based, it can be used to
swiftly test a broad range of networked devices. The technique
only monitors the network traffic of the device, therefore it is
non-destructive. We first illustrate the general efficacy of the
technique using FPGAs. Next, we show that lower-end processors
(i.e., Core i3) in real systems can be differentiated from higher-
end processors (i.e., Core i7) based on the host node’s network
traffic. This technique is effective against devices with counterfeit
components or even with legitimate, but re-marked (as higher
capacity) components. Using a neural network based classifier,
we show classifier recall values (i.e., the ratio of the number of
true positives to the sum of the number of true positives and false
negatives) of up to 78.7% using traffic captures of 2,500 packets.

I. INTRODUCTION
Counterfeiting is the forging or imitating of a legitimate

device by an illegitimate device, usually of lower capacity
or quality, so as to afford the seller a higher profit mar-
gin through a lower manufacturing cost. Counterfeiting of
devices is widespread in the industry today [1], [2], and
counterfeit devices are a common bane to companies and
governments alike [3], [4]. Counterfeit devices amount to
billions of dollars of loss in revenue to US semiconductor
companies [5], [6]. Counterfeiting also impacts the customer,
since counterfeit devices usually have either old, repackaged
versions of the components, or components made from lower
quality materials. Hence, the customer receives a degraded,
outdated version of the device, or a low-quality, less reliable
version of the device. This impacts no customer more than the
military, whose critical systems have recently been found to
be compromised by counterfeit components [1], [7], [8], [9].
The resulting impact on national security can be devastating,
not to mention the risk to the lives of the operators of lethal
equipment with counterfeit, unreliable components.

Companies and governments are in turn, spending huge
amounts of time and money to detect, deter, and counter these

counterfeit devices [4], [8], [10], [11]. Thus, counterfeit de-
vices are widespread, and counterfeit detection is of very high
importance. There are many counterfeit detection techniques
available today [5], [12], [13]. However, most of the techniques
available are either expensive, complex, slow, destructive to the
device under test (DUT), narrow-scoped, or require specialized
hardware. There is thus, a definite need for a more efficient
and effective counterfeit detection mechanism, without the
drawbacks of the existing methods.

In this paper, we propose a technique that is simple, cheap,
fast, non-destructive, and broad-scoped, which is also a first-of-
its-kind network-based solution. Our technique is based on us-
ing the interarrival times (IATs) of network traffic to fingerprint
devices, similar to works like [14], [15], [16], [17], [18], [19],
but we go a step further and fingerprint the device components
themselves (both legitimate and illegitimate), thereby enabling
us to detect the replacement of a legitimate device component
with an illegitimate one. We first perform experiments with
field-programmable gate arrays (FPGAs) to show the effect
that device components have on the network traffic of the
device. We emulate network-enabled computer systems on the
FPGA board. Then, we capture and statistically analyze the
network traffic IATs of different traffic types (i.e., UDP, TCP,
ICMP). We then change just the processor configuration of the
emulated system and repeat the traffic captures and analyses.
We show how the IAT statistics are consistently different from
the original configuration. This is repeated on different FPGA
boards to illustrate the generality of the technique.

Armed with this understanding of the effect of device
components on the IATs of network traffic, we repeat similar
experiments on a real computer with an Intel Core i7 processor.
We then change the processor to an Intel Core i3 and repeat
the captures. The IATs of the i7- and i3-based systems are used
to train a neural network and classify the i3 as a counterfeit
i7. Hence, this technique can be used to detect a counterfeit
device component that is illegally re-marked as a legitimate
one [20]. The recent discovery of a counterfeiting workshop
[21] manufacturing counterfeit devices on a large scale only
establishes the relevance and global scope of this threat. Our
technique is geared towards this type of counterfeiting, where
the device has counterfeit components or has re-marked com-
ponents [22] of lower capacity. Once we obtain the signatures
of these counterfeit components, our technique can be used to
differentiate counterfeit signatures from legitimate signatures.

The rest of this paper is organized as follows. Section II
discusses the related work and how our contribution compares.
Section III describes the experimental setup and our technique



in greater detail. Section IV discusses the FPGA-based ex-
periments that form the basis for our technique. In Section
V, we show the actual counterfeit detection results from the
real computer experiments. Section VI discusses the results
and some limitations of our technique, and finally, Section VII
provides the conclusion and future work.

II. RELATED WORK
There are as many counterfeit detection techniques today

as there are counterfeiting methods themselves [23]. In intel-
lectual property (IP) watermarking [24], a hidden signature is
embedded in the design. In the field, this signature is then used
to confirm the legitimacy of the design. However, this method
requires intervention in the manufacturing process to insert the
watermarks. Our technique does not alter the manufacturing
process, and instead relies on the physical uniqueness of each
device component to identify the legitimate device.

Hardware metering and auditing involves observing some
unique characteristic of the integrated circuits (ICs) of the
device. There are two types of hardware metering, passive [25],
[26], [27] and active [28]. Passive hardware metering involves
observing an identifying quality of the IC without modifying
it in anyway, while active hardware metering requires the
addition of extra logic to the IC to make it identifiable. While
the drawback of the active variant is that the manufacturing
process needs to be modified, the drawback of the passive
variant is that it is expensive, as all the logic of the IC needs to
be characterized with high precision. This becomes even more
prohibitive when scaled to large ICs, as the linear equations
to be solved become impractical. The technique we propose
is like the passive hardware metering in that it requires no
modification to the device, however, it does not require any
expensive or complex characterization and processing.

The physical unclonable function (PUF) [29], [30], [31]
is a physical function that provides a unique mapping from
its inputs to its outputs based on the unique variations of
the unclonable characteristics of the device material, such as
current and timing. This technique modifies the manufacturing
design to include the PUFs. Hence, these methods either need
intervention during the manufacturing process, or need spe-
cialized/expensive equipment for counterfeit detection. Being
network-based, our technique requires no modification to the
DUT. It only needs a simple computer to capture the device’s
network traffic and determine its components’ legitimacy.

Benchmarking software like [32] can provide a detailed
picture of the system and any changes to its components. Any
lower capacity component substituted for the legitimate one
in the device will lead to sub-optimal performance on the
benchmark tests and hence flag the presence of counterfeit
components. However, such an approach requires that the
benchmarking software be available for, then installed and
run on every suspect device, which is not scaleable. The
technique we propose makes no changes to the system beyond
the sending and receiving of network packets.

Fingerprinting a device is another approach that has been
explored for counterfeit detection. This involves forming a
signature that is based on some unique physical characteristic
of the device, which is then compared with the DUT to verify
its authenticity. The work in [12] deals with a fingerprinting
technique based on unique radio frequency (RF) emissions
from the device, which are recorded and matched against a
fingerprint database. This is afforded by the fact that every

device emits unique electromagnetic radiation. However, col-
lecting and processing this radiation-based fingerprint requires
expensive and complex hardware setup. Similarly, the tech-
nique in [33] uses X-Rays to analyze the authenticity of the
device based on its physical structure at a microscopic level
using an expensive X-Ray inspection system. Our technique
fingerprints the device based on its packet interarrival delays.
Hence, we only need a computer connected to the network to
extract the signature of the device.

III. BACKGROUND, EXPERIMENTAL SETUP, AND
TECHNIQUE

This section describes the inspiration for our technique,
how we implement it for counterfeit detection, and the general
setup used for both the FPGA and real computer experiments.

A. Background
The process to create network packets is complex and in-

fluenced by several factors. Each packet is formed of multiple
layers wrapped one within another [34]. Many components
of the computer (e.g., processor, cache, main memory) are
involved in the packet’s formation, and it is intuitive to think
that each of them will have an influence on how the packet
is formed. The author of [34] has in fact shown how a slow
receiver affects the traffic dynamics differently than a fast re-
ceiver. This hints at a certain dependence of internal hardware
architecture on the packet delays. This can be exploited to
create unique IAT-based fingerprints for a legitimate device
configuration, which can then be contrasted with fingerprints
of devices modified with counterfeit components.

B. Experimental Setup and Technique Overview
A monitor node captures the traffic from the DUT via a

network tap (nTAP) as shown in Figure 1. The sender/receiver
(Sony VAIO laptop) is used to generate traffic to the DUT for
active (ICMP echo requests to the device) tests and to receive
the DUT’s traffic for passive (TCP, UDP, and ICMP traffic
from the device) tests.

The monitor node runs all the necessary scripts to control
the VAIO and the DUT. It controls the sending of ICMP
requests from the VAIO to the DUT, and the sending of
TCP, UDP, and ICMP packets from the DUT to the VAIO.
All packets leaving the DUT are captured via the nTAP by
a NetFPGA 1G [35] installed in the monitor node. Regular
network interface controllers (NICs) interrupt the system for
each packet that arrives, and these interrupts are serviced either
instantly or in groups by the operating system (OS), which
then timestamps the packets using the system clock. This leads
to less precise timestamps. Hence, we use a NetFPGA (a
reconfigurable hardware platform for high-speed networking
loaded with a packet generator program) to provide accurate
hardware timestamping as low as 8 ns with its 125 MHz core
clock. Once the packets are captured and timestamped, the
monitor node filters the packets using tshark, extracts the IATs
using Matshark [36] in MATLAB, and generates probability
distribution functions (PDFs) of the IATs.

Before using this setup to generate PDFs of IATs and
perform counterfeit detection on a real computer, we first
test the repeatability and stability of the IAT-based signatures
of devices emulated on FPGAs. This is done in Section IV,
wherein the FPGAs provide a realistic representation of a
device while also affording a high degree of control over



Fig. 1: Testbed to capture and process traffic to and from
DUT.

Fig. 2: Pender GR-XC3S-1500 Development
Board.

Fig. 3: Xilinx XtremeDSP
Starter Platform - Spartan-3A
DSP 1800A Edition.

the device component configuration. We vary just one com-
ponent of the emulated device at a time and collect traffic
IATs to bring forth the statistical separation in the PDFs of
the different configurations. We also generate PDFs multiple
times for each emulated device configuration to verify the
signature’s stability. Once the IAT-based signature is proven
stable and differentiable, we perform similar experiments on a
real computer in Section V. Here, we change the computer’s
processor and then use the inherent statistical separation in the
PDFs of the collected traffic IATs to classify the processor as
either legitimate or illegitimate.

IV. FPGA EXPERIMENTS AND RESULTS
We aimed to measure network traffic from devices whose

configurations only differed from each other by the processor
used, and hence bring out the effect that the processor has
on network traffic. Thus, we chose to emulate these devices
on FPGAs, which provide high reconfigurability while also
providing a faithful representation of the idiosyncrasies of real
device components. These emulated devices were then loaded
with a variant of Linux and used to send and receive different
types of traffic, both active (ICMP requests) and passive (TCP,
UDP). The advantage of the active technique compared to the
passive one is that no interaction (i.e., a script that resides on
the DUT to have it send traffic) with the DUT is required.

A. Emulated Device Under Test
Here we discuss the different hardware and software used

to emulate the different DUT configurations on the FPGAs.
1) Pender GR-XC3S-1500 Development Board: The GR-

XC3S-1500 Development Board [37] (Figure 2) features a
Xilinx Spartan3 XC3S1500-FG456 FPGA, 64 MB SDRAM
of on-board memory, Ethernet 10/100 Mbit/s MAC and PHY
(LXT971A), a JTAG programming and configuration port, and
25 MHz and 50 MHz on-board oscillators.

2) Xilinx XtremeDSP Starter Platform - Spartan-3A DSP
1800A Edition: The XtremeDSP Starter Platform [38] (Figure
3) features a Xilinx 3SD1800A-FG676 FPGA, 128 MB DDR2
SDRAM of on-board memory, Ethernet 10/100/1000 Mbit
PHY, a JTAG programming and configuration port, and a 125
MHz LVTTL SMT on-board oscillator.

3) LEON3 Processor: The LEON3 [39] is a synthesisable
VHDL model of a SPARC-V8 based 32-bit processor. It
has a fully pipelined IEEE-754 floating-point unit (FPU);
hardware multiply, divide, and multiply-accumulate (MAC)
units; and highly configurable, separate data and instruction
cache (Harvard Architecture). Its VHDL model source code
is distributed as part of the GRLIB IP library and is freely

available under the GNU GPL license. The GRLIB IP is
configured and downloaded onto the FPGAs using Xilinx ISE
for each device configuration using a JTAG cable.

4) SnapGear: A special LEON version of the SnapGear
Embedded Linux distribution, provided by Aeroflex Gaisler,
is installed on the LEON3-based system that we synthesized
on the FPGAs. This provides a simple yet potent version
of Linux for use on the emulated systems. It includes all
the basic functionalities of a Linux system, such as Ethernet
networking support, and BusyBox [40] utilities. It is configured
and downloaded onto the LEON3-based system in the FPGAs
using a JTAG cable and the GRMON debugger [41].

B. Experimental Results
For each FPGA configuration, we generated four 15-minute

captures of ICMP replies (Ping), TCP (Iperf), and UDP (Iperf)
packets received from the DUT. The capture duration provided
2,500 packets. The FPGA configurations differed by just
one component at a time. The components varied were: (1)
processor clock speed, (2) processor data cache replacement
policy, and (3) processor instruction cache replacement policy.
The entire experiment was done for both of the FPGA boards.
The PDFs were then plotted with 1,000 bins of 10 µs width.
The default design that we emulated was a system composed of
a LEON3 processor with Memory Management Unit (MMU),
40 MHz clock, 64 MB RAM for the GR-XC3S-1500 board
and 128 MB RAM for the XtremeDSP board, 8 KB data
cache, 4 KB instruction cache, and running SnapGear Linux.
We performed our experiments with both boards and observed
similar results. Due to space constraints, we only show results
for the GR-XC3S-1500 board.

1) Processor Clock Speed: After capturing traffic for the
default configuration, we changed the configuration by varying
the clock speeds.

UDP packets of fifty six bytes each were generated on
the DUT at 1 Mbps using Iperf. Figure 4 shows the PDFs of
the IATs for the four captures where the DUT’s clock speed
was 40 MHz. As can be observed by the figure, the IAT
PDFs are nearly identical. This similarity exists for all the
configurations, thus subsequent figures will have a single line
per configuration for the sake of presentation clarity. Figure 5
shows the variations in the PDFs of the IATs for clock speeds
of 40 MHz, 33 MHz, 25 MHz, and 20 MHz. There is a lateral
shift between the peaks of the different clock speeds, showing
that increasing clock speed decreases the mean IATs. There is
also a decrease in the heights of the PDF peaks with decreasing
clock speeds, which leads to more spread of the IAT values
along the x-axis for the lower clock speeds.
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Fig. 4: PDFs of UDP IATs for four captures of 40 MHz clock on the GR-
XC3S-1500 board.

Additionally, TCP data was generated using Iperf on the
DUT. Figure 6 shows the PDFs of the IATs for clock speeds of
40 MHz, 33 MHz, 25 MHz, and 20 MHz. Here again, we see
a shift to the right with decreasing clock speeds. This indicates
that the configurations at the lower clock speeds were unable
to match the peak TCP rate and hence had higher mean IATs.
The decreasing heights of the peaks with decrease in clock
speeds also indicates that the configurations at the lower clock
speeds struggled to maintain a constant high data rate, thereby
producing a more spread out PDF, with lower peaks. The dual
peaks for each of the clock speeds also indicates two distinct
rates at which the DUT was able to sustain the TCP traffic.

To evaluate this technique under active probing, the DUT
was sent ICMP requests of 56 bytes per packet from the VAIO
every 1 ms, and the replies were captured by the monitor node.
Figure 7 shows the PDFs of the IATs for clock speeds of
40 MHz, 33 MHz, 25 MHz, and 20 MHz. The higher clock
speeds, being able to match the required 1 ms IAT (i.e., the
rate at which ICMP requests were generated) with more ease,
have higher peaks and less spread of PDFs, while the lower
clock speed PDFs are more spread out.

The DUT was also sent ICMP requests of 1400 bytes per
packet from the VAIO every 1 ms. Figure 8 shows the PDFs of
the IATs for clock speeds of 40 MHz, 33 MHz, 25 MHz, and
20 MHz. Here too, the higher clock speeds PDF peak is closer
to the required 1 ms mean IAT (echo request send rate was 1
per 1 ms), while that of lower clock speeds is farther. When a
device is interrupted by an ICMP request, the processor has to
switch state and service the request. Hence, the slower clock
speed configurations, which take longer to switch state and
service the ICMP requests, have higher mean IATs.

2) Processor Data Cache Replacement Policy: To see the
effects of data cache on the IATs, we emulated a configuration
with 40 MHz clock and 8 KB data cache, and changed the data
cache replacement policy from least recently used (LRU) to
random replacement (RR), and captured different traffic types.

Figure 9 shows the PDFs for IATs of ICMP (1400 bytes)
replies. The ICMP requests were sent every 1 ms. Here, the
LRU policy configuration has lower mean IATs. However, its
PDFs are more spread out while that of RR are more peaked,
with a higher mean IAT.

3) Processor Instruction Cache Replacement Policy: To
see the effects of instruction cache on network traffic, we emu-
lated a configuration with 40 MHz clock and 8 KB instruction
cache, and changed the instruction cache replacement policy
from LRU to RR, and captured different traffic types.

Traffic that relied on the instruction cache, such as TCP and
UDP, showed a marked shift in the RR PDFs to higher mean

IATs. This is evident from Figure 10, which shows the PDFs
for IATs of UDP (56 bytes per packet at 1 Mbps) packets. This
is due to the instructions that are executed by the processor to
run Iperf to generate UDP and TCP packets, which depends
on the instruction cache replacement policy.

C. Discussion
We find that all traffic types are affected by changes to the

processor clock. This is expected since the processor clock is
a crucial part of the processor that decides how fast a packet
or any instruction for that matter, is processed. Thus, we see
IATs with higher mean values with decreasing clock speeds.

The data cache of the processor TCP, UDP, and ICMP
(1400 bytes) traffic (because they make data accesses). Hence,
any change in the data cache replacement policy caused a
change in the performance of the device that was noticeable in
its network traffic. ICMP (1400 bytes) had the most deviation
in PDFs due to its high data payload. ICMP (56 bytes) packets
were the least affected since they make very little use of
the data cache; hence, changes to the data cache replacement
policy had very little effect on the IATs.

The instruction cache of the processor affected TCP and
UDP more than it did ICMP. This is because TCP and UDP
packets were generated on the DUT using Iperf, which required
the processor to step through many instructions. The rate at
which these instructions were processed was affected by the
instruction cache replacement policy. When comparing the
PDF peaks of the RR configurations to the LRU configurations,
we found a right shift to higher mean values of the IATs. For
ICMP traffic, the mean values of the IATs were the same for
both replacement policies, but the RR policy had a PDF with
a greater spread and shorter height.

Thus, we can conclude that the effects of processor on
the device’s network traffic IATs are very consistent and
noticeable, since it is a very crucial part of a computer system
and will cause instructions (hence, packets sent or received)
to be executed with different but consistent delay distributions.
Variations made to the processor (e.g., clock speed, data cache
replacement policy, or instruction cache replacement policy)
are instantly differentiable from the original configuration by
analyzing UDP, TCP, and ICMP traffic IATs. This lends itself
very well to counterfeit detection, since crucial components
like the processor are usually the most expensive in a system
and hence most susceptible to counterfeiting.

V. REAL SYSTEM EXPERIMENTS AND RESULTS
We used the same testbed and setup (Figure 1) as was used

for the FPGAs in the previous section. The DUT was a real
computer. The computer used was a Dell Optiplex 7010 with
an Intel Core i7-3770 3.4 GHz processor, 6 GB RAM, running
Ubuntu 11.10 version of Linux. The computer’s ICMP reply
traffic (56 bytes and 1400 bytes, every 1 ms), ICMP request
traffic (56 bytes and 1400 bytes, every 1 ms), UDP traffic (56
data bytes at 1 Mbps), and TCP traffic (rate not controlled)
were captured, and the IATs were analyzed statistically as
before. All captures were four 15-minute captures for each
traffic type except for TCP, whose high data rate allowed
us to use four 5-minute captures to obtain approximately the
same number of blocks of 2,500 packets for analysis as the
other traffic types. These tests were repeated with different
processors, and their traffic IATs were processed by a neural
network based classifier (discussed in the next section).
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Fig. 5: PDFs of UDP IATs for clock variations
on the GR-XC3S-1500 board.
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Fig. 6: PDFs of TCP IATs for clock variations
on the GR-XC3S-1500 board.
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Fig. 7: PDFs of ICMP (56 bytes) reply IATs for
clock variations on the GR-XC3S-1500 board.
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Fig. 8: PDFs of ICMP (1400 bytes) reply
IATs for clock variations on the GR-XC3S-1500
board.
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Fig. 9: PDFs of ICMP (1400 bytes) reply IATs
for processor data cache variations on the GR-
XC3S-1500 board.
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A. Neural Network Based Classifier
Neural networks, or specifically, artificial neural networks

(ANNs), are mathematical models derived from and inspired
by biological networks of neurons. They are used to model
relationships between inputs and outputs. The relationships
are modeled as a series of interconnections between neurons,
which accept an input, operate on it based on some function,
and then produce an output. Thus, the entire ANN can be
thought of as a compound of all the functions represented
by the individual neurons, taking in an input and producing
an output based on the input. Just like the biological nervous
system that they mimic, these ANNs can be trained and used
for pattern recognition.

For our IAT-based counterfeit detection technique, we use
an ANN-based classifier. The pattern recognition technique we
use (patternnet function in MATLAB) involves the use of the
feedforward class of ANNs on which to train and classify
the IAT-based signatures. Feedforward ANNs are essentially
acyclic variants of ANNs, with each neuron operating on the
output of the neuron before it, thereby forming a complex
one-way network of neuron functions. The feedforward ANN
is set to use scaled conjugate gradient backpropagation as
the training function. The feedforward network used has two
layers, hidden and output. This kind of ANN can learn any
input-output relationship provided there are enough hidden
neurons. We empirically found 50 hidden neurons to be
optimal for our application. For a traffic type, we form PDFs
from IATs of blocks of 2,500 packets, and use them to train the
ANN. This is done for each device configuration. The trained
ANN then contains the signature database against which the
test PDFs are compared. The ANN returns a value ranging
from 0 (dissimilar) to 1 (identical) for each trained signature

when fed a test PDF. The highest value from amongst these,
which signifies the signature most similar to the test PDF, is
chosen as the device to classify the test PDF. This training
process is repeated for each traffic type, thereby creating a
trained ANN for each traffic type. Then, the corresponding
ANN is used for testing PDFs of each traffic type.

B. Tests Conducted
With the i7 processor, we captured all the traffic types men-

tioned. Then, we replaced the i7 processor on the motherboard
with an Intel Core i3-3220 3.3 GHz processor (Figure 11) and
repeated the experiments. For the captured traffic types, the
PDFs of IATs were plotted. We found that ICMP requests
(56 bytes) sent from the computer gave the best separation of
PDFs. Figure 12 shows the PDFs of IATs of ICMP requests (56
bytes) sent out from the computer every 1 ms. The i3 PDFs
peak at the required mean IAT of 1 ms (ICMP send rate),
while the i7 PDFs have a smaller peak at 1 ms and two lateral
peaks. This separation between the two can be differentiated
by a classifier. Other traffic types are not so clearly separated.
UDP results are almost the same except at the tips of the PDF
peaks. Figure 13 shows the PDFs for UDP IATs.

In all, we had five i3s and five i7s. These IAT experiments
were repeated with the four remaining i3s and i7s, and all
traffic types were captured. For each traffic type, the following
was done. The captured traffic’s IATs were fed into an ANN-
based classifier as PDFs with 300 bins formed from blocks of
2,500 packets. Histograms of an i3 and an i7 were set aside
for testing, and the remaining four i3s and i7s were used to
train the ANN. The training and testing were again repeated
by choosing another i3 and i7 as the testing pair (with the
remaining four i3s and i7s for training) each time, until all the
i3 and i7 pairs had been used as the testing pair. Then, the five



Fig. 11: Processor on the Optiplex 7010’s moth-
erboard.
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Fig. 12: PDFs of ICMP (56 bytes) request IATs
for processor variations on Optiplex 7010.
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Fig. 13: PDFs of UDP IATs for processor vari-
ations on Optiplex 7010.

classifier results were averaged. The other traffic types were
similarly used to train ANNs and run classification tests.

A good counterfeit detection technique is expected to detect
as many counterfeits as possible while not making too many
false detections. Hence, the recall value, which is the ratio of
the number of true positives (Tp) to the sum of the number of
true positives and false negatives (Fn), is an insightful measure
of the actual effectiveness of a counterfeit detection technique.

Recall =
Tp

Tp+ Fn
(1)

Table I shows the recall values for the different traffic types
for five i3s and i7s. The recall values for ICMP (56 bytes)
requests are the highest at 0.78. Other traffic types have lower
recall values of 0.61 to 0.66 due to less separation in the PDFs.

VI. DISCUSSION AND LIMITATIONS
Statistical analysis of IATs can be used to detect the

modification of an internal component of a device like a
processor. This can be done with a quick capture of just 2,500
packets to form IAT PDFs (which are used as signatures) that
are compared to a signature database containing legitimate and
illegitimate device signatures. In an implementation scenario,
this legitimate signature could be provided by the manufacturer
by a secure means to the customer, and the illegitimate
signatures may be provided by a government agency (e.g.,
DHS or DIA). The recall results were shown for all traffic
types, and the results for ICMP requests (56 bytes) traffic are
the most promising for this technique of counterfeit detection.
Other traffic types gave lower recall rates. The stability of the
IAT signatures across multiple i3s and i7s was also shown.

Thus, this technique of counterfeit detection based on
network traffic IATs is very fast, since it only needs 2,500
packets to provide results. It is cheap, since it does not need
any expensive and specialized hardware to capture traffic and
perform detection. The required equipment is a computer,
nTAP, and NetFPGA. It is simple since it just involves cap-
turing traffic and creating PDFs of IATs, hence there are
no implementation difficulties. This method is non-invasive
and non-destructive, as it monitors a device’s network traffic
without affecting the hardware or software of the device in
any way. Thus, it can be used on devices without damaging
them or corrupting their software. It is also, we believe, the
first network-based counterfeit detection technique. Being that
it is simple and network-based, it can be used on a wide
range of devices and device types. Thus, it is also a broad-
scoped technique, as all that is required is that the DUT has a

network protocol stack and is able to send and receive traffic.
This can be leveraged to deploy the technique remotely on a
large network. This technique is also much faster and simpler
than running benchmark software to determine changes to
the device, as there is no need to individually access each
device and install custom benchmarking software. The nodes
can simply be booted, connected to a switch or access point,
pinged (in the case of ICMP) for 2,500 packets, and classified.

However, the network-based nature of the technique brings
with it the limitation that the DUT is required to be net-
worked. This is a limitation that applies to all network-based
approaches. Also, components that are non-crucial or those
that do not directly affect the packet generation process will
perhaps not be so easily detected by this technique. These
component variations are perhaps more easily identifiable
using a benchmarking technique. Another limitation of the
technique is that when deployed across wide-area networks
(WANs), it will end up fingerprinting the link itself, where
the dynamic WAN paths introduce large delays and mask the
subtle delays caused by the processors. Hence, this technique
is only suitable for local-area networks (LANs).

VII. CONCLUSION AND FUTURE WORK
This work illustrated the effects that device components

have on network traffic. We characterized the individual ef-
fects that device components, such as a processor’s clock,
data cache, and instruction cache, have on different types of
network traffic. This characterization was based on the IATs
of the packets sent out of the FPGA DUT. The IATs were then
visualized using PDFs. Each device component was varied one
at a time, and the PDFs were compared to bring out the effects
of that particular device component on network traffic.

We then used this technique of IAT-based analysis to
determine the legitimacy of a device and its components.
Counterfeit detection is of special interest because of all the
counterfeit devices that have plagued industry and the military
alike, costing them time, money, and putting lives at risk.
Our technique is a simple and cheap, first-of-its-kind network-
based approach to counterfeit detection. We conducted similar
experiments as we did for the FPGAs on a real computer
and obtained promising recall results of up to 78.7% using
a classifier.

Possible future work includes, experimenting on more
computers for different types of component combinations. We
plan to test other processors like Intel Core i5. We will also run
experiments that vary multiple components at a time to observe
the effects they have on network traffic. Also, we plan to use
other classification algorithms (e.g., cosine similarity, cross-



TABLE I: Recall values for five i3s and i7s for various traffic types.

TCP UDP ICMP (56 B) response ICMP (1400 B) response ICMP (56 B) request ICMP (1400 B) request
i7 0.776 0.613 0.674 0.698 0.746 0.743
i3 0.560 0.679 0.585 0.527 0.827 0.527
Traffic avg 0.668 0.646 0.630 0.613 0.787 0.635

correlation) to compare with the ANN-based one we have
used. We will also examine the potency of the technique when
targeting a loaded system. While we can expect a new system
to be idle when we apply our counterfeit detection technique,
it is useful if one could check the legitimacy of systems that
are already deployed in networks and are executing jobs that
cannot be halted for the counterfeit tests.
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