
 1

Abstract— In critical sensor deployments it is important to

ensure the authenticity and integrity of sensed data. Further,

one must ensure that false data injected into the network by

malicious nodes is not perceived as accurate data. In this paper

we present the Dynamic Energy-based Encoding and Filtering

(DEEF) framework to detect the injection of false data into a

sensor network. DEEF requires that each sensed event report

be encoded using a simple encoding scheme based on a keyed

hash. The key to the hashing function dynamically changes as a

function of the transient energy of the sensor, thus requiring no

need for re-keying. Depending on the cost of transmission vs.

computational cost of encoding, it may be important to remove

data as quickly as possible. Accordingly, DEEF can provide

authentication at the edge of the network or authentication

inside of the sensor network. Depending on the optimal

configuration, as the report is forwarded, each node along the

way verifies the correctness of the encoding probabilistically

and drops those that are invalid. We have evaluated DEEF’s

feasibility and performance through analysis. Our results show

that DEEF, without incurring transmission overhead

(increasing packet size), is able to eliminate 90% - 99% of false

data injected from an outsider within 9 hops before it reaches

the sink.

Keywords-sensor networks; data filtering; energy-based keying;

In-line filtering, sensor security.

I. INTRODUCTION

Sensor network technology has rapidly developed in
recent years and will be used in a variety of environments.
Accordingly, people will come to rely more on sensor
networks. For example, in a battlefield scenario, sensors may
be used to detect the location of enemy sniper fire [1, 2] or to
detect harmful chemical agents before they reach troops. The
use of sensors will also evolve from merely capturing data to a
system that can be used for real-time compound event alerting
[3]. These critical sensor networks must provide authentic
and accurate data to surrounding nodes and to the sink to
enable time-critical responses (i.e., troop movement,

evacuation, first response deployment, etc.). Consequences for

propagating false data are costly, depleting limited network

resources and wasting response efforts.

Securing sensor networks poses unique challenges because

these types of networks are usually unattended and have limited

energy, computation, and communication capabilities. In this

paper, we propose the Dynamic Energy-based Encoding and

Filtering (DEEF) framework, a technique used to verify data

in line and drop false packets from malicious nodes, thus

maintaining the health of the sensor network. DEEF

dynamically updates keys without exchanging messages for

key renewals and embeds integrity into packets as opposed to

enlarging the packet by appending message authentication

codes (MACs).

The contribution of this paper is three-fold. First, we

discuss a technique for ensuring authenticity of data by

encoding data using the results of a keyed hash. Next, we

present a dynamic keying scheme (Energy-based Keying) that

uses the perceived energy of a sensor to generate a unique key

for the hash function every n transmissions. Finally, we

present DEEF which uses the encoding and energy-based

keying concepts to perform in-line filtering of unwanted data

from the network.

II. RELATED WORK

 As security has become more of a focus in sensor

networks, researchers are interested in providing privacy,

authentication, and integrity, all through some form of

cryptographic algorithms (e.g., encryption, MAC, etc.). In

[4], the authors proposed a link-layer security architecture,

TinySec, with a distributed focus on security, performance,

and usability. In [5] the authors provide new node

authentication and message encryption using the RC5

algorithm in counter (CTR) mode.

 Following the need for secure sensor networks using

cryptography, key management became a significant focus.

Nodes in a sensor network use either pre-distributed keys or a

dynamic keying scheme, whereby nodes are re-keyed

periodically post deployment. The cryptographic keys are

normally either group-wise, pair-wise, or network-wise. In

[6], the authors propose µTesla, a bootstrapping scheme to

enable each sensor to authenticate messages broadcast from

the base station in a sensor network with n sensors based on

the pre-installation of one key rather than n. In [!], a new

pairwise key pre-distribution scheme for wireless sensor

networks was presented.

 W. Du et. al. proposed an efficient technique that replaces

the public key authentication process of public key

cryptography with a one-way hash function [8]. They use the

Dynamic Energy-based Encoding and Filtering in

Sensor Networks

Hailong Hou, !Cherita Corbett, Yingshu Li, Raheem Beyah

!Department of Computer Science

Georgia State University

Atlanta, GA, USA

Email: {hhou2@student, yli@cs, rbeyah@cs}.gsu.edu

!Computer & Network Security Group

Sandia National Labs

Livermore, CA, USA

Email: clcorbe@sandia.gov

 2

sensors’ public keys to construct a forest of Merkle trees. By

optimally selecting the height of each tree they are able to

minimize the computation and communication costs. In [9],

the authors propose a half-key scheme based on the well-

known multi-key pre-distribution approach to provide data

delivery in sensor networks with reduced memory space

requirements and better security enforcement.

 Given the abundance of potential attacks on routing in

sensor networks (e.g., wormhole, Sybil, time synchronization,

sinkhole, HELLO flood, etc.) much needed attention has been

paid to securing routing in sensor networks. In [10], X. Du et.

al. proposed the Secure Cell Relay (SCR) routing protocol.

SCR uses a three-way-handshake mechanism (to avoid

unidirectional attack) to discover neighbors and generate pair-

wise keys as well as broadcast keys (so future secure data in-

network aggregation is also supported) at very short intervals

after the network is deployed (to avoid attacker tampering).

The keys are only known by legal nodes thus guaranteeing the

routing protocol’s resistance to Sybil and clone attacks, and

ensuring confidentiality, integrity, and freshness of the data.

Ye et. al. [11] proposed the Statistical En-route Filtering (SEF)

mechanism to probabilistically verify data authenticity and to

drop false data. The idea is that each sensor detecting the data

generates its own message authentication code (MAC) that is

attached to the sensor’s report and forwarded. Nodes along the

path on which a report is forwarded then verify the correctness

of those reports probabilistically based on their attached

MACs. Deng et al. [12] proposes intrusion-tolerant routing for

wireless sensor networks - INSENS. INSENS constructs

secure and efficient tree-structured routing with the objective

to localize the damage caused by an intruder who has

compromised deployed sensor nodes by establishing multiple

disjoint paths. Only the base station (BS) has the right to

update sensors’ routing information using secret pairwise key

sharing between the BS and the node. Thus, an attacker cannot

modify the routing information, which helps INSENS

eliminate sinkhole/wormhole attack. Also, only the BS is

allowed to flood the network. INSENS achieves this by using

One way-Hash-Chains (OHCs) for each broadcasting packet,

limiting the attacker from flooding the network. Zhang

proposed a self-adjusting directed random walk technique [13]

to enhance source-location privacy. Random walk creates

phantom sources and a subsequent routing phase to deliver

messages to the sink.

 Each of the aforementioned protocols requires a

significant amount of packet overhead and/or an increase in

message exchanges. This sort of overhead is insufficient for

resource constrained sensor networks; security is provided at

the expense of the significant amount of energy consumed for

this transmission overhead. We propose a lightweight

technique for detecting outsider attacks, which consists of an

encoding scheme and dynamic energy-based keying, obviating

the need to re-key. Our scheme is an efficient method to

ensure authenticity and integrity of data in the sensor network.

The closest proposed security work to ours is that in [11].

However, the authors suggest they require 14 bytes of

overhead per packet compared to our scheme that does not

incur transmission overhead. Further, their scheme does not

consider message free re-keying.

III. THREAT MODELS AND GLOBAL ASSUMPTIONS

Due to the broadcast nature of the wireless medium used

in sensor networks, attackers may try to eavesdrop, intercept,

or inject false messages. In this paper we mainly consider the

false injection of messages from an outside malicious node.

The attacker is thought to have the correct frequency, protocol,

and possibly a spoofed valid node ID.

Throughout this work, the following assumptions are

made:

a) All of a sensors’ sensing components turn on/off together.

b) A typical routing algorithm such as [14-21] is used.

c) The routing algorithm is deployed on a reliable MAC.

d) The sensor network is densely populated such that

multiple sensors observe and generate reports for the

same event.

e) Sensors may have different communication ranges and

initial battery supplies.

IV. ENCODING PROCESS

 Due to the resource constraints of sensor networks,

traditional digital signatures requiring expensive cryptography

is not a viable option. The scheme must be simple, yet

effective. In this section we discuss a very simple encoding

process that can be used to ensure the authenticity and

integrity of sensed data without incurring transmission

overhead of the traditional schemes.

 Our scheme uses a keyed hashing approach. Each node

sends its ID (i-bits), type (t-bits) (assuming each node has a

type identifier), and data (d-bits) (Figure 1) to its next hop.

Figure 1. i+t+d bit string before permutation.

The sensors’ ID, type, and the sensed data are transmitted in a

pseudo random fashion according to the result of the hashing

function H(key, ID). An additional copy of the ID is also

transmitted in the clear along with the encoded message. The

format of the final packet to be transmitted becomes:

Packet = [ID, {ID, type, data}k],

where {x}k constitutes encoding x with key k.

Instead of the traditional approach of sending the hash value

along with the information to be sent, we use the result of the

hash value locally. The computed hash code is used to encode

the <ID|type|data> message (Figure 2).

 3

Figure 2. Resulting hash code with example operations

associated.

The hash code h can be mapped to a set of actions to be taken

on the data stream combination. The actions can include:

• Rotate

o Left - 1

o Right – 0

o # Places – 000 ! 111

• Interleave

o Yes – 1

o No - 0

• Order of parameters

o ID, T, D – 00

o ID, D, T – 01

o D, ID, T – 10

o D, T, ID - 11

• Order of bits within each parameter

o Little Endian - 0

o Big Endian - 1

• Order of bits in packet

o Little Endian - 0

o Big Endian - 1

For example, if a node computed the following hash code h =

{1 0 1 0 1 1 0 0 1 1} the string in Figure 2 becomes the string

in Figure 3 before it is transmitted. The receiver will perform

the same hash operation (since the inputs to the hash function

are stored and updated on each sensor) and perform the

inverse actions to accurately decode the packet. To ensure

correctness, the receiver compares the plaintext ID with the

decoded ID.

Figure 3. i+t+d bit string after permutation.

Although it is theoretically possible (1 in 2
i+t+d

) for a hacker to

accurately inject data, it becomes increasingly unlikely as the

packet grows. The benefits of this scheme are the following:

1) since there is no hash code to transmit, the packet size does

not grow, avoiding bandwidth overhead on an already

resource constrained network, thus increasing the network

lifetime; 2) the technique is simple, thus ideal for devices with

limited resources; and 3) the internal state of the hashing

function, namely the key, changes dynamically without re-

keying. This will be discussed in detail in the next section.

V. ENERGY-BASED KEYING

 One of the primary contributions of this paper is the

method used for handling the keying process. The transient

energy of a node depends on the energy required for: event

detection, node keep alive, packet reception/transmission, and

packet encoding/decoding. As each of these actions occur, the

energy in a node is modified (depleted). The current energy,

Ec, of the node will be used as the key to the hash function

(discussed in detail below). It is likely that during the initial

deployment each node will have the same energy level,

therefore the initial key, K1, is a function of the current energy

plus an initialization vector (IV). The IV is pre-distributed.

Subsequent keys, Kj, are a function of the current energy, Ec,

and the previous key Kj-1.

K1 = F(Ec, IV) (1) (initial transmission)

 Kj = F(Kj-1, Ec) (2) (subsequent transmissions)

Accordingly, the key used as input to the hash function is

dynamic and thus there is no need to refresh or update keys.

The keys will change making it difficult for attackers to

intercept enough packets to break the encoding algorithm.

A. Previous uses of Power/Energy for Security

Research has been conducted in estimating battery life

[22] measuring power consumption [23, 24] and in creating

software that uses lower power than standard software [25].

This work served as the foundation for using energy in

security schemes and led to the initial work in this area

discussed below.

In [26-28] the authors presented a host-based IDS,

Battery-based Intrusion detection (B-BID), which uses battery

behavior anomalies based on certain pre-determined threshold

levels to determine if an attack (network-based or host-based)

is taking place. The basic concept behind this work is that

normal CPU operation is not characterized by persistent

battery use, while an attack may have that characteristic. After

their system learns what behavior is deemed normal for

applications running on the node, abnormal behavior can be

detected using statistical and spectral analysis. They were also

able to develop energy signatures for certain attacks. The

authors of [26-28] present a similar network-based approach in

[29].

In [30] the authors introduce several types of denial-of-

service attacks on battery-powered mobile hosts (service

request power attacks, benign power attacks, and malignant

power attacks). They propose a power-secure architecture

that uses multi-level authentication and discuss using energy

signatures to validate trusted programs.

In [31] the authors explore modification of battery polling

rates (for an IPS proposed in their previous work [28]) in

conjunction with the variance of malicious network activity. A

dynamic polling rate algorithm was presented in order to

provide maximum detection while conserving battery charge

life.

 4

 Though there is minimal overlap with the previous work

discussed above and our work, it sets the precedence for using

an energy-based approach in security.

B. Calculating Energy Costs

In this paper we focus on the following actions that

consume energy in the sensor network: event detection, packet

reception, packet transmission, packet encoding, packet

decoding, and the energy required to keep a node alive in the

idle state. We denote the energy costs for these actions as:"

 ! Event detection:

E

d

 ! Packet reception:

E

r
= n * e

r
(

e

r
denotes the energy cost

of receiving one bit of data. n is the size of packet).

 ! Packet transmission:

E

t
= n * e

t
(

e

t
 denotes energy cost of

transmitting one bit of data.).

 ! Packet encoding:

E

enc
= n * e

enc
(

e

enc
 denotes cost of

encoding one bit).

 ! Packet decoding:

E

dec
= n * e

dec
(

e

dec
 denotes cost of

decoding one bit).

 !Keep-alive energy:

E

a
= t * e

a
(

e

a
 is the energy to keep

the node alive within t units of time).

Now, the function to compute energy cost is:

F(E) = SUM (E

d
, E

r
, E

t
, E

enc
, E

dec
, E

a
)

Using this simple function we can compute the energy cost

associated with the actions performed by each node. For

example, sensors perform two primary actions – sense data

and forward data. Accordingly, the equations below represent

ES, the cost to send a sensed report; EFW, the cost to forward

the report if the node is watching this particular sensor; and

EF, the cost to forward the report if the node is not watching

the sensor. Here “watching” refers to a receiving node that

has locally stored knowledge of the keying material of the

sending node. This will allow the receiver to authenticate a

message from the source. This is discussed in more detail in

section F.) After an event is detected, with the node alive for t

units of time the following would be the cost associated with

the sending node:

E

S
= E

d
+

E

t
+

E

enc
+ E

a

= E

d
+ n * (e

t
+ e

enc
) + t * e

a

When this packet passes through a forwarding node (that is

watching the source node), it will cost:

E

FW
= E

r
+ E

t
+ E

dec
+ E

enc
+ E

a

= n * (e

r
+ e

t
+ e

enc
+ e

dec
) + t * e

a

When this packet passes through a forwarding node (that is not

watching the source node), the above equation reduces to:

E

F
= E

r
+ E

t
+ E

a
= n * (e

r
+ e

t
)

+ t * e

a

C. Percieved and Bridge Energy

In order to authenticate a packet, a node must keep track

of the energy of the sending node to derive the key needed for

decoding. Ideally, once the authenticating node has the initial

energy value of the sending node, the value can be updated by

decrementing the cost associated with the actions performed

by the sending node using the cost equations defined above.

However, the energy value used to encode data at the sending

node may differ from the energy value that is stored for the

sending node at its corresponding watching node. For

example, if a malicious node (spoofing the ID of a valid node)

attempts to inject false data into the sensor network it will be

discarded at the first node that is watching the node whose ID

was spoofed. Assuming that the first node the false data

encounters is watching the node whose ID was spoofed, that

node will immediately discard the packet. At this point the

node that discarded the data and the nodes above that node on

the path to the sink lose synchronization (because the upper

portion never sees the malicious packet and does not know to

decrement the energy associated with servicing the malicious

transmission). If a valid packet were to be generated by the

current watching node using its current energy, the upstream

node(s) that watch this particular node would discard the

packet. To resolve this issue, the perceived energy value rather

than the actual energy value is used to encode the data. The

perceived energy is the energy value that the upstream nodes

perceive the node(s) they are watching have. So in this

example, the actual residual energy of the watching node is

E

cj
= E

c(j!1)
! E

r
! E

d
, however, the node additionally

stores its perceived energy

E

p
= E

c(j!1)
 (before malicious

node transmits) because it knows that it dropped the previous

packet(s) and that upstream nodes are completely unaware of

the energy spent handling the malicious transmission. The

perceived energy

E

p
= E

c(j!1)
 is used to encode subsequent

packets (generated by the watching node) and is updated as

valid (or assumed valid) packets are transmitted. Since the

upper nodes currently have

E

c(j!1)
 stored as the energy for

the current watched node, the network remains synchronized.

It is important to mention a more complicated scenario.

Assume the same scenario as mentioned above, however

assume that the packet enters the network and spans several

hops before the appropriate watching node filters the data.

Now, the entire upper portion (portion above intermediate

watching node) has lost synchronization with the lower

portion of the network (portion below the watching node).

This is because the lower portion of the network assumes that

the packet that was forwarded will make it to the sink and the

upper watching node will decrement energy levels of the

nodes it watches accordingly. However, the upper portion

never receives the data that was dropped by the intermediate

watching node so it does not know that a packet ever traversed

that path and does not update the energy of the nodes it

watches. The intermediate watching node is the only node

that knows the state of both portions of the network.

Accordingly, to resolve potential loss of synchronization in

this scenario, the watching node must store an additional

energy value, the bridge energy value, to allow

 5

resynchronization (bridging) of the network at the watching

node that dropped the packet. That is, as subsequent packets

generated from the node of interest pass through the watching

node that dropped the packets, the watching node will decode

the packet with the perceived energy key of the originating

node and re-encode the packet with the bridge energy key,

thus keeping the entire network synchronized.

 To minimize the potential for loss of synchronization, the

perceived energy is only updated if a node is encoding. This

means that the node is either the originating node or a

forwarding node that has had to bridge the network.

Generally, the potential for the network to lose

synchronization occurs when lower nodes do not perform

actions that upper nodes assume were performed or the

converse. Depending on the technique required (traditional or

non-traditional) there are many scenarios that could arise,

however using perceived and bridge energy will assure the

continued synchronization of the network as whole.

D. Energy Binning

Energy can be considered as a somewhat imprecise value

given that there is a percentage error associated with different

actions taken by a sensor. This error may vary based on

internal or external elements (temperature, etc.) placed on the

node as well as on the precision used when obtaining the

energy value.

The imprecise nature of the sensor’s energy value

presents problems when attempting to use the energy value as

the key to the encoding function. When considering the

imprecise value it is possible for nodes to lose

synchronization. Thus, we propose the use of discrete values

of energy by introducing binning to obtain approximate

values. For example, if the energy value of a node is 11.75

Joules and we have bins of width ten Joules starting from zero,

the energy would be reported as 20 Joules because 11.75

Joules falls in the second bin.

Although binning (using approximate discrete values)

helps significantly with synchronization, it is still possible for

borderline values to cause nodes to lose synchronization.

This depends on the bin size, which will affect the frequency

of key regeneration. The smaller the bin size the higher the

frequency of key regeneration but the higher the probability of

error. In this paper we assume that the optimal bin size has

been determined and that energy is discrete when passed to

our algorithm. We discuss this further in the future work

section.

E. Authentication Information Stored in Nodes

Since we will authenticate packets in line, every node in

the sensor network will store one or more record(s) (Figure 4)

based on the algorithm chosen (DEEF-T or DEEF-NT) and the

vigilance required. For each node being watched, a record

contains the following state information:

o Node ID

o Node type

o Ec (current energy level)

o Eb (bridge energy level)

o Keep-alive timer

Each node must also maintain local state information for itself,

which includes:

o IV (stored until after 1
st
 decode)

o Actual energy level, Ec

o Perceived energy level, Ep

Figure 4. Record array stored in arbitrary node.

F. Monitoring Node Energy Status

In this section we discuss the general process of

monitoring a watched node. Deciding which nodes to watch

and how many depends on the configuration of the algorithm

used (DEEF-T or DEEF-NT) and the aggressiveness threshold

associated and is discussed in section VI.

Nodes in sensor networks normally play one or two of the

following roles. Nodes will either behave as the originating

node that generates a report or a forwarding node that

forwards a report. The report traverses the network through

forwarding nodes and finally to the terminating node, the sink.

When an event is detected by an originating node the next

step is for the report to be secured. The originating node uses

the perceived energy value (discussed in Section V-C) and an

initialization vector (or previous key value if not first

transmission) to construct the next key. The key is used as

input into the keyed hashing function for encoding the

<ID|type|data> message. The encoded message and the

cleartext ID of the originating node is transmitted to the next

hop (forwarding node or sink) using the following format: [ID,

{ID, type, data}k], where {x}k constitutes encoding x with key

k. The perceived energy value is updated and stored for use

with the transmission of the next report, only if this nodes has

performed encoding – either as an originating node or a node

that is currently bridging the network.

Once the forwarding node receives the packet it will first

check its watch-list to determine if the packet came from a

node it is watching. If the node is not being watched by the

current node, the packet is forwarded without modification or

authentication. Although this node performed actions on the

packet (received and forwarded the packet), its local perceived

energy value is not updated (as mentioned in section VI-C).

 6

This is done to maintain synchronization with nodes watching

it further up the route. If the node is being watched by the

current node, the forwarding node checks the current record

stored that is associated with the sending node and extracts the

energy value to derive the key and authenticates the message

by decoding the message and comparing the plaintext node ID

with the encoded node ID. If the packet is authentic, an

updated energy stamp (calculated as discussed in section V-B)

is stored in the record associated with sending node. If the

packet is not authentic it is discarded. Again, the energy value

associated with the current sending node is only updated if this

node has performed encoding on the packet. That is, if this

node is the originating node or is currently bridging the

network.

VI. DYNAMIC ENERGY-BASED ENCODING AND FILTERING

(DEEF)
1

A. Authentication Flexibility in DEEF
DEEF has the ability to provide traditional authentication

where authentication is performed at every node. Accordingly,
filtering is performed at the boundary nodes (first node the

packet encounters) and it is very difficult (
1

2
packetsize

) for

malicious nodes to inject data into the network. In non-
traditional mode the network statistically filters illegitimate
traffic that has entered the network. Accordingly, it is possible
for illegitimate traffic to enter the network and span several
hops before being dropped.

B. Traditional Authentication
In the traditional authentication scheme we assume there

exist a short window of time at initial deployment that an
adversary is not able to compromise the network, because it
takes time for an attacker to capture a node or get keys. During
this period, route initialization information is used by each
node to decide which node to watch and a record r is stored for
each of its 1-hop neighbors in its watch-list (using a binary tree
structure routing algorithm, r = 3). To obtain a neighbor’s
initial energy value, a network-wise master key can be used to
transmit this value during this period.

When an event occurs and a report is generated, it is
encoded as a function of a dynamic key based on the perceived
energy of the originating node and transmitted. When the
packet arrives, the forwarding node extracts the key of the
sending node (this could be the originating node or another
forwarding node) from its record and decodes the packet. After
the packet is decoded the plaintext ID is compared with the
decoded ID. If the packet is authentic, and this hop is not the
final hop, the packet is re-encoded by the forwarding node with
its own key derived from its current perceived energy level. If
the packet is illegitimate, the packet is discarded. This process
continues until the packet reaches the sink. Accordingly,
illegitimate traffic is filtered before it enters the network.

Re-encoding at every hop refreshes the strength of the
encoding. Recall that the general packet structure is [ID,{ID,
type, data}k]. To accommodate this scheme the ID will always
be the ID of the current node and the key is derived from the

1
 Due to space limitations the detailed algorithm was not presented.

current node’s local energy value. If the location of the
originating node that generated the report is desired, the packet
structure can be modified to retain the ID of the originating
node and the ID of the forwarding node. The structure of the
packet becomes:

 Packet = [IDf, IDo, { IDf, IDo, type, data}k]

Where IDf is the ID of the forwarding node and is rewritable by
subsequent forwarding nodes. IDo is the ID of the originating
node and the key is derived from the energy level of the current
forwarding node. Initially, at the originating node IDf = IDo.

If a hacker does manage to make a packet look legitimate
the packet will make it to the sink and we can employ a
weighted voting algorithm where the sink can use the majority
vote. To trick the sink the hacker would have to compromise at
least half the nodes in the network and send data
simultaneously. DEEF-T reduces the transmission overhead
but increases processing overhead because of the
decode/encode at each hop. Analysis of traditional
authentication is in the performance evaluation section.

C. Non-traditional Authentication
In the non-traditional authentication scheme, each node

randomly picks r nodes to monitor and stores the
corresponding state before deployment. Therefore, no routing
information and no communication using a network-wide
master key is necessary to obtain neighbors’ energy values.

As a packet leaves the source node (originating node or
forwarding node) it passes through node(s) that watch it
probabilistically. If the current node is not watching the node of
interest, the packet is forwarded. If the node of interest is being
watched by the current node the packet is decoded and the
plaintext ID is compared with the decoded ID. If the packet is
authentic, and this hop is not the final destination, the original
encoded packet is forwarded unless the node is currently
bridging the network. In that case, the original packet is
encoded with the bridge energy and forwarded. Since this node
is bridging the network the local perceived energy is
decremented accordingly. If the packet is illegitimate, the
packet is discarded. This process continues until the packet
reaches the sink. This technique consumes more transmission
overhead but in contrast to the traditional DEEF scheme it
reduces processing overhead (because less re-encoding is
performed and decoding is not performed at every hop). The
tradeoff is that an illegitimate packet may traverse several hops
before being dropped. The effectiveness of this scheme
depends primarily on the value r, the number of nodes that each
node watches. A discussion of general performance of this
algorithm efficiency as a function of r is given in the
performance evaluation section.

Note that in this scheme re-encoding is not done at
forwarding nodes unless they are bridging the network.
Accordingly the packet structure is [ID,{ID, type, data}k],
where the ID will always be the ID of the current node and the
key is derived from the current node’s local energy value.

If a hacker does manage to make a packet look legitimate,
the packet will make it to the sink. Again, we can employ
weighted voting. Analysis of non-traditional authentication is
in the performance evaluation section.

 7

 (a) (c) (e)

 (b) (d) (f)

Figure 5. (a) Effectiveness of DEEF-T vs. DEEF-NT where r = 3; (b) Effectiveness of DEEF-NT with varying r; (c) Sink drop

probability considering event detection set size DEEF-T vs. DEEF-NT where r = 3; (d) Sink drop probability considering event

detection set size for DEEF-NT with varying r; (e) Average cost to send valid packet in DEEF-T and DEEF-NT where r = 3;

(f) Average cost to send valid packet in DEEF-NT with varying r.

VII. PERFORMANCE EVALUATION

In this section we use analysis to quantify the

effectiveness of DEEF-T and DEEF-NT. Next we examine

how the density of the network affects the chances of false

packets successfully traversing the network and being

processed by the sink when the sink employs a simple

majority vote approach. Finally, we examine the cost of our

algorithm on legitimate packets considering current sensor

applications.

When considering the effectiveness of the algorithms we

target the case where the sink is considered an average node

with average resources. That is, the sink is not assumed to

store (and maintain) keys for every node in the network. In

some situations it may be impossible to have a powerful sink.

In taking this approach, we attempt to ascertain the impact

(effectiveness/energy costs/consequences) on distributing the

resource load.

For analysis, we use the following values in evaluating

our equations: number of nodes in the network, N = 200, and

packetsize = 32.

A. Effectiveness of DEEF-T and DEEF-NT

In this section we compare DEEF-T and DEEF-NT

considering the drop probability vs. number of hops. We

also take a closer look at DEEF-NT and vary the number of

records r.

In DEEF-T, in order for an attacker to be able to

successfully inject a false packet, an attacker must forge the

packet encoding which is a result of the keyed hash. Given

that the complexity of the packet is 2
packetsize

the probability of

an attacker correctly forging the packet is:

1

2
packetsize

=
1

2
ID+TYPE+DATA

 (1)

Accordingly, the probability of the hacker incorrectly forging

the packet and therefore the packet being dropped (pdrop!T)

is:

 1!
1

2
packetsize

= 1!
1

2
ID+TYPE+DATA

 (2)

Since DEEF-T authenticates at every hop, forged packets will

always be dropped at the first hop with a probability of

pdrop!T .

 8

Since DEEF-NT statistically drops packets along the

route, the drop probability for DEEF-NT (pdrop!NT) is a

function of the effectiveness of the watching nodes as well as

the ability for a hacker to correctly guess the encoded packet

structure. Accordingly, the probability of detecting and

dropping a false packet at one hop when randomly choosing r

records (nodes to watch) is:

 pdrop!NT =
r

N
* 1!

1

2
ID+TYPE+DATA

"
#$

%
&'

 (3)

Thus, the probability to detect and drop the packet when

choosing r records after h hops is:

 1! (1! pdrop!NT)
h

 (4)

With the assumption that the packet size is 32 bits and if we

use the same storage requirements for both DEEF-T and

DEEF-NT of r = 3 we can compare both schemes in Figure 5a

when using the same amount of storage. Recall from section

VI-B that DEEF-T requires r = 3. Figure 5b shows the

effectiveness of DEEF-NT as the number of stored records

vary.

B. Probability packets span network and dropped at sink

As discussed in sections VI-A and VI-B, we assume that

the sink has the ability to take a majority vote to determine

which data to process and accept. Therefore, even if one false

packet successfully makes it to the sink it is still far less likely

for the sink to process the data because multiple (more than

half) nodes must be compromised during an event detection in

order to make the sink process false data. The number of

nodes necessary to compromise the integrity of the processed

data for DEEF-T and DEEF-NT is:

x = floor
#nodes _detect _ event

2

!
"#

$
%&
+1 (5)

In order for packets to successfully traverse the network and

trick the sink during an event detection sequence an attacker

would have to simultaneously forge data from x nodes in the

detection set. The probability of unsuccessfully injecting

traffic simultaneously from x compromised nodes (and thus

the sink dropping packet) for DEEF-T (6) and DEEF-NT (7)

is:

1!
1

2
ID+TYPE+DATA

"
#$

%
&'
x

 (6) 1! (1! pdrop!NT)
h"# $%

x

 (7)

Figure 5c compares DEEF-T and DEEF-NT with r = 3.

Figure 5d presents DEEF-NT varying r. As the local node

density increases, either by increasing the number of physical

nodes or the sensing range of nodes, it becomes increasingly

difficult for false data to successfully traverse the network and

trick the sink. This is particularly useful in DEEF-NT because

the drop probability increases with the number of hops the

packets span. However, if the hacker injects malicious packets

a few hops away from the sink (e.g., h = 10), DEEF-NT

without employing a majority vote at the sink becomes less

effective. Using the majority vote approach given a low hop

count (e.g., h = 10) increases the overall drop probability from

14% (Figure 5b) to 90% (Figure 5d) when r = 3 and the

number of detecting nodes is 30.

C. Energy cost comparing DEEF-T and DEEF-NT
2

In this section we look at the cost to transmit valid data in

DEEF-T and DEEF-NT. In both algorithms, there is a single

cost to detect the event, encode the packet, and transmit the

packet (E
d
,E

enc
,E

t
). Additionally, there is a recurring cost

to marshal the packet through the network depending on the

number of hops. In DEEF-T this cost is

E
r
,E

dec
,E

enc
,E

t() for all of the intermediate nodes since all

of the nodes perform the same operations. In DEEF-NT the

cost is E
r
,E

dec
,E

t() or E
r
,E

t() for variable fractions of

the forwarding nodes depending on the number of nodes each

node chose to watch. Finally, there is a single cost to receive

and decode the packet at the sink (E
r
,E

dec
). The average

cost to transmit a packet using DEEF-T is:

 Ed + Eenc + Et +
E numhops[]•

Er + Edec + Eenc + E t()

!

"
#
#

$

%
&
&
+ Er + Edec

 (8)

The average cost to transmit a packet using DEEF-NT is:

E
d
+ Eenc + Et +

E numhops[]•

% forward _ enc_dec() • Er + Edec + E t()

+ % forward() • Er + E t()

!

"

#
#
#

$

%

&
&
&
+ Er + Edec

 (9)

To determine the average energy used for DEEF-NT to

transmit a valid packet we must have an idea of the number of

nodes along the path that are likely to be watching a specific

node at a specific time. We first determine the number of

possible record arrays y. We let r equal the number of records

and N equal the number of nodes in the network. This is:

 y =
(N)!

r!(N ! r)!
"
#$

%
&'

 (10)

Next we determine the possible number of record arrays that

do not have a specific record in common. Therefore, the

number of possible record arrays q that exclude a specific

record is:

 q =
(N !1)!

r![(N !1) ! r]!
"
#$

%
&'

 (11)

2
 In order to simplify calculations bridging is not considered in this analysis.

 9

Accordingly, the number of record arrays that contain the

same record of interest is (y ! q). We can calculate the

percentage of nodes in the network that have the record of the

node of interest (12) and the percentage that do not contain the

record of the node of interest (13). This is:

 prob(have_ record) =
(y ! q)

y

 (12)

 prob(do_not _have_ record) =
q

y

 (13)

To make the analysis possible, we make the assumption that

the network is equally distributed. That is, if a cross-section

of the network is sampled, it will have the same node

composition as the entire network. Accordingly, to determine

the number of nodes along a given path that share a record

(encode/decode and forward a packet associated with a

watched node) with a particular number of expected hops we

can apply equations (12) and (13) to the number of nodes

along the path. Taking energy values (

E

t
= 65µJ ,

E

r
= 50µJ ,

E

dec
= 16µJ ,

E

enc
= 15µJ)

3
 from [32] we

can perform analysis. Figures 5e and 5f compares the average

cost to transmit a packet through the network for DEEF-T and

DEEF-NT assuming r = 3 while varying the number of hops

taken.

D. Discussion

 We note the following observations for the above

scenarios. While DEEF-T offers 99% drop probability of

illegitimate packets at the first hop (Figure 5a), it more than

doubles the amount of energy consumed for legitimate traffic

in DEEF-NT at the fifth hop (Figure 5e). At the 15
th

 hop,

DEEF-T consumes 3 to 6 times more energy than DEFF-NT,

and the separation of energy costs significantly increases as

the network scales.

 However, when storage is a concern and DEEF-NT is

watching the same number of nodes as DEEF-T (i.e., r = 3),

DEEF-NT can achieve at best 77% drop probability at the

100
th

 hop. At which point the illegitimate packet would have

consumed 52% more energy than DEEF-T. On the other

hand, DEEF-NT can achieve at least a 90% drop probability

within 9 hops if each node is watching at least 25% of the

network (r = 50). Requiring more storage, however giving the

benefit of a high drop probability within a few hops and

lowering energy costs when dealing with legitimate packets.

 From this analysis, one could argue that DEEF-T is better

suited where storage is the most critical resource and where

the network tends to be less chatty, whereas DEEF-NT is most

beneficial for chatty networks and/or when storage is not the

crippling resource.

3
 We could not find a value for Ed so we chose a reasonable value. This is

inconsequential in the comparison of DEEF-T and DEEF-NT as both equations

contain Ed with the same frequency.

VIII. CONCLUSION AND FUTURE WORK

In this paper we present the Dynamic Energy-based

Encoding and Filtering (DEEF) framework. Using a simple

encoding scheme and dynamic energy-based keying, DEEF

allows flexibility in the approach to removing false data from

the network. We have evaluated DEEF’s feasibility and

performance through analysis. Our results show that DEEF-T

and DEEF-NT can be configured to provide optimal

performance in a variety of network configurations depending

largely on the application of the sensor network.

We plan to extend this work by performing simulations to

determine optimal bin sizes for energy. Further, we plan to

enable our technique to deal with loss of synchronization

(from unreliable MAC, retransmissions, imprecise binning,

etc.). We also plan to conduct experiments to obtain

variability of sensor energy levels when performing certain

actions (e.g., encoding, etc.) to ensure optimal binning.

Simulations and additional analysis will be performed to

determine how packet size affects performance of the

authentication technique used (DEEF-T or DEEF-NT). Also,

we plan to implement our technique in conjunction with

current sensor routing algorithms. Finally, we plan to

introduce the concept of meeting nodes (DEEF-MN) in DEEF

in order to detect malicious insider attacks.

REFERENCES

[1] Simon G., Maroti M., Ledeczi A., Balogh G., Kusy B., Nadas A., Pap

G., Sallai J., Frampton K.: Sensor Network-Based Countersniper
System, SenSys 04, Baltimore, November 2004.

[2] Ledeczi, A., Nadas, A., Volgyesi, P., Balogh, G., Kusy, B., Sallai, J.,

Pap, G., Dora, S., Molnar, K., Maroti, M., Simon G.: "Countersniper
System for Urban Warfare," ACM Transactions on Sensor Networks,

Vol. 1, No. 2, pp. 153-177, November, 2005

[3] Chinh Vu, Raheem Beyah, and Yingshu Li. “A Composite Event
Detection in Wireless Sensor Networks.” To appear in the Proceedings

of IEEE International Performance Computing and Communications
Conference (IPCCC), April 2007.

[4] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: A link layer security

architecture for wireless sensor networks,” in Second ACM
Conference on Embedded Networked Sensor Systems (SenSys 2004),

November 2004.

[5] Hannu Sikkil, Mikael Soini, Petri Oksa, Lauri Syd heimo, and Markku
Kivikoski, KILAVI Wireless Communication Protocol the Building

Environment ! Security Issues, Consumer Electronics, 2006.

[6] Wen-Huei Chen and Yu-Jen Chen, A Bootstrapping Scheme for Inter-
Sensor Authentication within Sensor Networks, IEEE Communications

Letters, Oct. 2005.

[7] Wenliang Du, Jing Deng, Yunghsiang S. Han, Pramod K. Varshney. A

Pairwise Key Pre-distribution Scheme for Wireless Sensor Networks"
Proceedings of the 10th ACM conference on Computer and

Communications Security"2003.

[8] Wenliang Du and Ronghua Wang,Peng Ning, An Efficient Scheme for
Authenticating Public Keys in Sensor Networks" Proceedings of the

6th ACM International Symposium on Mobile Ad hoc Networking and
Computing, pp. 58 – 67" 2005.

[9] Chin-Fu Kuo, Yung-Feng Lu, Ai-Chun Pang, Tei- Wei Kuo, Security-

Enhanced Data Delivery In Sensor Networks, Proceedings of the 39th
Annual 2005 International Carnahan Conference on Security

Technology, Oct. 11-14, 2005.

[10] Xiaojiang Du, Yang Xiao, Hsiao-Hwa Chen, Qishi Wu, Secure Cell
Relay Routing Protocol for Sensor Networks, Wireless Communications

and Mobile Computing, Volume 6, Issue 3, pp. 375-391,May 2006.

 10

[11] F Ye, H Luo, S Lu, L Zhang, Statistical En-Route Filtering of Injected

False Data in Sensor Networks, IEEE Journal on Selected Areas in
Communications, vol. 23, no. 4, April 2005.

[12] J Deng, R Han, S Mishra, INSENS: Intrusion-tolerant Routing for
Wireless Sensor Networks, Proceedings of the 23rd IEEE International

Conference on Distributed Computing Systems, Providence, RI, May
2003.

[13] Liang Zhang, A Self-Adjusting Directed Random Walk Approach for

Enhancing Source-Location Privacy in Sensor Network Routing"
Proceedings of the 2006 International Conference on Communications

and Mobile Computing, pp. 33 – 38" 2006.

[14] Young-Jin Kim, Ramesh Govindan, Brad Karp, Scott Shenker, Lazy
cross-link removal for geographic routing, In Proc Sensys, 2006.

[15] Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri, Power

Aware Routing for Sensor Databases, In Proc IEEE Infocom, 2005.

[16] Antonio Caruso, Stefano Chessa, Swades De, and Alessandro Urpi, GPS
free coordinate assignment and routing in wireless sensor networks, In

Proc IEEE Infocom, 2005.

[17] Jehoshua Bruck, Jie Gao, Anxiao (Andrew) Jiang, MAP: medial axis
based geometric routing in sensor networks, In Proc Mobicom, 2005.

[18] B. Deb, S. Bhatnagar, and B. Nath. ReInForM: Reliable Information
Forwarding Using Multiple Paths in Sensor Networks. The 28th Annual

IEEE Conference on Local Computer Networks (LCN), October 2003.

[19] Kuhn, R. Wattenhofer and A. Zollinger. worst-case optimal and average-
case efficient geometric ad hoc routing. In Proc 4th ACM International

Synposium on Mobile Ad-hoc Networking and Computing, pages 267-
278, Annapolis, MD, 2003.

[20] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John

Heidemann, Fabio Silva, Directed diffusion for wireless sensor
networking, IEEE/ACM Transactions on Networking (TON), Volume

11 Issue, February 2003.

[21] Dragos Niculescu, Badri Nath, Routing and forwarding: Trajectory
based forwarding and its applications, Proceedings of the 9th annual

international conference on Mobile computing and networking,
September 2003.

[22] Thomas Martin and Daniel Seiwiorek, "Non-Ideal Battery Behavior and

Its Impact on Power Performance Trade-offs in Wearable Computing,"
Proceedings of the 1999 International Symposium on Wearable

Computers, San Francisco, CA, October 18-19, 1999; pp. 101-106.

[23] Jason Flinn, M. Satyanarayanan, "PowerScope: A Tool for Profiling the

Energy Usage of Mobile Applications," wmcsa, p. 2, Second IEEE
Workshop on Mobile Computer Systems and Applications, 1999.

[24] Phillip Stanley-Marbell and Michael Hsiao. Fast, Flexible, Cycle-

Accurate Energy Estimation. Proceedings of the International
Symposium on Low Power Electronics and Design, Huntington Beach,

California, 2001.

[25] Ping-Wen Ong and Ran-Hong Yan. Power-Conscious Software Design –
A Framework for Modeling Software on Hardware. IEEE Symposium

on Low Power Electronics, 1994.

[26] Grant A. Jacoby, Randy Marchany and Nathaniel J. Davis IV, “Battery-
Based Intrusion Detection: a First Line of Defense,” Proceedings of the

5th IEEE SMC 2004 Information Assurance Workshop, June 2004.

[27] Grant A. Jacoby and Nathaniel J. Davis IV, “Battery-Based Intrusion
Detection,” GlobeComm 2004, December 2004.

[28] Timothy K. Buennemeyer, Grant A. Jacoby, Randolph C. Marchany, and

Joseph G. Tront, "Battery-Sensing Intrusion Protection System,"
Proceedings of the 7th IEEE SMC 2006 Information Assurance

Workshop, June 2006.

[29] Grant A. Jacoby, Randy Marchany and Nathaniel J. Davis IV, “How

Mobile Host Batteries Can Improve Network Security,” IEEE Security
& Privacy Magazine, September 2006.

[30] Thomas Martin, Michael Hsiao, Dong Ha, Jayan Krishnaswami,

"Denial-of-Service Attacks on Battery-powered Mobile Computers,"
Proceedings of the 2nd IEEE Pervasive Computing Conference,

Orlando, Florida, March 2004, pp. 309-318.

[31] Timothy Buennemeyer, Theresa Nelson, Michael Gora, Randy
Marchany and Joseph Tront. Battery Polling and Trace Determination

for Bluetooth Attack Detection in Mobile Devices. Proceedings of the
5th IEEE SMC 2004 Information Assurance Workshop, June 2007.

[32] Crossbow. www.xbow.com

