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Abstract— In critical sensor deployments it is important to 

ensure the authenticity and integrity of sensed data.  Further, 

one must ensure that false data injected into the network by 

malicious nodes is not perceived as accurate data.  In this paper 

we present the Dynamic Energy-based Encoding and Filtering 

(DEEF) framework to detect the injection of false data into a 

sensor network.  DEEF requires that each sensed event report 

be encoded using a simple encoding scheme based on a keyed 

hash.  The key to the hashing function dynamically changes as a 

function of the transient energy of the sensor, thus requiring no 

need for re-keying. Depending on the cost of transmission vs. 

computational cost of encoding, it may be important to remove 

data as quickly as possible. Accordingly, DEEF can provide 

authentication at the edge of the network or authentication 

inside of the sensor network.  Depending on the optimal 

configuration, as the report is forwarded, each node along the 

way verifies the correctness of the encoding probabilistically 

and drops those that are invalid. We have evaluated DEEF’s  

feasibility and performance through analysis. Our results show 

that DEEF, without incurring transmission overhead 

(increasing packet size), is able to eliminate 90% - 99% of false 

data injected from an outsider within 9 hops before it reaches 

the sink. 

Keywords-sensor networks; data filtering; energy-based keying; 

In-line filtering, sensor security. 

I. INTRODUCTION 

Sensor network technology has rapidly developed in 
recent years and will be used in a variety of environments. 
Accordingly, people will come to rely more on sensor 
networks.  For example, in a battlefield scenario, sensors may 
be used to detect the location of enemy sniper fire [1, 2] or to 
detect harmful chemical agents before they reach troops.  The 
use of sensors will also evolve from merely capturing data to a 
system that can be used for real-time compound event alerting 
[3].  These critical sensor networks must provide authentic 
and accurate data to surrounding nodes and to the sink to 
enable time-critical responses (i.e., troop movement, 

evacuation, first response deployment, etc.). Consequences for 

propagating false data are costly, depleting limited network 

resources and wasting response efforts.  

Securing sensor networks poses unique challenges because 

these types of networks are usually unattended and have limited 

energy, computation, and communication capabilities. In this 

paper, we propose the Dynamic Energy-based Encoding and 

Filtering (DEEF) framework, a technique used to verify data 

in line and drop false packets from malicious nodes, thus 

maintaining the health of the sensor network. DEEF 

dynamically updates keys without exchanging messages for 

key renewals and embeds integrity into packets as opposed to 

enlarging the packet by appending message authentication 

codes (MACs). 

The contribution of this paper is three-fold. First, we 

discuss a technique for ensuring authenticity of data by 

encoding data using the results of a keyed hash.  Next, we 

present a dynamic keying scheme (Energy-based Keying) that 

uses the perceived energy of a sensor to generate a unique key 

for the hash function every n transmissions.  Finally, we 

present DEEF which uses the encoding and energy-based 

keying concepts to perform in-line filtering of unwanted data 

from the network. 

II. RELATED WORK 

 As security has become more of a focus in sensor 

networks, researchers are interested in providing privacy, 

authentication, and integrity, all through some form of 

cryptographic algorithms (e.g., encryption, MAC, etc.).    In 

[4], the authors proposed a link-layer security architecture, 

TinySec, with a distributed focus on security, performance, 

and usability. In [5] the authors provide new node 

authentication and message encryption using the RC5 

algorithm in counter (CTR) mode.         

 Following the need for secure sensor networks using 

cryptography, key management became a significant focus.   

Nodes in a sensor network use either pre-distributed keys or a 

dynamic keying scheme, whereby nodes are re-keyed 

periodically post deployment. The cryptographic keys are 

normally either group-wise, pair-wise, or network-wise.  In 

[6], the authors propose µTesla, a bootstrapping scheme to 

enable each sensor to authenticate messages broadcast from 

the base station in a sensor network with n sensors based on 

the pre-installation of one key rather than n. In [!], a new 

pairwise key pre-distribution scheme for wireless sensor 

networks was presented. 

 W. Du et. al. proposed an efficient technique that replaces 

the public key authentication process of public key 

cryptography with a one-way hash function [8]. They use the 
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sensors’ public keys to construct a forest of Merkle trees. By 

optimally selecting the height of each tree they are able to 

minimize the computation and communication costs. In [9], 

the authors propose a half-key scheme based on the well-

known multi-key pre-distribution approach to provide data 

delivery in sensor networks with reduced memory space 

requirements and better security enforcement. 

 Given the abundance of potential attacks on routing in 

sensor networks (e.g., wormhole, Sybil, time synchronization, 

sinkhole, HELLO flood, etc.) much needed attention has been 

paid to securing routing in sensor networks. In [10], X. Du et. 

al. proposed the Secure Cell Relay (SCR) routing protocol. 

SCR uses a three-way-handshake mechanism (to avoid 

unidirectional attack) to discover neighbors and generate pair-

wise keys as well as broadcast keys (so future secure data in-

network aggregation is also supported) at very short intervals 

after the network is deployed (to avoid attacker tampering). 

The keys are only known by legal nodes thus guaranteeing the 

routing protocol’s resistance to Sybil and clone attacks, and 

ensuring confidentiality, integrity, and freshness of the data. 

Ye et. al. [11] proposed the Statistical En-route Filtering (SEF) 

mechanism to probabilistically verify data authenticity and to 

drop false data. The idea is that each sensor detecting the data 

generates its own message authentication code (MAC) that is 

attached to the sensor’s report and forwarded. Nodes along the 

path on which a report is forwarded then verify the correctness 

of those reports probabilistically based on their attached 

MACs. Deng et al. [12] proposes intrusion-tolerant routing for 

wireless sensor networks - INSENS. INSENS constructs 

secure and efficient tree-structured routing with the objective 

to localize the damage caused by an intruder who has 

compromised deployed sensor nodes by establishing multiple 

disjoint paths. Only the base station (BS) has the right to 

update sensors’ routing information using secret pairwise key 

sharing between the BS and the node. Thus, an attacker cannot 

modify the routing information, which helps INSENS 

eliminate sinkhole/wormhole attack. Also, only the BS is 

allowed to flood the network. INSENS achieves this by using 

One way-Hash-Chains (OHCs) for each broadcasting packet, 

limiting the attacker from flooding the network. Zhang 

proposed a self-adjusting directed random walk technique [13] 

to enhance source-location privacy. Random walk creates 

phantom sources and a subsequent routing phase to deliver 

messages to the sink.  

 Each of the aforementioned protocols requires a 

significant amount of packet overhead and/or an increase in 

message exchanges.  This sort of overhead is insufficient for 

resource constrained sensor networks; security is provided at 

the expense of the significant amount of energy consumed for 

this transmission overhead.  We propose a lightweight 

technique for detecting outsider attacks, which consists of an 

encoding scheme and dynamic energy-based keying, obviating 

the need to re-key. Our scheme is an efficient method to 

ensure authenticity and integrity of data in the sensor network.  

The closest proposed security work to ours is that in [11].  

However, the authors suggest they require 14 bytes of 

overhead per packet compared to our scheme that does not 

incur transmission overhead.  Further, their scheme does not 

consider message free re-keying. 

III. THREAT MODELS AND GLOBAL ASSUMPTIONS 

Due to the broadcast nature of the wireless medium used 

in sensor networks, attackers may try to eavesdrop, intercept, 

or inject false messages.  In this paper we mainly consider the 

false injection of messages from an outside malicious node. 

The attacker is thought to have the correct frequency, protocol, 

and possibly a spoofed valid node ID. 

Throughout this work, the following assumptions are 

made: 

a) All of a sensors’ sensing components turn on/off together. 

b) A typical routing algorithm such as [14-21] is used. 

c) The routing algorithm is deployed on a reliable MAC. 

d) The sensor network is densely populated such that 

multiple sensors observe and generate reports for the 

same event. 

e) Sensors may have different communication ranges and 

initial battery supplies. 

IV. ENCODING PROCESS 

 Due to the resource constraints of sensor networks, 

traditional digital signatures requiring expensive cryptography 

is not a viable option.  The scheme must be simple, yet 

effective. In this section we discuss a very simple encoding 

process that can be used to ensure the authenticity and 

integrity of sensed data without incurring transmission 

overhead of the traditional schemes. 

 Our scheme uses a keyed hashing approach. Each node 

sends its ID (i-bits), type (t-bits) (assuming each node has a 

type identifier), and data (d-bits) (Figure 1) to its next hop.   

 

 
Figure 1. i+t+d bit string before permutation. 

 

The sensors’ ID, type, and the sensed data are transmitted in a 

pseudo random fashion according to the result of the hashing 

function H(key, ID).  An additional copy of the ID is also 

transmitted in the clear along with the encoded message. The 

format of the final packet to be transmitted becomes: 

 

Packet = [ID, {ID, type, data}k], 

 

where {x}k constitutes encoding x with key k.   

 

Instead of the traditional approach of sending the hash value 

along with the information to be sent, we use the result of the 

hash value locally.  The computed hash code is used to encode 

the <ID|type|data> message (Figure 2).  
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Figure 2. Resulting hash code with example operations 

associated. 

 

 

The hash code h can be mapped to a set of actions to be taken 

on the data stream combination.  The actions can include:  

 

• Rotate  

o Left - 1 

o Right – 0 

o # Places – 000 ! 111 

• Interleave  

o Yes – 1 

o No - 0 

• Order of parameters 

o ID, T, D – 00 

o ID, D, T – 01 

o D, ID, T – 10 

o D, T, ID - 11 

• Order of bits within each parameter 

o Little Endian - 0 

o Big Endian - 1 

• Order of bits in packet  

o Little Endian - 0 

o Big Endian - 1 

 

For example, if a node computed the following hash code h = 

{1 0 1 0 1 1 0 0 1 1} the string in Figure 2 becomes the string 

in Figure 3 before it is transmitted.   The receiver will perform 

the same hash operation (since the inputs to the hash function 

are stored and updated on each sensor) and perform the 

inverse actions to accurately decode the packet. To ensure 

correctness, the receiver compares the plaintext ID with the 

decoded ID. 

 

 
Figure 3. i+t+d bit string after permutation. 

 

Although it is theoretically possible (1 in 2
i+t+d

) for a hacker to 

accurately inject data, it becomes increasingly unlikely as the 

packet grows. The benefits of this scheme are the following: 

1) since there is no hash code to transmit, the packet size does 

not grow, avoiding bandwidth overhead on an already 

resource constrained network, thus increasing the network 

lifetime; 2) the technique is simple, thus ideal for devices with 

limited resources; and 3) the internal state of the hashing 

function, namely the key, changes dynamically without re-

keying. This will be discussed in detail in the next section. 

V. ENERGY-BASED KEYING 

 One of the primary contributions of this paper is the 

method used for handling the keying process. The transient 

energy of a node depends on the energy required for: event 

detection, node keep alive, packet reception/transmission, and 

packet encoding/decoding.  As each of these actions occur, the 

energy in a node is modified (depleted). The current energy, 

Ec, of the node will be used as the key to the hash function 

(discussed in detail below).  It is likely that during the initial 

deployment each node will have the same energy level, 

therefore the initial key, K1, is a function of the current energy 

plus an initialization vector (IV). The IV is pre-distributed. 

Subsequent keys, Kj, are a function of the current energy, Ec, 

and the previous key Kj-1.  

 

K1 = F(Ec, IV)   (1) (initial transmission) 

 

          Kj = F(Kj-1, Ec)  (2) (subsequent transmissions) 

 

Accordingly, the key used as input to the hash function is 

dynamic and thus there is no need to refresh or update keys. 

The keys will change making it difficult for attackers to 

intercept enough packets to break the encoding algorithm. 

 

A.   Previous uses of Power/Energy for Security  

Research has been conducted in estimating battery life 

[22] measuring power consumption [23, 24] and in creating 

software that uses lower power than standard software [25].  

This work served as the foundation for using energy in 

security schemes and led to the initial work in this area 

discussed below. 

In [26-28] the authors presented a host-based IDS, 

Battery-based Intrusion detection (B-BID), which uses battery 

behavior anomalies based on certain pre-determined threshold 

levels to determine if an attack (network-based or host-based) 

is taking place. The basic concept behind this work is that 

normal CPU operation is not characterized by persistent 

battery use, while an attack may have that characteristic. After 

their system learns what behavior is deemed normal for 

applications running on the node, abnormal behavior can be 

detected using statistical and spectral analysis.  They were also 

able to develop energy signatures for certain attacks.  The 

authors of [26-28] present a similar network-based approach in 

[29]. 

In [30] the authors introduce several types of denial-of-

service attacks on battery-powered mobile hosts (service 

request power attacks, benign power attacks, and malignant 

power attacks).   They propose a power-secure architecture 

that uses multi-level authentication and discuss using energy 

signatures to validate trusted programs. 

In [31] the authors explore modification of battery polling 

rates (for an IPS proposed in their previous work [28]) in 

conjunction with the variance of malicious network activity. A 

dynamic polling rate algorithm was presented in order to 

provide maximum detection while conserving battery charge 

life. 
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 Though there is minimal overlap with the previous work 

discussed above and our work, it sets the precedence for using 

an energy-based approach in security. 

 

B.   Calculating Energy Costs  

In this paper we focus on the following actions that 

consume energy in the sensor network: event detection, packet 

reception, packet transmission, packet encoding, packet 

decoding, and the energy required to keep a node alive in the 

idle state. We denote the energy costs for these actions as:"

 ! Event detection:
 
E

d
  

 ! Packet reception: 
  
E

r
= n * e

r
(
 
e

r
denotes the energy cost 

of receiving one bit of data. n is the size of packet). 

 ! Packet transmission: 
  
E

t
= n * e

t
(
 
e

t
 denotes energy cost of 

transmitting one bit of data.). 

 ! Packet encoding: 
  
E

enc
= n * e

enc
(
 
e

enc
 denotes cost of 

encoding one bit). 

 ! Packet decoding: 
  
E

dec
= n * e

dec
(
 
e

dec
 denotes cost of 

decoding one bit). 

 !Keep-alive energy: 
  
E

a
= t * e

a
(
 
e

a
 is the energy to keep 

the node alive within t units of time). 

Now, the function to compute energy cost is: 

  
F(E) = SUM (E

d
, E

r
, E

t
, E

enc
, E

dec
, E

a
)  

Using this simple function we can compute the energy cost 

associated with the actions performed by each node. For 

example, sensors perform two primary actions – sense data 

and forward data. Accordingly, the equations below represent 

ES, the cost to send a sensed report; EFW, the cost to forward 

the report if the node is watching this particular sensor; and 

EF, the cost to forward the report if the node is not watching 

the sensor.  Here “watching” refers to a receiving node that 

has locally stored knowledge of the keying material of the 

sending node. This will allow the receiver to authenticate a 

message from the source. This is discussed in more detail in 

section F.) After an event is detected, with the node alive for t 

units of time the following would be the cost associated with 

the sending node: 

 
E

S
= E

d
+

 
E

t
+

 
E

enc
+ E

a

  
= E

d
+ n * (e

t
+ e

enc
) + t * e

a
 

When this packet passes through a forwarding node (that is 

watching the source node), it will cost: 

 
E

FW
= E

r
+ E

t
+ E

dec
+ E

enc
+ E

a

  
= n * (e

r
+ e

t
+ e

enc
+ e

dec
) + t * e

a
 

When this packet passes through a forwarding node (that is not 

watching the source node), the above equation reduces to: 

  
E

F
= E

r
+ E

t
+ E

a
= n * (e

r
+ e

t
)
  
+ t * e

a
 

   

C. Percieved and Bridge Energy  

In order to authenticate a packet, a node must keep track 

of the energy of the sending node to derive the key needed for 

decoding. Ideally, once the authenticating node has the initial 

energy value of the sending node, the value can be updated by 

decrementing the cost associated with the actions performed 

by the sending node using the cost equations defined above. 

However, the energy value used to encode data at the sending 

node may differ from the energy value that is stored for the 

sending node at its corresponding watching node. For 

example, if a malicious node (spoofing the ID of a valid node) 

attempts to inject false data into the sensor network it will be 

discarded at the first node that is watching the node whose ID 

was spoofed.  Assuming that the first node the false data 

encounters is watching the node whose ID was spoofed, that 

node will immediately discard the packet.  At this point the 

node that discarded the data and the nodes above that node on 

the path to the sink lose synchronization (because the upper 

portion never sees the malicious packet and does not know to 

decrement the energy associated with servicing the malicious 

transmission).  If a valid packet were to be generated by the 

current watching node using its current energy, the upstream 

node(s) that watch this particular node would discard the 

packet. To resolve this issue, the perceived energy value rather 

than the actual energy value is used to encode the data.  The 

perceived energy is the energy value that the upstream nodes 

perceive the node(s) they are watching have.  So in this 

example, the actual residual energy of the watching node is 

  
E

cj
= E

c( j!1)
! E

r
! E

d
, however, the node additionally 

stores its perceived energy 
  
E

p
= E

c( j!1)
 (before malicious 

node transmits) because it knows that it dropped the previous 

packet(s) and that upstream nodes are completely unaware of 

the energy spent handling the malicious transmission.  The 

perceived energy 
  
E

p
= E

c( j!1)
 is used to encode subsequent 

packets (generated by the watching node) and is updated as 

valid (or assumed valid) packets are transmitted. Since the 

upper nodes currently have 
  
E

c( j!1)
 stored as the energy for 

the current watched node, the network remains synchronized. 

It is important to mention a more complicated scenario.  

Assume the same scenario as mentioned above, however 

assume that the packet enters the network and spans several 

hops before the appropriate watching node filters the data.  

Now, the entire upper portion (portion above intermediate 

watching node) has lost synchronization with the lower 

portion of the network (portion below the watching node).  

This is because the lower portion of the network assumes that 

the packet that was forwarded will make it to the sink and the 

upper watching node will decrement energy levels of the 

nodes it watches accordingly.  However, the upper portion 

never receives the data that was dropped by the intermediate 

watching node so it does not know that a packet ever traversed 

that path and does not update the energy of the nodes it 

watches.  The intermediate watching node is the only node 

that knows the state of both portions of the network.  

Accordingly, to resolve potential loss of synchronization in 

this scenario, the watching node must store an additional 

energy value, the bridge energy value, to allow 
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resynchronization (bridging) of the network at the watching 

node that dropped the packet.  That is, as subsequent packets 

generated from the node of interest pass through the watching 

node that dropped the packets, the watching node will decode 

the packet with the perceived energy key of the originating 

node and re-encode the packet with the bridge energy key, 

thus keeping the entire network synchronized.   

 To minimize the potential for loss of synchronization, the 

perceived energy is only updated if a node is encoding.  This 

means that the node is either the originating node or a 

forwarding node that has had to bridge the network.  

Generally, the potential for the network to lose 

synchronization occurs when lower nodes do not perform 

actions that upper nodes assume were performed or the 

converse. Depending on the technique required (traditional or 

non-traditional) there are many scenarios that could arise, 

however using perceived and bridge energy will assure the 

continued synchronization of the network as whole. 

 

D. Energy Binning  

Energy can be considered as a somewhat imprecise value 

given that there is a percentage error associated with different 

actions taken by a sensor.  This error may vary based on 

internal or external elements (temperature, etc.) placed on the 

node as well as on the precision used when obtaining the 

energy value.   

The imprecise nature of the sensor’s energy value 

presents problems when attempting to use the energy value as 

the key to the encoding function.  When considering the 

imprecise value it is possible for nodes to lose 

synchronization.  Thus, we propose the use of discrete values 

of energy by introducing binning to obtain approximate 

values.  For example, if the energy value of a node is 11.75 

Joules and we have bins of width ten Joules starting from zero, 

the energy would be reported as 20 Joules because 11.75 

Joules falls in the second bin. 

Although binning (using approximate discrete values) 

helps significantly with synchronization, it is still possible for 

borderline values to cause nodes to lose synchronization.   

This depends on the bin size, which will affect the frequency 

of key regeneration.  The smaller the bin size the higher the 

frequency of key regeneration but the higher the probability of 

error.  In this paper we assume that the optimal bin size has 

been determined and that energy is discrete when passed to 

our algorithm.    We discuss this further in the future work 

section. 

 

E.   Authentication Information Stored in Nodes  

Since we will authenticate packets in line, every node in 

the sensor network will store one or more record(s) (Figure 4) 

based on the algorithm chosen (DEEF-T or DEEF-NT) and the 

vigilance required. For each node being watched, a record 

contains the following state information:  
 

o Node ID 

o Node type 

o Ec (current energy level)   

o Eb (bridge energy level) 

o Keep-alive timer 

Each node must also maintain local state information for itself, 

which includes:  

o IV (stored until after 1
st
 decode) 

o Actual energy level, Ec 

o Perceived energy level, Ep 

 

 
Figure 4.  Record array stored in arbitrary node. 

 

F. Monitoring Node Energy Status  

In this section we discuss the general process of 

monitoring a watched node. Deciding which nodes to watch 

and how many depends on the configuration of the algorithm 

used (DEEF-T or DEEF-NT) and the aggressiveness threshold 

associated and is discussed in section VI. 

Nodes in sensor networks normally play one or two of the 

following roles.  Nodes will either behave as the originating 

node that generates a report or a forwarding node that 

forwards a report.  The report traverses the network through 

forwarding nodes and finally to the terminating node, the sink. 

When an event is detected by an originating node the next 

step is for the report to be secured.  The originating node uses 

the perceived energy value (discussed in Section V-C) and an 

initialization vector (or previous key value if not first 

transmission) to construct the next key.  The key is used as 

input into the keyed hashing function for encoding the 

<ID|type|data> message. The encoded message and the 

cleartext ID of the originating node is transmitted to the next 

hop (forwarding node or sink) using the following format: [ID, 

{ID, type, data}k], where {x}k constitutes encoding x with key 

k. The perceived energy value is updated and stored for use 

with the transmission of the next report, only if this nodes has 

performed encoding – either as an originating node or a node 

that is currently bridging the network.  

Once the forwarding node receives the packet it will first 

check its watch-list to determine if the packet came from a 

node it is watching.  If the node is not being watched by the 

current node, the packet is forwarded without modification or 

authentication. Although this node performed actions on the 

packet (received and forwarded the packet), its local perceived 

energy value is not updated (as mentioned in section VI-C).  
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This is done to maintain synchronization with nodes watching 

it further up the route. If the node is being watched by the 

current node, the forwarding node checks the current record 

stored that is associated with the sending node and extracts the 

energy value to derive the key and authenticates the message 

by decoding the message and comparing the plaintext node ID 

with the encoded node ID.  If the packet is authentic, an 

updated energy stamp (calculated as discussed in section V-B) 

is stored in the record associated with sending node.  If the 

packet is not authentic it is discarded. Again, the energy value 

associated with the current sending node is only updated if this 

node has performed encoding on the packet.  That is, if this 

node is the originating node or is currently bridging the 

network. 

VI.    DYNAMIC ENERGY-BASED ENCODING AND FILTERING 

(DEEF)
1
 

A.   Authentication Flexibility in DEEF 
DEEF has the ability to provide traditional authentication 

where authentication is performed at every node. Accordingly, 
filtering is performed at the boundary nodes (first node the 

packet encounters) and it is very difficult (
1

2
packetsize

) for 

malicious nodes to inject data into the network.   In non-
traditional mode the network statistically filters illegitimate 
traffic that has entered the network.  Accordingly, it is possible 
for illegitimate traffic to enter the network and span several 
hops before being dropped. 

B.   Traditional Authentication 
In the traditional authentication scheme we assume there 

exist a short window of time at initial deployment that an 
adversary is not able to compromise the network, because it 
takes time for an attacker to capture a node or get keys. During 
this period, route initialization information is used by each 
node to decide which node to watch and a record r is stored for 
each of its 1-hop neighbors in its watch-list (using a binary tree 
structure routing algorithm, r = 3). To obtain a neighbor’s 
initial energy value, a network-wise master key can be used to 
transmit this value during this period.  

When an event occurs and a report is generated, it is 
encoded as a function of a dynamic key based on the perceived 
energy of the originating node and transmitted. When the 
packet arrives, the forwarding node extracts the key of the 
sending node (this could be the originating node or another 
forwarding node) from its record and decodes the packet.  After 
the packet is decoded the plaintext ID is compared with the 
decoded ID.  If the packet is authentic, and this hop is not the 
final hop, the packet is re-encoded by the forwarding node with 
its own key derived from its current perceived energy level.  If 
the packet is illegitimate, the packet is discarded. This process 
continues until the packet reaches the sink. Accordingly, 
illegitimate traffic is filtered before it enters the network.   

Re-encoding at every hop refreshes the strength of the 
encoding. Recall that the general packet structure is [ID,{ID, 
type, data}k]. To accommodate this scheme the ID will always 
be the ID of the current node and the key is derived from the 

                                                             
1
 Due to space limitations the detailed algorithm was not presented. 

current node’s local energy value. If the location of the 
originating node that generated the report is desired, the packet 
structure can be modified to retain the ID of the originating 
node and the ID of the forwarding node. The structure of the 
packet becomes: 

          Packet = [IDf, IDo, { IDf, IDo, type, data}k] 

Where IDf is the ID of the forwarding node and is rewritable by 
subsequent forwarding nodes. IDo is the ID of the originating 
node and the key is derived from the energy level of the current 
forwarding node. Initially, at the originating node IDf = IDo. 

If a hacker does manage to make a packet look legitimate 
the packet will make it to the sink and we can employ a 
weighted voting algorithm where the sink can use the majority 
vote.  To trick the sink the hacker would have to compromise at 
least half the nodes in the network and send data 
simultaneously.  DEEF-T reduces the transmission overhead 
but increases processing overhead because of the 
decode/encode at each hop. Analysis of traditional 
authentication is in the performance evaluation section.  

C.   Non-traditional Authentication  
In the non-traditional authentication scheme, each node 

randomly picks r nodes to monitor and stores the 
corresponding state before deployment. Therefore, no routing 
information and no communication using a network-wide 
master key is necessary to obtain neighbors’ energy values.  

As a packet leaves the source node (originating node or 
forwarding node) it passes through node(s) that watch it 
probabilistically. If the current node is not watching the node of 
interest, the packet is forwarded.  If the node of interest is being 
watched by the current node the packet is decoded and the 
plaintext ID is compared with the decoded ID.  If the packet is 
authentic, and this hop is not the final destination, the original 
encoded packet is forwarded unless the node is currently 
bridging the network.  In that case, the original packet is 
encoded with the bridge energy and forwarded. Since this node 
is bridging the network the local perceived energy is 
decremented accordingly.   If the packet is illegitimate, the 
packet is discarded. This process continues until the packet 
reaches the sink. This technique consumes more transmission 
overhead but in contrast to the traditional DEEF scheme it 
reduces processing overhead (because less re-encoding is 
performed and decoding is not performed at every hop). The 
tradeoff is that an illegitimate packet may traverse several hops 
before being dropped. The effectiveness of this scheme 
depends primarily on the value r, the number of nodes that each 
node watches.  A discussion of general performance of this 
algorithm efficiency as a function of r is given in the 
performance evaluation section.   

Note that in this scheme re-encoding is not done at 
forwarding nodes unless they are bridging the network. 
Accordingly the packet structure is [ID,{ID, type, data}k], 
where the ID will always be the ID of the current node and the 
key is derived from the current node’s local energy value. 

If a hacker does manage to make a packet look legitimate, 
the packet will make it to the sink. Again, we can employ 
weighted voting. Analysis of non-traditional authentication is 
in the performance evaluation section.  
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       (a)                                                              (c)                                                                 (e) 

 

    (b)                                                       (d)                                                        (f) 

 

Figure 5. (a) Effectiveness of DEEF-T vs. DEEF-NT where r = 3;  (b) Effectiveness of DEEF-NT with varying r; (c) Sink drop 

probability considering event detection set size DEEF-T vs. DEEF-NT where r = 3; (d) Sink drop probability considering event 

detection set size for DEEF-NT with varying r;  (e) Average cost to send valid packet in DEEF-T and DEEF-NT where r = 3; 

(f) Average cost to send valid packet in DEEF-NT with varying r. 

 

VII. PERFORMANCE EVALUATION 

In this section we use analysis to quantify the 

effectiveness of DEEF-T and DEEF-NT.   Next we examine 

how the density of the network affects the chances of false 

packets successfully traversing the network and being 

processed by the sink when the sink employs a simple 

majority vote approach. Finally, we examine the cost of our 

algorithm on legitimate packets considering current sensor 

applications. 

When considering the effectiveness of the algorithms we 

target the case where the sink is considered an average node 

with average resources. That is, the sink is not assumed to 

store (and maintain) keys for every node in the network. In 

some situations it may be impossible to have a powerful sink. 

In taking this approach, we attempt to ascertain the impact 

(effectiveness/energy costs/consequences) on distributing the 

resource load. 

For analysis, we use the following values in evaluating 

our equations: number of nodes in the network, N = 200, and 

packetsize = 32. 

A. Effectiveness of  DEEF-T and DEEF-NT 

In this section we compare DEEF-T and DEEF-NT 

considering the drop probability vs. number of hops.  We  

 

 

also take a closer look at DEEF-NT and vary the number of 

records r. 

In DEEF-T, in order for an attacker to be able to 

successfully inject a false packet, an attacker must forge the 

packet encoding which is a result of the keyed hash.  Given 

that the complexity of the packet is 2
packetsize

the probability of 

an attacker correctly forging the packet is: 

 

                
1

2
packetsize

=
1

2
ID+TYPE+DATA

                         (1) 

 

Accordingly, the probability of the hacker incorrectly forging 

the packet and therefore the packet being dropped ( pdrop!T ) 

is: 

          1!
1

2
packetsize

= 1!
1

2
ID+TYPE+DATA

               (2) 

 

Since DEEF-T authenticates at every hop, forged packets will 

always be dropped at the first hop with a probability of 

pdrop!T . 
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Since DEEF-NT statistically drops packets along the 

route, the drop probability for DEEF-NT ( pdrop!NT ) is a 

function of the effectiveness of the watching nodes as well as 

the ability for a hacker to correctly guess the encoded packet 

structure.  Accordingly, the probability of detecting and 

dropping a false packet at one hop when randomly choosing r 

records (nodes to watch) is: 

 

       pdrop!NT =
r

N
* 1!

1

2
ID+TYPE+DATA

"
#$

%
&'

                  (3) 

 

Thus, the probability to detect and drop the packet when 

choosing r records after h hops is: 

 

                              1! (1! pdrop!NT )
h

                           (4) 

 

With the assumption that the packet size is 32 bits and if we 

use the same storage requirements for both DEEF-T and 

DEEF-NT of r = 3 we can compare both schemes in Figure 5a 

when using the same amount of storage.  Recall from section 

VI-B that DEEF-T requires r = 3.   Figure 5b shows the 

effectiveness of DEEF-NT as the number of stored records 

vary.  

B. Probability packets span network and dropped at sink 

As discussed in sections VI-A and VI-B, we assume that 

the sink has the ability to take a majority vote to determine 

which data to process and accept.  Therefore, even if one false 

packet successfully makes it to the sink it is still far less likely 

for the sink to process the data because multiple (more than 

half) nodes must be compromised during an event detection in 

order to make the sink process false data.   The number of 

nodes necessary to compromise the integrity of the processed 

data for DEEF-T and DEEF-NT is:  

 

x = floor
#nodes _detect _ event

2

!
"#

$
%&
+1                (5) 

 

In order for packets to successfully traverse the network and 

trick the sink during an event detection sequence an attacker 

would have to simultaneously forge data from x nodes in the 

detection set.  The probability of unsuccessfully injecting 

traffic simultaneously from x compromised nodes (and thus 

the sink dropping packet) for DEEF-T (6) and DEEF-NT (7) 

is: 

 

1!
1

2
ID+TYPE+DATA

"
#$

%
&'
x

  (6)       1! (1! pdrop!NT )
h"# $%

x

    (7) 

 

Figure 5c compares DEEF-T and DEEF-NT with r = 3.  

Figure 5d presents DEEF-NT varying r.  As the local node 

density increases, either by increasing the number of physical 

nodes or the sensing range of nodes, it becomes increasingly 

difficult for false data to successfully traverse the network and 

trick the sink.  This is particularly useful in DEEF-NT because 

the drop probability increases with the number of hops the 

packets span.  However, if the hacker injects malicious packets 

a few hops away from the sink (e.g., h = 10), DEEF-NT 

without employing a majority vote at the sink becomes less 

effective.  Using the majority vote approach given a low hop 

count (e.g., h = 10) increases the overall drop probability from 

14% (Figure 5b) to 90% (Figure 5d) when r = 3 and the 

number of detecting nodes is 30. 

C. Energy cost comparing DEEF-T and DEEF-NT
2
 

In this section we look at the cost to transmit valid data in 

DEEF-T and DEEF-NT.  In both algorithms, there is a single 

cost to detect the event, encode the packet, and transmit the 

packet ( E
d
,E

enc
,E

t
).  Additionally, there is a recurring cost 

to marshal the packet through the network depending on the 

number of hops.  In DEEF-T this cost is 

E
r
,E

dec
,E

enc
,E

t( ) for all of the intermediate nodes since all 

of the nodes perform the same operations.  In DEEF-NT the 

cost is E
r
,E

dec
,E

t( )  or E
r
,E

t( )  for variable fractions of 

the forwarding nodes depending on the number of nodes each 

node chose to watch.  Finally, there is a single cost to receive 

and decode the packet at the sink ( E
r
,E

dec
).  The average 

cost to transmit a packet using DEEF-T is:  

 

   Ed + Eenc + Et +
E numhops[ ]•

Er + Edec + Eenc + E t( )

!

"
#
#

$

%
&
&
+ Er + Edec

  (8) 

 

The average cost to transmit a packet using DEEF-NT is:  

 

E
d
+ Eenc + Et +

E numhops[ ]•

% forward _ enc_dec( ) • Er + Edec + E t( )

+ % forward( ) • Er + E t( )

!

"

#
#
#

$

%

&
&
&
+ Er + Edec

   (9)      

 

To determine the average energy used for DEEF-NT to 

transmit a valid packet we must have an idea of the number of 

nodes along the path that are likely to be watching a specific 

node at a specific time. We first determine the number of 

possible record arrays y. We let r equal the number of records 

and N equal the number of nodes in the network. This is:  

 

                                   y =
(N )!

r!(N ! r)!
"
#$

%
&'

                               (10) 

Next we determine the possible number of record arrays that 

do not have a specific record in common. Therefore, the 

number of possible record arrays q that exclude a specific 

record is: 

 

                              q =
(N !1)!

r![(N !1) ! r]!
"
#$

%
&'

                          (11) 

                                                             
2
 In order to simplify calculations bridging is not considered in this analysis. 



 9 

Accordingly, the number of record arrays that contain the 

same record of interest is ( y ! q ).  We can calculate the 

percentage of nodes in the network that have the record of the 

node of interest (12) and the percentage that do not contain the 

record of the node of interest (13).  This is:  

 

                 prob(have_ record) =
(y ! q)

y

                     (12) 

 

                     prob(do_not _have_ record) =
q

y

                     (13) 

 

To make the analysis possible, we make the assumption that 

the network is equally distributed.  That is, if a cross-section 

of the network is sampled, it will have the same node 

composition as the entire network.  Accordingly, to determine 

the number of nodes along a given path that share a record 

(encode/decode and forward a packet associated with a 

watched node) with a particular number of expected hops we 

can apply equations (12) and (13) to the number of nodes 

along the path.  Taking energy values (
  
E

t
= 65µJ , 

  
E

r
= 50µJ ,  

  
E

dec
= 16µJ , 

  
E

enc
= 15µJ )

3
 from [32] we 

can perform analysis.  Figures 5e and 5f compares the average 

cost to transmit a packet through the network for DEEF-T and 

DEEF-NT assuming r = 3 while varying the number of hops 

taken.   

 

D. Discussion 

 We note the following observations for the above 

scenarios. While DEEF-T offers 99% drop probability of 

illegitimate packets at the first hop (Figure 5a), it more than 

doubles the amount of energy consumed for legitimate traffic 

in DEEF-NT at the fifth hop (Figure 5e). At the 15
th

 hop, 

DEEF-T consumes 3 to 6 times more energy than DEFF-NT, 

and the separation of energy costs significantly increases as 

the network scales.  

 However, when storage is a concern and DEEF-NT is 

watching the same number of nodes as DEEF-T (i.e., r = 3), 

DEEF-NT can achieve at best 77% drop probability at the 

100
th

 hop. At which point the illegitimate packet would have 

consumed 52% more energy than DEEF-T. On the other 

hand, DEEF-NT can achieve at least a 90% drop probability 

within 9 hops if each node is watching at least 25% of the 

network (r = 50).  Requiring more storage, however giving the 

benefit of a high drop probability within a few hops and 

lowering energy costs when dealing with legitimate packets. 

 From this analysis, one could argue that DEEF-T is better 

suited where storage is the most critical resource and where 

the network tends to be less chatty, whereas DEEF-NT is most 

beneficial for chatty networks and/or when storage is not the 

crippling resource. 

                                                             
3
 We could not find a value for Ed so we chose a reasonable value.  This is 

inconsequential in the comparison of DEEF-T and DEEF-NT as both equations 

contain Ed with the same frequency. 

VIII. CONCLUSION AND FUTURE WORK 

In this paper we present the Dynamic Energy-based 

Encoding and Filtering (DEEF) framework.  Using a simple 

encoding scheme and dynamic energy-based keying, DEEF 

allows flexibility in the approach to removing false data from 

the network. We have evaluated DEEF’s feasibility and 

performance through analysis. Our results show that DEEF-T 

and DEEF-NT can be configured to provide optimal 

performance in a variety of network configurations depending 

largely on the application of the sensor network. 

We plan to extend this work by performing simulations to 

determine optimal bin sizes for energy.  Further, we plan to 

enable our technique to deal with loss of synchronization 

(from unreliable MAC, retransmissions, imprecise binning, 

etc.).  We also plan to conduct experiments to obtain 

variability of sensor energy levels when performing certain 

actions (e.g., encoding, etc.) to ensure optimal binning.  

Simulations and additional analysis will be performed to 

determine how packet size affects performance of the 

authentication technique used (DEEF-T or DEEF-NT). Also, 

we plan to implement our technique in conjunction with 

current sensor routing algorithms.  Finally, we plan to 

introduce the concept of meeting nodes (DEEF-MN) in DEEF 

in order to detect malicious insider attacks. 
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