
MACA: A Privacy-Preserving Multi-factor Cloud
Authentication System Utilizing Big Data

Wenyi Liu, A. Selcuk Uluagac, and Raheem Beyah
GT CAP Group, The School of ECE

Georgia Institute of Technology

Atlanta, GA 30332, USA

{wliu76@gatech.edu}@gatech.edu, {selcuk, rbeyah}@ece.gatech.edu

Abstract—Multi-factor authentication (MFA) is an approach
to user validation that requires the presentation of two or more
authentication factors. Given the popularity of cloud systems,
MFA systems become vital in authenticating users. However,
MFA approaches are highly intrusive and expose users’ sensitive
information to untrusted cloud servers that can keep physically
identifying elements of users, long after the user ends the
relationship with the cloud. To address these concerns in this
work, we present a privacy-preserving multi-factor authentication
system utilizing the features of big data called MACA. In MACA,
the first factor is a password while the second factor is a hybrid
profile of user behavior. The hybrid profile is based on users’
integrated behavior, which includes both host-based character-
istics and network flow-based features. MACA is the first MFA
that considers both user privacy and usability combining big
data features (26 total configurable features). Furthermore, we
adopt fuzzy hashing and fully homomorphic encryption (FHE) to
protect users’ sensitive profiles and to handle the varying nature
of the user profiles. We evaluate the performance of our proposed
approach through experiments with several public datasets. Our
results show that our proposed system can successfully validate
legitimate users while detecting impostors.

Index Terms—Authentication in Cloud, Fuzzy Hashing, Fully
Homomorphic Encryption, Privacy-Preserving Authentication

I. INTRODUCTION

There is great demand to establish a multi-factor authenti-
cation (MFA) system which requires two or more authentica-
tion factors (i.e., knowledge, possession, identity) to validate
users during their login into a cloud service. Several popular
services employ MFA, usually as an optional feature which
is deactivated by default, such as Amazon [1], Google [2],
Microsoft [3]. Each of these techniques requires an out-of-
band channel (e.g., an App, text message) and an extra step
for a user, which reduces usability. Similarly, there have been
quite a few academic proposals for MFA systems [4]–[8].
In a typical MFA system, each user is verified via the first
authentication factor (usually password) along with a second
or even a third factor such as smartcards [9], fingerprints
[10], or user’s mouse movements [8]. MFA solutions based
on physical devices or physiological characteristics depend on
the introduction of specialized hardware, such as a token or a
fingerprint reader, which hinders usability and deployability by
causing additional cost for manufacturing and implementation.
Alternatively, the more usable (and therefore more likely to be

widely-adopted) MFA solutions are based on users’ behavior;
however, they do little to protect their privacy. This is critical,
given that the validity of the specific user characteristics
shared with a cloud service will likely significantly outlast the
period of time for which the services are needed [11].

To address these challenges, in this paper, we propose a
privacy-preserving multi-factor authentication system called
MACA, which collects hybrid user behavior profiles to serve
as a second authentication factor along with the user password
as the first. MACA is the first MFA that considers both
user privacy and usability. Instead of just focusing on one
specific category of user behavior, like system processes or
user’s mouse movements, we integrate features from several
categories to generate a user’s profile. We also adopt fuzzy
hashing [12] and fully homomorphic encryption (FHE) [13]
techniques to ensure that a user’s personal information is not
leaked to cloud or a third party and that the system is able
to tolerate variations in a user’s plaintext and corresponding
cryptographic profiles. Further, MACA incorporates big data
features efficiently in the authentication process. Specifically,
MACA uses a large combination of host-based characteris-
tics and network-based features to profile users. Combining
multiple features (total 26 configurable features) and the
large amount of data associated with each feature enable a
much simpler, threshold-based user classification (instead of
expensive machine learning) on the cloud. Since the operations
for user classification are simple, the numerical portion of
the profile can be verified using FHE. For example, using
FHE a cloud operator can ascertain whether a user’s average
throughput value is in an acceptable range without knowing
the actual value. Finally, for the string portion of the user
profile, fuzzy hashing is used to match similar strings without
knowing the actual values of the strings.

We performed experiments using a user profile database
derived from several public datasets [14]–[16] and a dataset we
generated. Based on those data, we evaluate the performance
of the proposed system in terms of recall, false positive
rate, size of information required for authentication, system
overhead, and resource utilization. Our results show that
the proposed scheme shows significant promise for detecting
impostors from legitimate users.

The remainder of this manuscript is organized as follows.

2

We review the related work in Section II. Assumptions and the
adversary model are presented in Section III. We explain the
details of MACA in Section IV. We present our experimental
design and discuss the results in Section V. We conclude this
paper in Section VI.

II. RELATED WORK

Authentication via more than one factor, Multi-Factor Au-
thentication (MFA), has become an increasingly essential
component for cloud systems - a vital means to ensure
that users, no matter where they are, are in fact who they
claim to be and thus are authorized to gain access to cloud
resources. A number of researchers have proposed the design
and implementation of MFA systems [4]–[8], with each pre-
senting its own specific advantages and tradeoffs. Knowledge
factor (i.e., passwords) is the most ubiquitous authentication
factor. It is widely-known that the sole use of passwords
has many weaknesses. Nevertheless, passwords are still in
use and are the de facto standard [17]. MFA systems using
passwords along with a possession factor are commonly found
in electronic commerce and online banking. Security tokens,
also called One-Time-Password (OTP) tokens, is one of the
most commonly-used possession factor, which generates a
pseudo-random number at pre-determined intervals (e.g., RSA
SecurID [18] and VeriSign Security Token [5]). Additionally,
these cards serve as an extra authentication factor especially in
corporate network environments. For instance, in [9], Kumar
proposed a secure remote user authentication scheme with
smart cards for corporate networks. Unfortunately, an MFA
system with a possession factor usually depends on the
distribution of some specific device, which is cumbersome and
not user-friendly. Besides, the introduction of physical devices
may pose further security risks if the devices are lost, stolen
or replicated without the knowledge of the legitimate user.
Finally, authentication via an identity factor is also a well-
studied area of research. Identity factors are further categorized
as either physiological biometrics or behavioral characteris-
tics [6], [19]. Physiological biometrics, such as fingerprints,
iris and face, have already drawn considerable attention in
academia and have been implemented widely in industry [10].
Behavioral biometrics, such as mouse movements, keystroke
dynamics, graphical passwords have also gained popularity in
the research community [7]. Similar to MFA systems with pos-
session factors, MFA systems with physiological biometrics
suffer from a relatively low usability and deployability due to
the implementation cost of biometrics recognition devices. To
the best of our knowledge, no consideration has been given to
the privacy issue when authenticating based on user behavior
for cloud systems utilizing big data. This is critical, given that
the validity of the specific user characteristics shared with a
cloud operator will likely significantly outlast the period of
time for which the cloud services are needed. Therefore, our
goal in this work is to develop a privacy-preserving multi-
factor authentication system based on passwords along with
hybrid user profiles, that considers both usability and privacy
issues. As we consider a large amount of host-based character-

istics and network-based features and the corresponding data,
the large amount of data associated with each feature enable
a much simpler, threshold-based user classification (instead of
expensive machine learning) in the cloud.

III. ASSUMPTIONS AND ADVERSARY MODEL

In our system, we make the following two assumptions: 1)
Perfect knowledge assumption: We assume that the adversary
has perfect knowledge of the multi-factor authentication sys-
tem including the strategy of user profile acquisition, the mech-
anism of profile encryption/hashing, and the details of the au-
thentication protocol. 2) First-Factor knowledge assumption:
We assume that the adversary knows the victim’s first authen-
tication factor, which is the user password.

In our adversary model, a malicious entity can attack the
proposed multi-factor authentication system via impersonating
a legitimate user (victim) in order to gain access to the victim’s
account. We specifically consider the following two types of
adversaries: brute-force attacker and honest-but-curious server
attacker.

1) Brute-force attacker: A computationally bounded third-
party adversary may attempt to authenticate with a spoofed
second authentication factor by exhaustively searching for the
correct user profile. Such an attack consists of enumerating
all possible user profiles until the correct one is found,
which, in the worst case, would involve traversing the entire
message space. 2) Honest-but-curious server attacker: In our
system, we assume the server in the cloud that processes the
authentication requests is honest-but-curious that (a) stores
incoming cryptographic data without tampering with it; (b)
honestly processes each authentication request and returns the
corresponding outcome; (c) but tries to derive the underlying
sensitive information from the user’s cryptographic profile.

Moreover, we use a fuzzy hashing scheme implemented as
sdhash [20] by Rousseu [21] to match data with similarities.
In industry, fuzzy hashing has been applied in the realm of
security forensics, especially in identifying morphing malware
and spam. In our system, we adopt fuzzy hashing to evaluate
the similarity of two fuzzy hash values of user behavior
features in the forms of strings, without revealing the user’s
sensitive information to the authentication server.

Finally, we achieve the privacy of a user’s profile
with fully homomorphic encryption (FHE) [13], [22], [23].
Specifically, we used and improved the open-source library
Simple-Homomorphic-Encryption [24] in our authen-
tication system, which is a C++ implementation of homomor-
phic encryption discussed in [22]. The user sends the informa-
tion encrypted with public key pk by function Encrypt to the
server. As listed in Equation 1, the encryption scheme ε has
an algorithm Evaluateε that, given plaintext π1, π2,πt, for
any valid ε, private, public key pair (sk, pk), any circuit C,
and any ciphertext ψi ←− Encryptε(pk, πi), yields

ψ ←− Evaluateε(pk,C, ψ1...ψt)

such that Decryptε(sk, ψ) = C(π1, π2...πt)
(1)

3

Secured User
Profile

User Profile D/B

1. Authentication Request

Profile Acquisition

Program

User
Password

2. Password/Profile

Validation

Content Server

3. Content Service Ticket

4. Content Service

Ticket

Authentication

Server (AS)

Honest-but-Curious

Server Attacker

Brute Force

Attacker

Fig. 1. Overview of the Privacy-Preserving MFA System

The server in the cloud does operations on the encrypted
numbers by function Evaluate with public key pk and outputs
ψ. The server sends ψ back to the user. The user then decrypts
ψ by function Decrypt with his private key sk and obtains the
result of C(π1, π2...πt). In this way, the server conducts the
desired operation for the user without acquiring any plaintext.

IV. PROPOSED SYSTEM

In this section, we introduce the design of MACA. Our
proposed system collects the user behavior to serve as a
second authentication factor along with the user’s password.
However, unlike conventional user behavior profiling, the user
information acquisition, transmission and storage all occur in
a privacy-preserving fashion.

A. System Overview

The architecture of the developed system has four primary
components and is shown in Figure 1: (1) an open-source
profile acquisition program (PAP) that runs on the user’s
local host; (2) a user profile database (UPDB) that stores
the user’s information in a privacy-preserving fashion; (3) an
authentication server (AS) that processes and validates user’s
login request in the cloud environment; and (4) a content
server.

The first time a user uses MACA with a specific site,
he/she must go through the process of enrollment. During
enrollment, the user information acquisition program collects
a user profile, denoted by P and then hashes and encrypts
P with the FHE public key pk. Then, the user ID and user-
assigned password, denoted by uid and Psw, along with the
cryptographic user profile, denoted by Ṗ , are passed to the AS.
The AS will interact with the UPDB and thus insert Ṗ into
the user profile database. For each login attempt afterwards,
the individual will pass his uid, typed password, denoted by
Psw′ as well as the newly captured user profile in cipher text,
denoted by Ṗ ′. The AS is responsible for evaluating how much
Ṗ ′ is different from Ṗ (hereinafter referred to as distance)
and returning the corresponding authentication result denoted
as AuthResult, a boolean value indicating authentication as
success or failure. If AuthResult is success, the AS will

Fig. 2. The Pipeline of User Profile Acquisition Program

send a content service ticket along with AuthResult to the
user, which contains a session ID and a timestamp. Any user
holding a valid service ticket may initiate a service request to
the content sever.

The major challenge of the multi-factor authentication sys-
tem is how to preserve the privacy of the user profile from
servers and any third party while enabling the server to deter-
mine distance between user profiles. To achieve this, we use
fuzzy hashing and fully homomorphic encryption techniques.
From Equation 1, we can derive operations that are used by
the server in the cloud on ciphertext values (ψ1..ψk) sent by
the user when generating the ψ. Specifically, we implemented
two simple arithmetic operations, substraction and division
using the underlying And/Xor gates that were proven to be
secure [23]. Assuming that we have FHE key pair (pk, sk), ˙aH
← FHE Encrypt (a, pk), ˙bH ← FHE Encrypt(b, pk),
ψ1 ← FHE Sub(˙aH , ˙bH , pk), and ψ2 ← FHE Div (˙aH ,
˙bH , pk), we can show the existence of Equations 2 and 3 as

follows:

FHE Decrypt(ψ1, sk) = a− b (2)
FHE Decrypt(ψ2, sk) = a/b (3)

B. User Profile Acquisition

To collect user profiles, we developed two user profile
acquisition programs in C# and Python for Windows and
Linux OSs, respectively. The program has three main steps
as illustrated by the cascading blocks in Figure 2: data
summation, feature derivation, and hashing-encryption.

The Data Summation block is responsible for collecting the
user information in a sliding window - collection for some user
information occurs continuously and at the end of each sliding
window period, the collected information is handed over to the
Feature Derivation block and Data Summation starts again.
Feature Derivation block receives the raw data from the
previous block and extracts the required features. After each
feature is ready for processing, the Feature Derivation block
passes the data to the next block. Hashing-Encryption block
is responsible for generating a cryptographic profile based
on all of the available features via fuzzy hashing and fully

4

TABLE I
FEATURES USED FOR USER PROFILE MODELING

Category Section # Features Type

Host-
Based

1 File System and Registry 2 string
2 Mouse Dynamics 3 number
3 Keystroke Activity 2 number
4 System Process 4 string

Network-
Based

5 Browser Information 3 string
6 Flow-Based Features 19 number

homomorphic encryption. The fuzzy-hashed user profile is
denoted by ṖF while the homomorphically encrypted user
profile is denoted by ˙PH . Thus, the block outputs a hybrid
cryptographic user profile Ṗ ←− {ṖF , ˙PH}. In addition,
the Feature Derivation Block continues to produce feature
information at the end of every window period.

Furthermore, as illustrated in Table I, user characteristics
or features are divided into two categories: host-based and
network-based, which are further classified into several sub-
categories as follows.

1) File System and Registry: This sub-category consists of
fuzzy hashes of the file hierarchy at a critical path and a portion
of the registry contents (for Windows systems). 2) Mouse
Dynamics: User’s mouse movements can be characterized
via three fine-grained metrics: direction, curvature distance,
and curvature angle. Nan Zheng et al. [8] proved that these
three angle-based features are relatively unique from person
to person and independent of the computing platforms and
can therefore be used to distinguish legitimate users from
intruders. To obtain a stable and representative sample, we
use the average values of these three metrics in a time window
as several features in the user’s profile. 3) Keystroke Activity:
User’s keystroke activity is modeled via two features: the
average key press-down time and the average time interval
between key presses. In MACA, these metrics of keystroke
activity are captured and derived as described in [25] while
a user is typing his password in order to log into the the
operating system. 4) System Processes: This sub-category is
composed of fuzzy hashes of active system process names.
5) Browser Information: In this sub-category, we utilize the
auto-fill information in browsers. We derive the fuzzy hash of
personal information with attributes of ”Email”, ”Username”
and ”Address”. The significance of auto-fill information is that
one tends to have same auto-fill value for those frequently-
used attributes, in different browsers or hosts. 6) Flow-Based
Features: We model users’ general network behavior via 19
flow-based features. Note that it is commonly known that flow-
based features indicate the category of network traffic (e.g.,
stream video, online chat) and thus serve a good reflection
of user’s network usage patterns. In our system, we use the
average values of each feature given a specific window of
time. The process of generating a cryptographic user profile is
given in Algorithm 1. Note that the user profiling approach we
propose is an extensible and configurable framework, which

TABLE II
DATA SOURCE FOR EXPERIMENTS

Section Data Set Subjects
Mouse Dynamic NSKEYLAB Dataset [15] 10
Keystroke Activity CMU Dataset [16] 51
General Network DACS Dataset [14] 132

means that one can always edit the user profile by deleting or
inserting new user behavioral features.

C. Authentication in the Cloud

To initiate an authentication attempt, the user passes the uid,
Psw′ for the first-factor authentication. The failure of first-
factor authentication terminates the conversation. If the user
passes the first step of the authentication, he then passes his
newly generated user profile, Ṗ ′, to the server in the cloud.
After evaluating the distance between Ṗ ′ and Ṗ , the server
returns a boolean value AuthResult, indicating the success
or failure of the second-factor authentication. In order to yield
AuthResult, we introduce a new concept, the Accepted Dis-
tance Value (ADV). To define ADV , we first define distance
value. Assuming PHj and ṖHj denote the values of the jth

feature in profile P and profile Ṗ , the distance value between
PHj and ṖHj is defined in Equation 4:

distancej =
|ṖHj − PHj |

PHi

× 100 (4)

Algorithm 1 GenerateCryptographicUserProfile()
Input: PF , PH , pk
Output: Ṗ ←− {ṖF , ˙PH}

1: for each i ∈ [1, n] do
2: ˙pFi ←− FuzzyHash(pFi);
3: end for
4: for each j ∈ [1,m] do
5: ˙pHj ←− FHE Encrypt(pHj , pk);
6: end for
7: ṖF ←− { ˙pF1 ... ˙pFi ... ˙pFn};
8: ˙PH ←− { ˙pH1 ... ˙pFj ... ˙pFm};
9: Ṗ ←− {ṖF , ˙PH};

10: return Ṗ ;

V. EXPERIMENTATION AND EVALUATION

In this section, we evaluate the feasibility of our proposed
system through a series of experiments on real data.

A. Experimental Setup

We conducted experiments with a combination of four
datasets. The names of the public datasets used in our ex-
periments are shown in Table II. 1) NSKEYLAB Dataset [15]
is a dataset containing mouse dynamics information from 10
subjects, each of who accomplishes at least 30 data sessions.
Each session consists of about 30 minutes of a user’s mouse
activity in a free environment [15], [26]. We derived three
angle-based metrics using the approach proposed in [8], thus,

5

Fig. 3. The Generation of Hybrid User Profile Samples

generating three data points that represent the user’s mouse
movement profile. 2) CMU Dataset [16] is a dataset consisting
of keystroke-timing information from 51 subjects (typists),
each typing a password 400 times [16], [25]. 3) DACS Dataset
[14] is a dataset consisting of the network trace for an
educational organization. We used SplitPcap [27] to obtain
30-min-long separate pcap files and for each small pcap file,
we ran TSTAT [28] to derive the flow-based features, thus,
generating the user’s network behavior profile. This data set
spans two months. In addition to these three datasets, we
generated the dataset that contains file system and registry
information with 130 different software names (30 O/S pre-
installed, 100 personalized) for 15 subjects. Then, based on
these four datasets, we generated 300 different 30-min-long
hybrid user profile samples.

Moreover, for each user, we registered his/her first piece
of cryptographic hybrid user profile in the database (the
enrollment of that user). Then, we appended a label to each
profile indicating the owner of that profile. We randomly chose
half of all the hybrid user profile samples and intentionally
labeled them incorrectly making the actual owner of that
profile appear as an intruder. For the other half of the hybrid
user profile samples, we correctly labeled them, treating the
owner as a legitimate user. Finally, we randomly split all the
labeled user profiles into two equal sized parts: the training
set and the testing set. We hashed and encrypted each profile
in the testing set via Fuzzy Hashing and FHE as explained
in Sections III, IV. We conducted all the experiments on a
standard laptop computer with Intel CPU i5-M430 (2.27GHz)
and RAM of 4 GB.

B. Results and Discussion

We evaluated our system in terms of recall, false positive
rate, system overhead, size of authentication packet, and
resource utilization:

1) Recall: Recall is the proportion of positive cases that
are correctly identified and was calculated using TP

TP+FN . TP
denotes True Positive and FN denotes False Negative while in
our authentication system an intruder is labeled as Positive and
a legitimate user as Negative. 2) False Positive Rate (FPR):
FPR is the proportion of negatives cases that are incorrectly
classified as positive and was calculated using TN

FP+TN . TN
denotes True Negative while FP denotes False Positive. 3) Size
of Authentication Packets (hereafter referred to as packet size):
Packet size is the size of all the authentication information
transmitted from client to the server. 4) System Overhead:

System Overhead is the initial latency during the entire multi-
factor authentication process. We evaluated the overhead intro-
duced by user profile acquisition, cryptography, data transmis-
sion, and server processing. 5) Resource Utilization: Resource
Utilization is defined as how much system resources it takes
for user information acquisition program to continuously re-
trieve information and derive features in terms of CPU and
RAM utilization.

We conducted a series of experiments on the testing set
containing 150 labeled hybrid user profile samples within
different time window sizes for data collection. To decide
whether a hybrid user profile is legitimate, we first determined
appropriate thresholds for individual characteristics that com-
prise the profiles. Next, we used a majority vote to make the
final decision on the legitimacy of a profile sample. A training
set containing 150 labeled hybrid user profile samples served
as a priori knowledge. The experimental results in terms of
recall and false positive rate (FPR) are presented in Table III.

TABLE III
EXPERIMENT RESULTS: RECALL AND FPR

Time For Data Collection Recall (%) FPR (%)

5 min 74.2 26.9

10 min 75.4 19.7

20 min 78.8 16.2

30 min 80.8 14.7

From the table, it can be seen that the longer the time win-
dow for the data collection, the better the system performance
is in terms of recall and FPR. When the time window is as
long as 30 minutes (initial bootstrap latency - this drops to
0 for every attempt after 30 minutes), we achieve an optimal
result with recall of 80.8% and FPR of 14.7%. Nevertheless,
a longer data collection time tends to reduce the usability of
the system. Therefore, there is a trade off between system
accuracy and efficiency.

Next, we evaluated the other three system performance indi-
cators: packet size, system overhead, and resource utilization.
In terms of packet size, for the first-time user enrollment, the
packet size is the sum of the size of the user’s public key pk,
uid, Password Psw, and cryptographic user profile Ṗ . Since
the size of uid and Psw are far less than the size of the rest, we
can neglect uid and Psw in the calculations. Packet size, Size,
was calculated using Equation 5, in which pkSize denotes
the size of public key pk, n denotes the number of string
features, α denotes the size of each fuzzy hash, m denotes the
number of number features and β denotes the size of each FHE
ciphertext. In MACA, with pkSize = 0.98MB,n = 9, α =
0.125KB,m = 24, and β = 146KB, the packet size for the
enrollment is approximately 4507 KB. In the authentication
procedure, the user is not expected to transmit their pk again;
so, the packet size is around 3504 KB after enrollment.

Size = pkSize+ n ∗ α+m ∗ β (5)

System overhead, T , includes the time spent on authentication

6

data transmission, Tt and the server process, Ts. We can
derive T using Equation 6. Tt largely depends on the network
environment. In a high-speed Internet environment, Tt is
normally under 30 seconds. Ts was less than 5 seconds in our
experiments. In total, the system latency after users initiate a
login request is around 35 seconds. Note that system overhead
may vary because it depends on the computing ability of
both the client and the cloud and also to the specific network
conditions.

Tafter = Tt + Ts (6)

In terms of resource utilization, in our experiments, the run-
ning of the user profile acquisition program takes less than
3% of CPU resources and about 15MB of RAM. The biggest
proportion of computing resource consumption stems from
the capturing of network packets. Because we only capture
packet headers, the resource demanded for network monitoring
is still in an acceptable range. As the statistics for resource
utilization is based on a laptop computer with Intel CPU i5-
M430 (2.27GHz) and a RAM of 4 GB, the CPU utilization
percentage will decrease with a more powerful computer.

The evaluation of recall, FPR, packet size, system overhead,
and resource utilization demonstrates the feasibility of MACA.
Note that as both packet size and overhead are largely depen-
dent on the time and space complexity of FHE; with further
improvements in FHE, one can reduce both packet size and
system overhead, thereby, further boosting performance.

VI. CONCLUSION

In this work, we developed a privacy-preserving multi-
factor authentication system without introduction of any extra
physical device for cloud systems utilizing big data features.
In our system, called MACA, the first factor is a password and
the second factor is a hybrid user profile that summarizes user
behavior. MACA focuses on the privacy preservation of the
second factor, which has two advantages over previously pro-
posed systems. First, user privacy is not leaked to ubiquitous
cloud computing environment with FHE and fuzzy hashing.
Second, the hybrid user profiling model is highly usable and
configurable and integrates a lot of features and corresponding
data, which enables simple privacy-preserving MFA operations
with FHE and fuzzy-hashing calculations. One can always
modify the feature list (total 26 configurable features) for user
profiling in MACA according to the actual circumstances. We
evaluated the system performance via a series of experiments
utilizing four different datasets, resulting in an optimal recall
of 80.8%and FPR of 14.7%. Also, both system overhead and
resource utilization are within the acceptable range, which
substantiates the feasibility of our scheme. We plan to extend
our work by adding more features and including a weighting
scheme on features that can be configured by the system
administrator and plan to improve performance.

REFERENCES

[1] “Awe multi-factor authentication frequentily-asked questions,” 2012,
http://aws.amazon.com/cn/mfa/faqs/.

[2] “About two-step verification,” 2012, http://support.google.com/accounts/
bin/topic.py?topic=28786.

[3] “Two factor authentication: What is a microsoft account security code?”
2012, http://answers.microsoft.com/en-us/windowslive/ forum/liveid-
wlsecurity/two-factor-authentication-tfa-what-is-a-microsoft/.

[4] C. Paul, E. Morse, A. Zhang, Y.-Y. Choong, and M. Theofanos, “A field
study of user behavior and perceptions in smartcard authentication,”
in Human-Computer Interaction INTERACT, ser. Lecture Notes in
Computer Science. Springer, 2011, vol. 6949, pp. 1–17.

[5] “Validation and id protection,” 2012, https://idprotect.verisign.com/
mainmenu.v.

[6] M. Sujithra and G. Padmavathi, “Next generation biometric security
system: an approach for mobile device security,” in Proc. of the 2nd
ACM International Conference on Computational Science, Engineering
and Information Technology, 2012, pp. 377–381.

[7] Z. Jorgensen and T. Yu, “On mouse dynamics as a behavioral biometric
for authentication,” in Proc. of the 6th ACM Symposium on Information,
Computer and Communications Security, 2011, pp. 476–482.

[8] N. Zheng, A. Paloski, and H. Wang, “An efficient user verification
system via mouse movements,” in Proc. of the 18th ACM conference
on Computer and communications security, 2011, pp. 139–150.

[9] M. Kumar, “New remote user authentication scheme using smart cards,”
Consumer Electronics, IEEE Transactions on, vol. 50, no. 2, pp. 597–
600, 2004.

[10] A. Bhargav-Spantzel, A. Squicciarini, and E. Bertino, “Privacy preserv-
ing multi-factor authentication with biometrics,” in Proc. of the 2nd ACM
workshop on Digital identity management, 2006, pp. 63–72.

[11] “Apple finally reveals how long siri keeps your data,” April 2013,
http://www.wired.com/wiredenterprise/2013/04/ siri-two-years/.

[12] J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digital Investigation, vol. 3, Supplement, no. 0, pp.
91 – 97, 2006, the Proc. of the 6th Annual Digital Forensic Research
Workshop.

[13] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, 2009.

[14] “Pcap trace: Trace 6, packet headers,” 2012, http://traces.simpleweb.org.
[15] “Mouse data for continuous authentication,” April 2012, http://nskeylab.

xjtu.edu.cn/people/cshen/.
[16] “Keystroke dynamics: Benchmark data set,” 2012, http://www.cs.cmu.

edu/∼keystroke.
[17] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano, “The quest

to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in Proc. of the IEEE Symposium on Security
and Privacy, 2012, pp. 553–567.

[18] “Rsa securid - world’s leading two-factor authentication,” 2012, http:
//www.emc.com/security/rsa-securid.htm.

[19] R. V. Yampolskiy and V. Govindaraju, “Behavioural biometrics: a survey
and classification,” Int. J. Biometrics, vol. 1, no. 1, pp. 81–113, Jun.
2008.

[20] “sdhash,” 2012, http://roussev.net/sdhash/sdhash.html.
[21] V. Roussev, “Data fingerprinting with similarity digests,” in Advances

in Digital Forensics VI. Springer, 2010, vol. 337, pp. 207–226.
[22] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully

homomorphic encryption over the integers,” Cryptology ePrint Archive,
Report 2009/616, 2009, http://eprint.iacr.org/.

[23] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully ho-
momorphic encryption over the integers with shorter public keys,” in
Advances in Cryptology CRYPTO 2011, ser. Lecture Notes in Computer
Science, P. Rogaway, Ed. Springer, 2011, vol. 6841, pp. 487–504.

[24] S. Crane, “Simple-homomorphic-encryption,” 2012,
https://github.com/rinon/ Simple-Homomorphic-Encryption.

[25] K. Killourhy and R. Maxion, “Comparing anomaly-detection algorithms
for keystroke dynamics,” in Dependable Systems Networks, 2009. DSN
’09. IEEE/IFIP International Conference on, 2009, pp. 125–134.

[26] C. Shen, Z. Cai, and X. Guan, “Continuous authentication for mouse
dynamics: A pattern-growth approach,” in 42nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2012, pp. 1–12.

[27] “Netresec splitcap - a fast pcap file splitter,” 2012, http://www.netresec.
com/?page=SplitCap.

[28] “Tstat - tcp statistic and analysis tool,” 2012, http://tstat.tlc.polito.it/
index.shtml.

