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Abstract

We propose a passive blackbox-based technique for de-
termining the type of access point (AP) connected to a net-
work. Essentially, a stimulant (i.e., packet train) that em-
ulates normal data transmission is sent through the access
point. Since access points from different vendors are ar-
chitecturally heterogeneous (e.g., chipset, firmware, driver),
each AP will act upon the packet train differently. By apply-
ing wavelet analysis to the resultant packet train, a distinct
but reproducible pattern is extracted allowing a clear clas-
sification of different AP types. This has two important ap-
plications: (1) as a system administrator, this technique can
be used to determine if a rogue access point has connected
to the network; and (2) as an attacker, fingerprinting the
access point is necessary to launch driver/firmware specific
attacks. Extensive experiments were conducted (over 60GB
of data was collected) to differentiate 6 APs. We show that
this technique can classify APs with a high accuracy (in
some cases, we can classify successfully 100% of the time)
with as little as 100000 packets. Further, we illustrate that
this technique is independent of the stimulant traffic type
(e.g., TCP or UDP). Finally, we show that the AP profile is
stable across multiple models of the same AP.

1. Introduction

Fingerprinting networked devices has been around for
many years. The general idea is to extract leaked informa-
tion about the device’s software, operating system, or hard-
ware components. This can be accomplished in an active or
passive manner. Active approaches usually entail interro-
gating a node with various types of packets. These packets
may vary in size and can be either legitimate or malformed.
The goal of active techniques is to trigger a response that is
unique to the entity that is being fingerprinted. Passive tech-
niques are often more desirable to the fingerprinter, however
they usually give less information about a node than their
active counterpart. Generally, passive approaches do not in-

ject any stimulant into the system of interest, rather they
capture data silently with the goal of not alerting or disturb-
ing the system being surveilled. The data is later analyzed
to reveal patterns that are unique to the system of interest.

As with any tool, the intentions of the user determine
whether the tool is considered bad or good. Accordingly,
fingerprinting tools can be used for offensive and defen-
sive purposes. In this discussion, we assume that offensive
use of fingerprinting tools is usually done by the attackers
while the good guys usually conduct defensive fingerprint-
ing. Offensive fingerprinting is often done by attackers to
gain enough information about a node’s characteristics to
execute a precise attack on the unsuspecting node. In gen-
eral, the more the attacker knows about the system that he
intends to attack, the more likely he will be successful with
the attack. Accordingly, reconnaissance is one of the most
time consuming, and most important stages of an attack life
cycle. Fingerprinting for defense can be used by network
administrators to search for nodes on the network that do
not have a particular architecture or configuration. For ex-
ample, a network administrator may use such a method to
search for rogue nodes who gained access to the network
using valid credentials (possibly acquired via a phishing at-
tack) and therefore remained undetected by an intrusion de-
tection system.

There have been many vulnerabilities discovered in
wireless devices that have sparked increased interest in fin-
gerprinting wireless nodes. The authors of [12] present a
kernel-level exploit for 802.11 device drivers on a Windows
platform. There are also repositories (e.g., [1], [2], and [8])
of known vulnerabilities for various models of wireless de-
vices that describe, for example, methods to crash, bypass
authentication, or completely take control of a device. Table
1 highlights a sample of known vulnerabilities for various
access points. The effectiveness of an exploit on these vul-
nerabilities is hinged upon identifying the type of wireless
device so the best attack vector is chosen against the target.
On the other hand, it behooves a network administrator to
fingerprint and identify rogue devices that are not managed
to prevent these targeted attacks.



Table 1. Known Vulnerabilities in APs
Model Number Description Impact

Netgear WN802T Specially crafted EAPoL-Key or association request packets can cause reboot or hang-up DoS
3Com 8760 Authentication mechanism improperly restricts access to administration pages Unauthorized access
Cisco 4400 A memory leak in the handling of SSH management connections can cause a crash DoS
Cisco 1300 Injecting malicious packets can hang up the AP DoS
Cisco 1130 IOS HTTP server injected with malicious code can invalidate authorization Unauthorized Access

ASUS WL-500W Buffer overflow can invalidate authorization Unauthorized Access
D-Link DWL-1000AP The administrative password is not stored properly Unauthorized Access

D-Link DIR-400 Buffer overflow can invalidate authorization Unauthorized Access
Netgear WNDAP330 Improperly handling user request can hang up AP DoS

Nortel 2200 Crafted user association request can cause hang-up DoS
Belkin F5D6130 Crafted SNMP request can cause hang-up DoS
Proxim AP-4000 Hard coded static WEP key invalidates authorization Unauthorized Access

In this paper we introduce a blackbox-based wireless de-
vice fingerprinting technique that can be used for offensive
or defensive purposes. Blackbox testing is a popular tech-
nique used to test software where the contents are unknown
to the tester [10] (hence the name blackbox). To conduct the
test, a stimulant is applied to the input of the software and
the output is observed. From this, the tester can infer how
the software (i.e., blackbox) acted on the input. In our case,
the blackbox is an AP and just as the software testers are
not privy to source code during software blackbox testing,
we are not privy to the proprietary architecture of the AP.
The input to our blackbox is a packet train and the output
is the same packet train, however individual elements (i.e.,
packets) have been shifted in time. The shifting is a result
of the internal architecture of the AP. Further, since each AP
has a different architecture, this shifting is unique to the AP.
We use wavelet analysis to amplify and extract the unique
patterns generated by the internals of the AP.

The rest of this paper is organized as follows. In Section
2, we present our contribution in the context of other related
works. In Section 3 we present our technique and detection
methodology. Section 4 introduces how to generate master
signatures and their optimal bin size. In Section 5, we give
our experimental setup while Section 6 presents the experi-
mental results. In Section 7, we present current limitations
of our technique. The paper is concluded and future work
is given in Section 8.

2 Related Work

The existing work in this area can be placed into three
categories: OS fingerprinting, host fingerprinting, and de-
vice type / driver fingerprinting.

The first category, OS fingerprinting, deals with look-
ing at different features of the protocol stack to differentiate
different operating systems. Nmap [4] and Xprobe [9] are
active fingerprinting tools that create special testing pack-
ets to determine which OS is being used by the target. In
contrast to the aforementioned active approaches, p0f [6]

uses TCP/IP protocol information to passively determine
the OS. SinFP [7] is a new approach to OS fingerprinting
that bypasses some of the emerging limitations of Nmap
(i.e., working with PAT/NAT configurations and emerging
packet normalization technologies). SinFP has both an ac-
tive and a passive mode. Although these methods are effec-
tive for OS fingerprinting, the goal of our work is to differ-
entiate wireless hardware devices.

Another body of work that is relevant to the proposed
work deals with fingerprinting specific hosts. Seminal work
in this area was introduced by Kohno et al. in [21]. In
[21], a method for remotely fingerprinting a physical de-
vice by exploiting the implementation of the TCP protocol
stack was proposed. The authors use the TCP timestamp
option of outgoing TCP packets to reveal information about
the sender’s internal clock. The authors’ technique exploits
microscopic deviations in the clock skews to derive a clock
cycle pattern as the identity for a device. The authors of [20]
take a similar approach of that in [21] (i.e., using clock skew
to uniquely identify nodes), however the goal of [21] is to
uniquely fingerprint APs. Also, instead of getting the times-
tamp from TCP packets, they obtain the timestamp from
802.11 beacon frames. The aforementioned works seek to
uniquely identify specific devices. In contrast, our work fo-
cuses on identifying specific device types. Identifying dif-
ferent types of nodes rather than specific nodes enables a
profile to be built for a group of nodes rather than for a
single node. This profile can then be used to predict the
behavior of an entire cohort.

Another category of work focuses on fingerprinting de-
vice type / driver. In [13, 14, 15, 16], we discuss passive
techniques for identifying the type of wireless card used by
a node during normal node operation. Spectral analysis is
used to determine identifying frequencies associated with
ambiguously specified medium access control (MAC) func-
tions in the 802.11 standard. Similar to the work done in
[13, 14, 15, 16] the authors of [18] use statistical informa-
tion of the 802.11 management frame transmission to fin-
gerprint the device type / driver. This work focuses on sta-
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Figure 1. Overview of our approach

tistical patterns generated as a result of different software
components of network cards. In contrast, our work seeks
to determine how the hardware of an AP uniquely modu-
lates an input signal in order to fingerprint the AP. Further,
the techniques proposed in [13, 14, 15, 16, 18] are limited
to NICs, where our technique can be extended to any ar-
chitecturally different wireless device. The work that is the
most closely related to our work is that proposed in [11]. In
[11], the authors fingerprint wireless APs by probing them
with various regular and malformed packets. However, this
technique is active and can be easily detected by a malicious
user who controls the access point.

In this paper we present a passive wireless device
type fingerprinting approach that uses a blackbox-based
paradigm. This technique can be used for offensive or de-
fensive purposes and is extensible to any wireless device.

3 Detecting Methodology

3.1 Problem Definition

Given a set of APs for which master signatures are
known, we seek to identify an unknown AP based on the
observation of its egress traffic. This problem is more for-
mally stated as follows. We have a candidate set of APs, A,
where A = {a1, a2, ..., an} and n is the number of unique
types of APs. For each type of AP, ai, where aiϵA, there is
a feature tuple Fi = {Ti, bi} that distinguishes it from all
other APs in the set A. Ti is the sequence of packet inter-
arrival time (IAT) values used as the input signal for signa-
ture generation and bi is the corresponding optimal bin size
parameter for sampling the signal. Using the feature tuple
Fi = {Ti, bi} we derive a master signature si for each ai,
resulting in a set of master signatures S = {s1, s2, ..., sn}.

For traffic captured from an unknown AP, ax, we extract
a sequence of IAT values to form a signal denoted as Tx.
Using its feature Tx, we seek to identify ax. Similarly, we
need to generate a signature, denoted as sx, for the unknown
AP type, ax. Then we perform a pairwise comparison of the
unknown signature sx with all the master signatures ∀siϵS.
For the si that is the closest to sx, the corresponding type
ai is concluded to be type for ax. An overview of our ap-
proach is demonstrated in Figure 1. Details of our proposed

solution are provided in the following sections.
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Figure 2. Wavelet filter

3.2 Feature Extraction

Before feature extraction can occur, an output from the
unknown AP that we seek to identify must be observed. To
do so, we send traffic that emulates normal data transmis-
sion through the AP to a destination controlled by the fin-
gerprinter for traffic capturing. Note, we do not use spe-
cially crafted packets to probe or change the operation of
the AP. Thus, we remain transparent while obtaining data
for fingerprinting.

Once traffic is captured, the fingerprinter needs to ex-
tract features that will help to identify the type of AP. The
feature chosen to characterize the network traffic behav-
ior is the packet IAT. IAT measures the delay (∆t) be-
tween successive packets, thus characterizing the rate of
the traffic flow. Using packet IATs, we produce a signal
T = (∆t1,∆t2, ...,∆tp) where p is the number of packets
captured. We assert that the traffic rate characterized by the
IATs is influenced in a systematic manner by the architec-
ture of the AP, which differs depending on its type. The
results in Section 6 illustrate the viability of this assertion.

3.3 Signature Generation

We use wavelet analysis in our approach for sig-
nature generation due to its well-known capability for
multi-resolution decomposition suited for analysis of non-
stationary signals. For additional understanding of wavelets
refer to [22]. Wavelet analysis has proven to reveal discrimi-
nating attributes of a system that are not directly observable.
Wavelet analysis of network traffic [17, 19] has relied on



Figure 3. Detailed coefficients of a signal from a Cisco AP, Linksys AP and Netgear AP

this property to detect attacks, characterize wireless perfor-
mance, etc. Here we apply the wavelet transform to the IAT
signals, decomposing them into wavelet coefficients. The
corresponding wavelet coefficients constitute the signature
and are used for comparison to identify an AP.

Our implementation of the wavelet transform is based on
a filter bank of high-pass (h[n]) and low-pass (g[n]) filters
as illustrated in Figure 2. At each level, the low-pass filter
produces approximate coefficients and the high-pass filter
produces detail coefficients. The outputs are downsampled
by 2. The high-pass results recursively become the input
into the next level. To construct the filter bank we use the
Haar wavelet. The approximate and detail coefficients of
the Haar wavelet at level j are defined by equations 1 and
2 respectively. The subscript k refers to the index of the
coefficient vector.

aj,k ≡ 1√
2
(X2k−1 +X2k) (1)

dj,k ≡ 1√
2
(X2k−1 −X2k) (2)

For our analysis, based on extensive experiments, we re-
tain the detail coefficients and discard the approximate co-
efficients. As an example, Figure 3 shows the detail coef-
ficients of the IAT signals from Cisco, Linksys, and Net-
gear APs. The signature for AP ai is denoted as si =
(di1, d

i
2, ...d

i
j), where dij is the vector of detail coefficients

produced at level j. We use the same approach to generate
the master signatures for our candidate group of APs as we

do for the unknown AP that we wish to identify. However,
the signatures for the candidate group are pre-computed
from a set of traffic captures used to train our system and
are not a part of the experimental analysis. The master sig-
natures are stored in a repository for matching against un-
known APs.

To help determine the best wavelet levels to use for sig-
natures, we evaluated the energy concentrated at the differ-
ent levels for an arbitrary set of traffic traces generated from
candidate APs. The wavelet energy is defined as the sum of
the square of detailed wavelet coefficients divided by the
length of the vector. This can be expressed mathematically
as:

Ej =
1

Nj

∑
k

|dj,k|2 (3)

Figure 4 shows the wavelet energy for all six APs. It
can be observed that the difference in the energy among the
APs are the most pronounced at wavelet levels 2, 3, 4, and
5. Based on this evaluation, we selected the detail coeffi-
cients from levels 2, 3, 4, and 5 to generate the signature.
Therefore, the signature becomes si = (di2, d

i
3, d

i
4, d

i
5).

3.4 Similarity Measure

Using the signatures derived from the wavelet detail co-
efficients, we measure the similarity of the unknown to the
candidate set of APs. Cross-correlation is commonly used
to calculate the similarity between two signals for applica-
tions in pattern matching. For our analysis we implement
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Figure 4. Energy graph of six APs

the circular cross-correlation (cxcorr) shown in algorithm
1. For two vectors of detail coefficients dx and di, left-shift
di in a circular manner, then perform the dot product of dx

with the shifted di. The result is a sequence of l values,
where l is the length of di. The maximum value of this se-
quence is assigned to the correlation parameter, c. That is,

cij = max{cxcorr(dxj , dij)}, 0 ≤ cij ≤ 1 (4)

where cij is the measure of similarity of the detail coeffi-
cients of the unknown ax to a candidate ai, where aiϵA, at
level j. It follows that the total similarity measure, simi,
is the sum of the correlation measure of the unknown ax to
the candidate ai across all j levels:

simi =
5∑

j=2

cij (5)

For each AP in which we have a master signature, we
use algorithm 2 to calculate the total similarity between ax
and ai, ∀aiϵA. The ai that has the greatest simi is assigned
as the type for ax. Table 2 shows the correlation cij per level
between different APs. For APs that are of the same type,
the similarity approaches 1 across all levels, whereas the
correlation is lower at levels 2 through 5 for APs that are
of a different types. This observation further supports the
decision to use levels 2-5 for distinguishing APs.

Algorithm 1 maxCXCORR(dx, di)
1: for l = 1 : length(di) do
2: cxcorr(l) = dx * d′i
3: di = [di(end)di(1 : end− 1)] % circular shift
4: end for
5: c = max(cxcorr)
6: return c

Algorithm 2 sim(Tx, Ti)
1: Tx = sampleData(Tx, binsize)
2: Ti = sampleData(Ti, binsize)
3: sim = 0
4: [gx, hx] = haar(Tx)
5: [gi, hi] = haar(Ti)
6: for j = 2 : 5 do
7: [gx, hx] = haar(hx)
8: [gi, hi] = haar(hi)
9: sim = sim + maxCXCORR(hx, hi)

10: end for
11: return sim

3.5 Summary of Approach

Our methodology uses the following steps:
Step 1: For a given traffic capture from an unknown AP

type ax, extract sequence of IAT values to generate the fea-
ture signal Tx.

Step 2: Apply wavelet transform to decompose the sig-
nal Tx into detail coefficients at different levels j. Use the
coefficients to form the signature sx = (dx1 , d

x
2 , ..., d

x
j , ).

Step 3: Measure the similarity of sx to the set of master
signatures S using circular cross-correlation.

Step 4: Select the AP type ai that has the highest simi-
larity measure and assert ai to be the identity of ax.

Table 2. Similarity measure between APs
Level maxCXCORR maxCXCORR maxCXCORR

Dlink1 vs Dlink2 Dlink1 vs Cisco Dlink1 vs Netgear
1 0.991 0.99 0.97
2 0.995 0.611 0.627
3 0.993 0.781 0.751
4 0.996 0.812 0.821
5 0.991 0.824 0.822
6 0.992 0.991 0.993

4 Master Signatures

Now that we have described our approach, let us take a
moment to describe the process used to derive the master
signatures for the candidate set of APs listed in Table 3. As
stated earlier, the master signatures are used for similarity
testing to identify an unknown AP.

For each AP, we generated 10 packet traces each con-
taining 100,000 packets. From each trace, we extracted the
IAT values as described in Section 3.2 to generate the fea-
ture signal T . The process of deriving the master signatures
is two-fold. First we must determine the bin size bi used to
sample the feature signal T for each particular type of AP.



Once we determine the best bin size, we select 1 out of the
10 packet traces to use for generating the master signature.

We empirically evaluated 10 different bin sizes from 1
us to 10 us, in 1 us intervals. For each bin size we perform
a pairwise comparison between packet traces from one AP
to traces from the other remaining APs, maintaining a cu-
mulative sum of the similarity measure for each pair across
the set of 10 traces. The bin size that resulted in the lowest
cumulative similarity is chosen as the best bin size. That is,
the optimal bin size is the bin size that generated signatures
that were the most distinct from the other signatures. Algo-
rithm 3 demonstrates this process, where the input variable
T is the set of feature signals from all the APs.

Using the best bin size, determined by Algorithm 3, we
seek to find the individual packet trace from the set of 10
that is best for generating the master signature to represent
each AP. For each packet trace, we measure its similarity
to the traces from the remaining APs. The packet trace out
of the set of 10 that causes the least similarity is chosen
to generate the master signature. This process is shown in
Algorithm 4.

Table 3. AP list
Brand Model Number
Cisco Aironet 1130 AG
Netgear WAG102
Linksys WAP54G
D-Link DWL-2100AP
TRENDnet TEW 434APB
ZyXEL G-570S

5 Experimental Setup

In this section we discuss the experimental setup. Sep-
arate scenarios were generated for defensive and offensive
fingerprinting with our technique.

5.1 Scenario 1 - Fingerprinting for De-
fense

5.1.1 Defense Model

From a defensive perspective, the objective is to identify
wireless devices (independent of the end user) that do not
belong in an effort to preserve the security of the network.
A wireless device unknown to a network administrator, ma-
licious or benign, can expose a network to vulnerabilities
and attacks, thus compromising the security of the entire
network and its users. We put forth a defense model that
presents the assumption of the capabilities of the network

Algorithm 3 Find Best Binsize(T)
1: numAP = 6;
2: numTraces = 10
3: binsize = (1 : 10) * 10−6

4: s = zeros(size(binsize))
5: for m = 1 : numAP do
6: n = [(1 : m− 1) (m+ 1 : numAP )]
7: for b = 1 : length(binsize) do
8: for tm = 1 : numTraces do
9: for j = 1 : (numAP − 1) do

10: for tn = 1 : numTraces do
11: s(b) = s(b) +

sim(T (m, tm), T (n(j), tn), binsize(b))
12: end for
13: end for
14: end for
15: end for
16: [value, index] = min(s)
17: best binsize(m) = binsize(index)
18: end for
19: return best binsize

Algorithm 4 Build Master Signature(T)
1: numAP = 6
2: numTraces = 10
3: s = zeros(size(numTraces))
4: bestBinsize = Find Best Binsize(T )
5: for m = 1 : numAP do
6: n = [(1 : m− 1) (m+ 1 : numAP )]
7: for tm = 1 : numTraces do
8: for j = 1 : (numAP − 1) do
9: for tn = 1 : numTraces do

10: s(tm) = s(tm) +
sim(T (m, tm), T (n(j), tn), bestBinsize(m))

11: end for
12: end for
13: end for
14: [value, index] = min(s)
15: masterTrace(m) = T (m, index)
16: end for
17: return masterTrace
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Figure 5. Experiment Environment

administrator. In this scenario, it is expected that there
will be traffic traversing the unknown wireless device to the
wired segment of the network without the need to manu-
facture stimulant traffic by the fingerprinter. We assume
that the network administrator can passively listen to traf-
fic traversing the wired side (originating from the wireless
side) of the network using a mirror port on a switch. Based
on the egress traffic observed from an unknown wireless de-
vice, the network administrator seeks to determine its iden-
tity. Establishing this identity enables an administrator to
control access as well as execute countermeasures (e.g., to
take device offline).

5.1.2 Experimental Setup

To emulate normal traffic, the sender (wireless side) and
receiver (wired side) run iperf [3]. The sender sends data
packets to the receiver on the designated port. The data is
passively monitored using a physical tap (nTAPs [5]). How-
ever, in an actual deployment it is expected that the sys-
tem administrator will capture data on a mirror port of the
switch. We set the transmission rate to 1Mbps for both the
UDP and TCP experiments. The sender sends data packets
to the receiver on the designated port. We set the TCP max-
imum segment size (MSS) to 100 for the TCP experiments
and the packet size is set to 50 bytes in the UDP experi-
ments. These small packets cause more packets to be sent
to meet the specified data rate of 1Mbps. This inundation
of packets put stress on the APs and allow differentiating
aspects to present themselves in the resultant packet train.

The traffic is passively monitored on the wired side using a
sniffer.

To mimic real traffic and real scenarios we generate TCP
and UDP traffic. Additionally, we generate traffic flows
without encryption, with wired equivalency protocol (WEP)
encryption, and wifi protected access (WPA). Finally, we
consider the aforementioned combinations of traffic types
without (Figure 5(c)) and with (Figure 5(d)) competing
wireless traffic (TCP and UDP traffic with random rate dis-
tributions). For the scenarios that included cross-traffic, we
follow the same method as above, however we add random
traffic that goes through the AP. This scenario is closer to
a real scenario as it contains traffic other than that used for
fingerprinting. One laptop is used to generate TCP traffic.
Another is for generating UDP traffic. Both laptops gen-
erate traffic with a random transmission rate ranging from
0 to 200Kbps that bursts repeatedly for 5 seconds. Table 4
summarizes the different combinations of traffic types used.

5.2 Scenario 2 - Offensive Fingerprinting

5.2.1 Threat Model

From an offensive perspective, the objective is to gather
attack-relevant information on a target wireless device
through network-based surveillance. An attacker seeks to
increase its ability to gain a foothold and penetrate a de-
fended network. We assume the attacker is able to associate
with the wireless device (i.e., AP) using legitimate creden-
tials. The attacker could use stolen (e.g., via phishing) cre-



Table 4. Summary of different combinations
of traffic types

Case # Transport Encryption Competing
Protocol Traffic

1 UDP None No
2 UDP WEP No
3 UDP WPA No
4 TCP None No
5 TCP WEP No
6 TCP WPA No
7 UDP None Yes
8 UDP WEP Yes
9 UDP WPA Yes
10 TCP None Yes
11 TCP WEP Yes
12 TCP WPA Yes

dentials from an authorized user or have its own user access
(e.g., AT&T account to access the network at Starbucks).
We further assume that the attacker has two network inter-
face cards (using two cards in one machine or two sepa-
rate machines) that can be used to independently send and
receive traffic. The attacker also has standard capabilities
of capturing traffic using a wireless sniffer. The attacker
does not have access to the wired side of the network so fin-
gerprinting must be done using the wireless segment only.
To do so, the attacker sends wireless traffic from one NIC
through the target wireless device back to itself at the sec-
ond NIC. Unlike scenario 1, the attacker has to generate
artificial (legitimate) traffic in order to have observable traf-
fic from the target. However, the traffic is transparent to the
target because the attacker does not use specially crafted
packets to probe or change the operation of the target AP.

5.2.2 Experimental Setup

To emulate normal traffic, the sender (wireless side) and re-
ceiver (wireless side) run iperf [3]. The sender sends data
to the receiver on the designated port. The data is passively
monitored wirelessly by the attacker’s card that is desig-
nated for receiving. As in scenario 1, to emulate real traffic
we generate TCP and UDP traffic. We set the transmis-
sion rate to 1Mbps for both the UDP and TCP experiments.
The sender sends data packets to the receiver on the desig-
nated port. We set the TCP maximum segment size (MSS)
to 100 for the TCP experiments and the packet size is set
to 50 bytes in the UDP experiments. These small packets
cause more packets to be sent to meet the specified data
rate of 1Mbps. This inundation of packets put stress on
the APs and allow differentiating aspects to present them-

selves in the resultant packet train. Additionally, we gen-
erate traffic flows without encryption, with wired equiva-
lency protocol (WEP) encryption, and wifi protected access
(WPA). Finally, we consider the aforementioned combina-
tions of traffic types without (Figure 5(c)) and with (Figure
5(d)) competing wireless traffic (TCP and UDP traffic with
random rate distributions). For the scenarios that included
cross-traffic, we follow the same method as above, how-
ever we add random traffic that traverses the AP. This sce-
nario is closer to a real scenario as it contains traffic other
than that used for fingerprinting. One laptop is used to gen-
erate TCP traffic. Another is for generating UDP traffic.
Both laptops generate traffic with a random transmission
rate ranging from 0 to 200Kbps that bursts repeatedly for 5
seconds. Table 4 summarizes the different combinations of
traffic types used.

5.3 Data Collection

In our experiments, each trace contains 100,000 packets
and is approximately 1 minute long. We conduct experi-
ments in twelve cases for scenario one (traffic between a
wireless node and a wired node) as well as twelve cases for
scenario two (traffic between two wireless nodes or cards)
as listed in Table 4. Thus a total of 24 different cases were
considered.

As mentioned in Section 4, for each case a master signa-
ture (24 master signatures) was created by training our clas-
sifier using 10 traces/case. Therefore, there are 6APs, 24
cases, 10 traces/case so a total of 1440 traces are used for
training. Next, we randomly choose another 100 unknown
traces for each case that is composed of traces created by
different APs. So in scenario one, there are a total of 120
traces per access point (10 for each of the 12 cases in sce-
nario 1) to develop the 12 master signatures and 1200 traces
(about 30 gigabytes of data) to test the accuracy of the clas-
sifier. Scenario 2 also has 120 traces per access point to
develop the corresponding 12 master signatures and the re-
maining 1200 traces (another 30 gigabytes of data) to test
the accuracy of the classifier.

6 Experiment Results

In this section we present results that show the effective-
ness of our technique given the aforementioned scenarios.

6.1 Overall Results

Figures 6, 7, 8, and 9 illustrate the overall effectiveness
of our technique. Specifically, the figures show that the ac-
curacy of every scenario approaches 100% as the amount
of traffic used to fingerprint the AP increases. Addition-
ally, the results show that our technique can successfully
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Figure 6. Fingerprinting for Defense - No
Cross-Traffic
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Figure 9. Offensive Fingerprinting - Cross-
Traffic

fingerprint APs independent of encryption, transport pro-
tocol, and background traffic on the wireless network. As
expected, the fingerprinting for defense scenarios (Figures
6 & 7) are more accurate than the offensive fingerprinting
scenarios (Figures 8 & 9). This is because in the defensive
scenario (scenario 1) the network administrator is capturing
packets on the wired link, thus the wireless traffic traverses
the wireless link once. However, in the offensive scenario
(scenario 2) the attacker captures the resultant packet train
on the wireless side. Thus, in addition to the input and out-
put signals interfering with each other (because the attacker
is sending and receiving at the same time), there is an ad-
ditional variable delay (resulting from its medium access
control protocol) from accessing the wireless link twice.

6.2 Stability Across Multiple Instances of
the Same Access Point

To ensure that our technique can identify general types of
APs (not just a specific device), we conducted experiments
with several types of APs for which we had two of each.
The APs used in these experiment are Dlink, Trendnet, and
Zytel. Figure 10 gives the corresponding energy graphs for
each pair of APs. The figure shows that each instance of an
AP type has nearly the same energy graph, indicating that
each instance of the AP type acted similarly upon the packet
train. Thus, our classifier would classify exact models of
AP the same. This is important if one seeks to fingerprint a
cohort of devices as opposed to one specific device.

7 Limitations

As with every scheme, there are limitations with ours.
Although, the results were promising the set of APs used
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was limited. Additionally, the experiments were conducted
using a wireless testbed with emulated traffic as opposed to
a live network with real traffic.

8. Conclusion and Future Work

In this paper we present a passive blackbox-based ap-
proach to AP fingerprinting that can be used for offensive
or defensive purposes. To our knowledge this is the first ap-
proach of its kind. We illustrate, with extensive experiments
(over 60GB of data), the efficacy of the proposed technique
in a multitude of scenarios. In the future we plan to extend
this technique to fingerprinting other wireless devices (e.g.,
smartphones). The aforementioned limitations will also be
addressed in our future work.
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