
PROVIZ: An Integrated Visualization and
Programming Framework for WSNs

Ramalingam K. Chandrasekar, A. Selcuk Uluagac and Raheem Beyah
Communications Assurance and Performance Group, School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, Georgia 30332, USA
ramalingam.chandrasekar@gatech.edu, {selcuk, rbeyah}@ece.gatech.edu

Abstract—Wireless Sensor Networks (WSNs) are rapidly gain-
ing popularity in various critical domains like health care,
critical infrastructure, and climate monitoring, where application
builders have diversified development needs. Independent of the
functionalities provided by the WSN applications, many of the
developers use visualization, simulation, and programming tools.
However, these tools are designed as separate stand-alone applica-
tions, which force developers to use multiple tools. This situation
often poses confusion and hampers an efficient development
experience. To avoid the complexity of using multiple tools, we
have designed a new extensible, multi-platform, scalable, and
open-source framework called PROVIZ, which is an integrated
visualization and programming framework. In this paper, we
explain the various features of PROVIZ’s visualization and
programming framework and discuss how PROVIZ can be used
as a visual debugging tool to aid in providing a software fix.

Index Terms - Wireless Sensor Networks, PROVIZ, Visual-
ization and Monitoring tool, Programming tool, Simulation tool

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are used in various
applications like remote health monitoring, volcanic activity
monitoring, and critical infrastructure monitoring. Hence, the
WSN researchers’ community comprises of advanced WSN
application developers, who develop scalable and reliable
WSN algorithms and applications, and developers who use
WSNs for simple environment data gathering. In order to
develop, test, visualize, and monitor a WSN application, a
developer may need a programming tool, a simulator [1],
[2], and a visualization tool [3], [4]. However, such tools are
currently available as separate stand-alone tools. Therefore,
to aid in the process of WSN application development, we
propose a new framework called PROVIZ [5], which provides
visualization, monitoring, and programming functionalities
into a common platform. Furthermore, as sensors are resource-
constrained devices running with a limited source of power,
critical applications cannot afford the failure of any sensor or
sensor application. Thus, a framework like PROVIZ which can
visualize the WSN by continuously monitoring the network
activity, can be used by researchers for visual debugging
purposes.

The PROVIZ framework is an open-source, platform-
independent, extensible, and scalable framework developed
for heterogeneous WSNs. It is an integrated framework that
can visualize various sensor types (e.g., MicaZ, Iris, TelosB)
and their traffic in realtime. It provides a set of built-in
tools for developing sensor applications and for programming
sensor nodes over-the-air [6]. PROVIZ can also visualize
a WSN simulator (e.g., OMNeT [7]) generated trace data.
Moreover, PROVIZ includes built-in extensible visual demo

deployment capabilities, which allow users to quickly craft
network scenarios. It is possible to export these demo scenarios
as XML files so that users can easily modify and even share
them among themselves.

PROVIZ realizes the visualization of the packet transfers
by parsing the packet data captured either from a packet
sniffer (a live sensor-based sniffer or from a binary packet
trace file (PSD format) generated by the TI SmartRF packet
sniffer [8]) or from the OMNeT simulator [7] running a WSN
application. For visualization, PROVIZ can take different
packet payload formats as input while providing support for
defining the packet payload format through a graphical user
interface. Moreover, PROVIZ can work with multiple sniffers
simultaneously in a distributed setup to visualize a large WSN
deployment.

PROVIZ includes an optional thin-client, which exists in
the sensor node and sends the sensor state information peri-
odically. With the help of these periodic reports, researchers
can easily identify a network anomaly and can take necessary
corrective measures for avoiding failures in the WSN. Finally,
PROVIZ includes a programming editor for generating TinyOS
[9] application code. This editor can be used to edit both NesC
[10] code and MCL [11] scripts. After the application code
image is generated, PROVIZ has the capability to disseminate
the code image wirelessly to the sensor nodes [6].

The rest of the paper is organized as follows. Related work
is discussed in Section II. An outline of PROVIZ’s design
is given in Section III. Section IV gives an overview of the
PROVIZ visualization framework and Section V concludes the
paper.

II. RELATED WORK

NetViewer [3] is a visualization tool used for visualizing and
monitoring a realtime WSN. NetViewer is designed in such
a way that it will work for any user-defined packet format,
which is facilitated by the Packet Format Setter module in
NetViewer. NetViewer has a Information Translator module
to translate the packet data to useful information based on
the user-defined packet format. NetViewer, then, visualizes
the packet transmissions and displays the translated packet
data either in a tabular format or in the form of a graph.
However, NetViewer cannot do an off-line WSN visualization
(by parsing the commercial packet sniffer’s packet trace file
(PSD format)) and cannot visualize a data trace generated by
an external WSN simulator. Also, NetViewer is a standalone
visualization tool, which does not have the capability to
wirelessly program sensor nodes.



Octopus [4] is an integrated monitoring, visualization, and
control tool developed for WSNs. Octopus is a protocol
independent tool which gets information about the sensor
nodes and the network topology, which can be used to vi-
sualize and monitor realtime sensor nodes in a WSN. Octopus
also provides Control Operators, which can reconfigure the
network behavior by sending short request messages. Although
Octopus, as a network controlling tool, can reconfigure or
change the working methodology of a WSN, it does not
have an integrated programming tool to develop, simulate,
and completely reprogram a sensor node over-the-air. Before
deploying the sensor nodes, Octopus requires the user to
program the different behavioral codes in the sensor nodes
and associate them with a specific request message type.
Therefore, these behaviors, which can change the network or
individual nodes behavior, can be triggered with the help of
short request messages. Similar to [3], Octopus cannot do an
off-line visualization and cannot visualize by using data from
a WSN simulator.

NetTopo [2] is an integrated simulation and visualization
framework which is designed for validating algorithms used in
WSNs. NetTopo is essentially a simulator which is integrated
with a real testbed to run the WSN algorithms and validate
them for both scalability and accuracy. It provides a visual-
ization tool to visualize the topology used in the simulation
environment and it updates the information about connections,
sensed data of each node, etc. However, NetTopo is specifically
designed for simulating and validating algorithms and hence
NetTopo cannot do live or off-line WSN visualization and also
cannot program a sensor node.

TOSSIM [1] is a WSN simulator, which can simulate a
homogeneous wireless sensor network with sensors running a
common application. It provides a visualization tool called
TinyViz [1], which can be used to visualize, control, and
analyze TOSSIM simulations. TinyViz can visualize the sensor
nodes and the network traffic in a WSN. It provides informa-
tion about the data transferred between nodes, serial commu-
nication packets, LED states and provides a control window
to change the simulation parameters. However, TOSSIM is a
simulator and cannot do off-line visualization or interact with
real sensor nodes.

In short, all the tools discussed above are a standalone
visualization tool or a programming tool or a simulator.
PROVIZ is unique in its approach by providing all these
functionalities under a single platform.

III. PROVIZ DESIGN OVERVIEW

PROVIZ is a multi-platform, modular, generic, extensi-
ble, and scalable programming and visualization framework
[5] developed using the QT GUI Framework [12]. QT is
a C++ based, open-source and a cross-platform application
and user interface development framework supporting most
of the popular desktop and mobile operating systems [13].
Figure 1 shows the modular PROVIZ framework design, where
PROVIZ runs on a host machine and has a PROVIZ Client,
which can run on a local or remote host and gather packet

data using different sniffers. PROVIZ provides two main
functionalities. One is the functionality to visualize the data
and the other is the functionality to program sensor nodes. For
the former, PROVIZ can visualize the data either captured in
realtime or from a WSN simulator. The following sub-sections
discuss the design of PROVIZ programming and visualization
functionalities.
A. Modules for Programming Functionality

This section discusses the design of modules for the pro-
gramming functionality.

1) Programming Window: The PROVIZ programming tool
has an editor window, which can be used to edit the NesC
[10] code of a TinyOS application or a MCL [11] script. The
MCL scripting framework provides user-friendly commands
for creating new NesC components, interfaces, and wiring,
which reduces development efforts.

2) Code Generator: After entering the MCL script in the
editor window, the user can use the Generate Code option in
PROVIZ to generate the NesC code from the MCL script.

3) Code Distributor: After generating the NesC code, the
user can use the Program WSN option to generate the WSN
application binary. The Code Distributor uses the Communi-
cation Interface to remotely program wireless sensor nodes
using wireless code dissemination as discussed below.

4) Communication Interface: After the Code Distributor
generates the code image, the Communication Interface is
utilized to disseminate the code image. This module also has
functionalities in the visualization of the captured data as
explained in the next sub-section.

5) Wireless Code Dissemination: For wireless code dissem-
ination, PROVIZ uses the SIMAGE protocol [6]. SIMAGE
uses the LQI value to asses the link quality between the nodes
and then dynamically adapts the packet size. In a WSN having
nodes with poor link quality, the dynamic packet resizing
technique reduces the number of retransmissions during code
dissemination. Along with dynamic packet resizing, SIMAGE
also provides energy efficient security services like confiden-
tiality and integrity, provided by the CC2420 [14] transceiver
module in the sensors (e.g., MicaZ, TelosB).

For programming a WSN, PROVIZ uses the Control Node
as a base station for disseminating the code image. All the
nodes in the WSN along with the user application should have
a Code Receiver module, which can receive the disseminated
code image to program the sensor node and transfer it to the
neighboring nodes. The Control Node is also utilized in the
visualization functionality as a sniffer as explained in the next
Sub-Section.
B. Modules for Visualization Functionality

This section discusses the design of modules for the visu-
alization functionality.

1) Communication Interface: This interface has a generic
packet receive module for the visualization functionality,
which can receive packets from different sources such as: a 1)
PROVIZ Client with a sensor-based sniffer attached to either
a remote or a local host; 2) WSN simulators such as OMNeT



Fig. 1: PROVIZ Architecture

[7]; and 3) Packet trace file, generated by commercial sniffers,
e.g., the PSD [8] file format created by the TI SmartRF packet
sniffer [8].

2) OMNeT Packet Receiver: While simulating the WSN
application in the OMNeT simulator, the OMNeT radio receive
driver outputs the time-stamped packet trace. The OMNeT
Packet Receiver fetches the network simulator trace and sends
it to the Communication Interface.

3) Packet Receiver Buffer: The Communication Interface
receives the packet data and stores the data in the form of an
byte-array in the Packet Receiver Buffer queue, which can be
fetched later for processing.

4) Multi-Threaded Packet Analyzer: While capturing the
packets, PROVIZ initiates a multi-threaded module, which
parses the packet data stored in the Packet Receive Buffer
queue. It parses for the packet arrival time, IEEE 802.15.4
header information [15], and the packet payload and matches
it with the user-defined packet formats. Since the Packet
Analyzer has to parse all the incoming packets and translate
them, it becomes a computation intensive operation. In order to
achieve faster processing and avoid any bottlenecks, the Packet
Analyzer module is designed in a multi-threaded fashion. The
number of threads running in the Packet Analyzer module
is a configurable parameter, which can be modified by the
developers based on the incoming packet arrival rate.

5) PROVIZ Visualization Events Engine: After parsing the
packets, the Packet Analyzer module creates a packet transfer
event and adds it to the PROVIZ Visualization Events Engine,
a sorted multi-map data structure with the time of event as
the key. In order to make the Visualization Engine extensible,
PROVIZ defines an abstract class with event handler methods
as pure virtual functions. So, if users want to extend PROVIZ
with new features, they simply need to inherit the abstract
class and define the event handler methods, which can imple-
ment features like node mobility, battery-level monitoring, etc.
When the visualization starts, the time of the first event in the
event queue is considered as the current visualization time and
the Events Engine starts a periodic timer. Whenever the timer
is triggered, the current visualization time is incremented and
the events that are to be executed at this current visualization
time are identified in the multi-map and they are triggered by

calling their event handlers.
After starting the visualization, PROVIZ provides a graph-

ical canvas (Figure 2) for visualizing the sensor nodes and
packet transfers.

6) PROVIZ Client Design: PROVIZ provides a PROVIZ
Client application running in local or multiple remote ma-
chines for gathering WSN packets. The Control Node is
connected to these remote/local machines running the PROVIZ
Client. This node works as a sniffer for gathering WSN traffic
while also serving as a base station for disseminating the code
image over-the-air.

IV. VISUALIZATION TOOL FEATURES

This section discusses the various features of PROVIZ
visualization functionality. Figure 2 shows the screen shot of
the PROVIZ visualization tool with a group of infrastructure
monitoring sensors sending structural health information [16]
periodically to a cluster head. The PROVIZ Visualization User
Interface window has a: 1) Control toolbar, which provides
the control buttons for the visualization; 2) Drag and Drop
Window Holder, which has sub-windows to hold the images of
sensor nodes that are available in a WSN and to hold the demo
application icons; and 3) Graphical Work Area, a canvas where
the sensor node images are placed and the packet transfers are
visualized.

Control Toolbar: The Control toolbar provides control
options to start, pause, and stop the visualization. Also, it
provides additional control to zoom-in, zoom-out, and clear
the nodes in the Graphical Work Area.

Drag and Drop Window Holder: The Drag and Drop
Window Holder has multiple sub-windows and these sub-
windows can hold either sensor node icons or icons associated
with demo applications. The sensor icons displayed in the
sub-window include an image of sensor node and a count
associated with them. The count depicts the number of sensors
of that type available in a WSN and it is determined by the
PROVIZ Network Discovery module in the PROVIZ Client.
PROVIZ uses this count value associated with each sensor
icon to restrict the number of sensors that can be visualized.
In order to visualize a WSN, the sensor icons in the sub-
windows can be dragged and dropped into the Graphical Work
Area. Each node that is dropped, needs to be associated with



Fig. 2: Screen shot of PROVIZ visualizing an infrastructure monitoring WSN

a unique Node ID, which is displayed along with the sensor
icon. Also, a signal strength meter showing the signal strength
of a node is displayed at the top of each sensor node icon.

Demo Scenario Visualization: PROVIZ includes built-in
extensible visual demo deployment scenarios, on which users
can click and visualize easily as shown in Figure 2. Users
can use this feature to create a demo scenario to visualize
a critical/complex WSN deployment and share it with other
PROVIZ users. The demo visualization can be developed by
creating an XML file, which specifies the node type to be
used, number of nodes, node ID, node location, and the time,
when the packet transfers should happen.

V. CONCLUSION AND FUTURE WORK

In this work, we introduced PROVIZ, which is an inte-
grated visualization and programming framework developed
for WSNs. PROVIZ is an open-source framework, which is
designed to be modular, scalable and platform independent.
The PROVIZ is capable of visualizing a WSN and the packet
transfers occurring between the sensor nodes in real-time.
PROVIZ visualization tool is generic and extensible such that
it can take packet data input from various sources like live
sensor-based sniffers, commercial sniffers (e.g., TI SmartRF
packet sniffer [8]) and the OMNeT simulator [7]. PROVIZ can
take multiple user-defined packet formats as input and translate
the raw packet data from a heterogeneous network into a user
readable content. Also, PROVIZ includes built-in extensible
visual demo deployment scenarios that can even be shared
among the users in the form of XML files. PROVIZ includes
an editor window, which can edit a NesC code and MCL [11]
script. PROVIZ is capable of remotely programming the sensor
nodes by wireless code dissemination.

Our future work will extend PROVIZ to get live sensor state
information like temperature, battery level, etc. We will im-
prove PROVIZ to include a capability to define notifications to
the user whenever a predefined network condition is reached.
For instance, the user can be notified whenever the battery
level of a sensor node goes down beyond certain limit or

when the temperature readings goes beyond certain threshold.
Also, we will extend the PROVIZ programming functionality
to support graphical programming using drag-and-drop icon-
based programming style for easy and rapid WSN application
development.

REFERENCES

[1] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and scalable
simulation of entire tinyos applications,” in International conference on
Embedded networked sensor systems. ACM, 2003.

[2] L. Shu, C. Wu, Y. Zhang, J. Chen, L. Wang, and M. Hauswirth,
“Nettopo: beyond simulator and visualizer for wireless sensor networks,”
SIGBED Rev., vol. 5, no. 3, Oct. 2008.

[3] L. Ma, L. Wang, L. Shu, J. Zhao, S. Li, Z. Yuan, and N. Ding,
“Netviewer: A universal visualization tool for wireless sensor networks,”
in IEEE Global Telecommunications Conference, Dec. 2010.

[4] A. Ruzzelli, R. Jurdak, M. Dragone, A. Barbirato, G. OHare,
S. Boivineau, and V. Roy, “Octopus: A dashboard for sensor networks
visual control,” in Proceeding of the 14th Annual ., 2008.

[5] “PROVIZ: A Visualization and Programming tool for WSNs,” http://
www.ece.gatech.edu/cap/proviz.

[6] R. K. Chandrasekar, V. Subramanian, S. Uluagac, and R. Beyah, “SIM-
AGE: secure and Link-Quality cognizant image distribution for wireless
sensor networks,” in IEEE Global Telecommunications Conference, Dec.
2012.

[7] “OMNET Simulator for WSN running TinyOS programs,”
http://www.omnetpp.org/pmwiki/index.php?n=Main.NesCT.

[8] “Ti packet sniffer,” http://www.ti.com/tool/packet-sniffer.
[9] “Tinyos documentation,” http://docs.tinyos.net/.

[10] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesc language: A holistic approach to networked embedded
systems,” ser. PLDI ’03. ACM, 2003.

[11] M. Valero, S. Uluagac, V. Subramanian, R. K. Chandrasekar, and
R. Beyah, “The monitoring core: A framework for sensor security
application development,” in IEEE International Conference on Mobile
Ad hoc and Sensor Systems, Oct. 2012.

[12] “Qt: A gui development framework,” http://qt-project.org/.
[13] “Qt: A multi-platform tool,” http://doc.qt.digia.com/qt/supported-

platforms.html.
[14] “CC2420 datasheet,” http://focus.ti.com/lit/ds/symlink/cc2420.pdf.
[15] “Approved draft revision for ieee standard for information technology-

telecommunications and information exchange between systems-local
and metropolitan area networks-specific requirements-part 15.4b: Wire-
less medium access control (mac) and physical layer (phy) specifications
for low rate wireless personal area networks (wpans) (amendment of ieee
std 802.15.4-2003),” IEEE Std P802.15.4/D6, 2006.

[16] “Infrastructure monitoring wsn,” http://wang.ce.gatech.edu/research.htm.


