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Abstract—A Connected Dominating Set (CDS) is used as a Virtual
Backbone (VB) for efficient routing and broadcasting in Wireless
Sensor Networks (WSNs). Currently, almost all existing works
focus on constructing Minimum-sized CDS under the Deterministic
Network Model (DNM). However, due to the existence of many
probabilistic lossy links in WSNs, it is more practical to obtain a VB
under the realistic Probabilistic Network Model (PNM). Moreover,
load-balance factor cannot be neglected when constructing a VB
to prolong network lifetime. Hence, in this paper, we propose
a Multi-Objective Genetic Algorithm (MOGA) to construct a
Load-Balanced Virtual Backbone under PNM (LBVBP). Through
simulations, we demonstrate that our proposed methods extend
network lifetime by 65% on average compared with the existing
state-of-the-art approaches.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are emerging as the desired
environment for increasing numbers of military and civilian
applications, such as, disaster control, environment and habitat
monitoring, battlefield surveillance, and health care applications
[1]. Due to the infrastructure-less and dynamic nature in WSNs,
most routing protocols in WSNs (i.e., flooding) usually cause
a serious broadcasting storm. A Connected Dominating Set
(CDS) has been a well known approach for constructing a
Virtual Backbone (VB) to alleviate the broadcasting storm thus
improving the performance and increase the efficiency of routing
protocols in WSNs. A Dominating Set (DS) is defined as a subset
of nodes in a WSN such that each node in the network is either
in the set or adjacent to some nodes in the set. If the induced
subgraph by the nodes in a DS is connected, then this DS is
called a CDS. The nodes in a CDS are called dominators denoted
by set B, otherwise, dominatees denoted by set W.

Ever since the idea of employing a CDS as a VB for WSNs is
introduced [2], a huge amount of approximation algorithms [3]
have been proposed to construct an MCDS-based VB, which is
a well-known NP-Hard problem [4]. After that, to make a CDS-
based VB more resilient in mobile WSNs, the fault-tolerance of a
VB is considered. In [5], k-connected and m-dominated sets are
introduced as a generalized abstraction of a fault-tolerance VB.
In [6], the authors proposed a Minimum rOuting Cost Connected
Dominating Set (MOC-CDS), which aims to find a minimum
CDS while assuring that any routing path through this CDS
is the shortest in WSNs. Additionally, the authors investigate
the problem of constructing a qualified CDS in terms of size,

diameter, and Average Backbone Path Length (ABPL) in [7].
Unfortunately, all of the above mentioned works are based on

the ideal Deterministic Network Model (DNM), where any pair
of nodes in a network is either fully connected or completely
disconnected. In most real applications, however, the DNM
model cannot fully characterize the behavior of wireless links
due to the transitional region phenomenon [8]. Since beyond the
“always connected” region, there is a transitional region where
a pair of nodes are probabilistically connected via the so called
lossy links [8]. As reported in [8], [9], there are often much
more lossy links than fully connected links in a WSN. Therefore,
a more practical network model for WSNs is the Probabilistic
Network Model (PNM). Under this model, there is a delivery
ratio (γij) associated with each link connecting a pair of nodes
vi and vj , which is used to indicate the probability that vi can
successfully deliver a package to vj (an example is shown in Fig.
1). For convenience, the WSNs considered under the DNM/PNM
are called deterministic/probabilistic WSNs.

(a) (b)
Fig. 1. Illustration of a regular VB and an LBVB.

On the other hand, all the aforementioned works did not
consider the load-balance factor when they construct a CDS.
Without considering balancing the traffic load among the nodes
on each dominator, some heavy loaded nodes may quickly
exhaust their energy (such as dominator v4 shown in Fig. 1(a)),
which might cause network partitions or malfunctions. To benefit
from the CDS-based VB in WSNs and also take the load-balance
factor into consideration, we constructed VBs in this manner in
[10]–[12]. We proposed a greedy algorithm to build a Load-
Balanced CDS (LBCDS) and then Load-Balancedly Allocate
Dominatees (LBAD) based on Expected Allocation Probability
for deterministic WSNs in [10]. Further, the performance ratio
of the proposed algorithm are analyzed in [11]. Subsequently,
we investigated the LBCDS and LBAD problems simultaneously
for deterministic WSNs, and proposed a Genetic Algorithm to



solve it in [12]. However, our previous works studied the Load-
Balanced VB (LBVB) construction problem under the DNM
rather than the more practical PNM, i.e., for probabilistic WSNs.
Actually, how to measure the traffic load on each node for prob-
abilistic WSNs is different. For example, in Fig. 1, if γ46 = 0.5,
which means the probability that v4 can successfully deliver a
packet to v6 is 50%. Then the expected number of transmissions
to guarantee v4 delivered one packet to v6 is 1

0.5 = 2. In other
words, the less the γij value, the more potential traffic load on
the link from vj to vi. Therefore, in this research, we investigate
how to construct an LBVB for probabilistic WSNs, denoted by
LBVBP. In order to better control the trade-off between the size
of the constructed VB and the balance of traffic loads among
all the dominators, we propose a novel Multi-Objective Genetic
Algorithm (MOGA) to solve this problem.

Particularly, the main contributions of this paper are summa-
rized as follows: 1) We identify and highlight the use of lossy
links when constructing a VB for Probabilistic WSNs. Moreover,
in order to measure the load-balance of the nodes on a VB under
the PNM, we define two new metrics potential traffic load, and
actual traffic load, which measure the potential traffic load and
actual traffic load of each node in the network, respectively. 2) In
order to measure the load-balance factor of a constructed VB, we
define two new metrics VB p-norm and Partition p-norm based
on potential traffic load and actual traffic load of each dominator,
respectively. 3) The LBVB construction problem under PNM
(LBVBP) is an NP-Hard problem, thus we propose an effective
Multi-Objective Genetic Algorithm (MOGA) to solve it, called
LBVBP-MOGA. 4) We also conduct simulations to validate
our proposed algorithms. The simulation results show that the
constructed LBVB can extend network lifetime by 65% on
average compared with the existing state-of-the-art approaches.

The rest of this paper is organized as follows: In Section II,
we introduce the network model and formally define the LBVBP
construction problem under PNM. The design of the LBVBP-
MOGA algorithm is presented in Section III. The simulation
results are presented in Section IV to validate our proposed
algorithm. Finally, the paper is concluded in Section V.

II. NETWORK MODEL AND PROBLEM DEFINITION

A. Network Model

Under the Probabilistic Network Model (PNM), we model a
WSN as an undirected graph G(V,E,Υ(E)), where V is the set
of n nodes, denoted by vi, where 0 ≤ i < n. i is called the node
ID of vi in the paper. E is the set of lossy links. ∀ vi, vj ∈ V,
there exists an link (vi, vj) in G if and only if: 1) vi and vj
are in each other’s transmission range, and 2) γij > 0. For each
link (vi, vj) ∈ E, γij indicates the probability that node vi can
successfully directly deliver a packet to node vj ; and Υ(E) =
{γij | (vi, vj) ∈ E, 0 < γij ≤ 1}.

Definition II.1. 1-Hop Neighborhood (N1(vi)). ∀vi ∈ V, the 1-
Hop Neighborhood of node vi is defined as: N1(vi) = {vj |vj ∈
V, γij > 0}.

The physical meaning of 1-Hop Neighborhood is the set of the
nodes that can be reached from node vi via 1 hop neighbors with
positive probability. In this paper, we use |N1(vi)| to represent
the cardinality of the 1-Hop Neighborhood set of node vi.

Definition II.2. h-Hop Neighborhood(Nh(vi)). ∀vi ∈ V, the
h-Hop Neighborhood of node vi is defined as: Nh(vi) =
Nh−1(vi) ∪ {vk | ∃vj ∈ Nh−1(vi), vk ∈ N1(vj), vk /∈
h−1∪
i=1

Ni(vi)}.

The physical meaning of the h-Hop Neighborhood is that
the set of nodes that can be reached from node vi by passing
maximum h number of lossy links with positive probability.

B. Preliminary

Without knowing the communication protocol, the number
of neighboring nodes of a node (i.e., |N1(vi)|) is a potential
indicator of the traffic load on each node. However, it is not the
only factor to indicate the potential traffic load on each node
in probabilistic WSNs. As we mentioned in the Section I, the
less the γij value, the more potential traffic load on vj from
vi. Therefore, a more reasonable and formal definition of the
potential traffic load is given as follows:

Definition II.3. Potential Traffic Load (ιi). ∀vi ∈ V, the potential
traffic load of vi is defined as: ιi =

∑
vj∈N1(vi)

1
γij

.

After knowing the potential traffic load of each node, how to
measure load-balance of a constructed VB is another challenge.
We use p-norm to measure load-balance in this paper.

Definition II.4. p-norm. The p-norm of an n × 1 vector X =

(x1, x2, · · · , xn) is: |X|p = (
∑n

i=1 |xi|p)
1
p .

The authors in [13] stated that p-norm shows interesting
properties for different values of p. If p is close to 1, the
information routes resemble the geometric shortest paths from
the sources to the sinks. For p = 2, the information flow shows an
analogy to an electrostatics field, which can be used to measure
the load-balance among xi. More importantly, the smaller the p-
norm value, the more load-balanced the interested feature vector
X. For simplicity, we use p = 2 in this paper.

In this paper, we use Potential Traffic Load (Definition II.3)
as the feature vector X. According to Definition (II.4), we define
the VB p-norm as follows:

Definition II.5. VB p-norm (|B|p). For WSN G(V,E,Υ(E)),
and a VB B = {v1, v2, · · · , vm}. The VB p-norm of an m × 1

vector L = (ι1, ι2, · · · , ιm) is: |B|p = (
∑m

i=1,vi∈B |ιi − ῑ|p)
1
p ,

where m is the cardinality of set B, ιi represents the potential
traffic load of each node in set B, and ῑ = (

∑m
j=1,vj∈B ιj)/m is

the average potential traffic load on set B.

Actually, if one dominatee is adjacent to more than one domi-
nator, one of the adjacent dominators is chosen by the dominatee
to perform data transmission. Hence, it is considerably important
to load-balancedly allocate dominatees to each dominator to
further balance the traffic loads among each dominator. In a
traditional/naive way [14], each dominatee is allocated to the
neighboring dominator with the smallest ID. Obviously, the load-
balance factor is not taken into account. In some environment,
the dominator with the smallest ID, which is chosen by majority
dominatees, tends to have heavier workload than the other
dominators. Therefore, neither node ID nor potential traffic load
can reflect the actual workload precisely. In a WSN with a CDS



(a) (b) (c)
Fig. 2. Illustration of unbalanced and balanced Dominator Partitions.

as the VB, only the dominator and dominatee links contribute to
the actual traffic load. Based on this observation, we define the
following concepts:

Definition II.6. Dominator Partition (P). For a WSN represent-
ed by graph G(V,E,Υ(E)) and a VB B = {v1, v2, · · · , vm}, m
disjoint sets are identified on V, i.e, P(v1),P(v2), · · · ,P(vm),
such that: 1) Each set P(vi) (1 ≤ i ≤ m) contains exactly
one dominator vi. 2)

∪m
i=1 P(vi) = V, and P(vi)

∩
P(vj) = ∅

(1 ≤ i ̸= j ≤ m). 3) ∀vu ∈ P(vi) (1 ≤ i ≤ m) and
vu ̸= vi, such that (vu, vi) ∈ E. A Dominator Partition is:
P = {P(vi) | vi ∈ B, 1 ≤ i ≤ m}.

We also use the WSN shown in Fig. 1 to explain the concept
of Dominator Partition. Three different Dominator Partitions are
shown in Fig. 2, in which only dominator and dominatee links
are presented in the figure. According to Definition II.6, we have
P(v3) = {v1, v2, v4}, P(v6) = {v5}, and P(v7) = {v8} for the
partition P = {P(v3),P(v6),P(v7)} shown in Fig. 2(a). Without
considering delivery ration on each dominator and dominatee
link, it is obvious that the Dominator Partition shown in Fig.
2(a) is the most unbalanced of the workloads on each dominator.
Moreover, without further information, it is hard to reveal that
which partition is more balanced than the other shown in Fig.
2(b), and (c). According to above observations, we define the
following concepts and metric to measure the load-balance of a
Dominator Partition.

Definition II.7. Authorized Link Set (Li). ∀vi ∈ B, the Au-
thorized Link Set of dominator vi is the set of the dominator
and dominatee links formed by nodes in P(vi), i.e., Li =
{(vi, vj) | vj ∈ P(vi), 1 ≤ i ≤ m}.

As we have already known, ιi is only the indicator of the
potential traffic load on each dominator vi. The actual traffic
load can be determined when a Dominator Partition is decided.
In other words, the Authorized Link Set Li along with the
corresponding Delivery Ratio of each link are the indicators of
the actual traffic load on each dominator vi. According to this
observation, we give the following definition:

Definition II.8. Actual Traffic Load (li). ∀vi ∈ B, the actual
traffic load of vi is defined as: li =

∑
(vi,vj)∈L(vi)

1
γij

.

In this paper, we use Partition p-norm to measure the load-
balance of different Dominator Partitions, in which, the Actual
Traffic Load li of each dominator vi is used as the feature vector
X shown in Definition II.4. The definition of the Partition p-norm
is given as follows:

Definition II.9. Partition p-norm (|P|p). For a WSN repre-
sented by graph G(V,E,Υ(E)), a VB B = {v1, v2, · · · , vm},
and a Dominator Partition P , the Partition p-norm is: |P|p =

(
∑m

i=1,vi∈B |li − l̄|p)
1
p . where l̄ = (

∑m
j=1,vj∈B lj)/m is the

average actual traffic load on set B.

It is worth to mention that the smaller the Partition p-norm
value, the more load-balanced the Dominator Partition. Fig. 2
illustrates unbalanced and balanced Dominator Partitions.

C. Problem Definition

Definition II.10. Load-Balanced VB Problem in Probabilis-
tic WSNs (LBVBP). For a WSN represented by graph
G(V,E,Υ(E)), the LBVBP problem is to find a minimum-sized
node set B ⊆ V and a Dominator Partition P , such that: 1)
G[B] = (B,E′), where E′ = {e| e = (u, v), u ∈ B, v ∈
B, (u, v) ∈ E)}, is connected. 2) ∀u ∈ V and u /∈ B, ∃v ∈ B,
such that (u, v) ∈ E. 3) minimize{|B|p, |P|p}.

The LBVBP construction problem is NP-Hard, since it still
belongs to the MCDS problem. Based on Definition II.10, the
key issue of the LBVBP construction problem is to seek a VB
that satisfies multiple constraints, i.e., the minimum size, the min-
imum VB p-norm, and the minimum Partition p-norm. In reality,
the multiple objectives are potentially in conflict. Conflicting
objectives result in a set of compromised solutions, that is known
as the Pareto-optimal set. Since none of the solutions in this set
can be considered as better than the others with respect to all the
objectives, the goal of multi-objective optimization problem is
to find as many as Pareto-optimal solutions as possible. Multi-
Objective Genetic Algorithms (MOGA) is a powerful tool to
fulfill the above requirements due to its inherent parallelism
and its ability to exploit the similarities among solutions by
recombination [15]. Hence, in the following, a novel MOGA
algorithm, named LBVBP-MOGA, is proposed to solve the
LBVBP construction problem.

III. LBVBP-MOGA ALGORITHM

1) GA and MOGA Overview: GAs work with a population
of chromosomes, each representing a possible solution to a
given problem. Each chromosome is assigned a fitness score
according to how good a solution to the problem it is. The
highly fittest chromosomes are given opportunities to reproduce,
by crossover with other chromosomes in the population. This
produces new chromosomes as offsprings, which share some
features taken from each parent. The least fittest chromosomes
of the population are less likely to be selected for reproduction,
and so they die out. A whole new population of possible
solutions is thus produced by selecting the best chromosomes
from the current generation, and mating them to produce a
new set of chromosomes. In this way, over many generations,
good characteristics are spread throughout the population. If the
GA has been designed well, the population will converge to an
optimal solution to the problem.



MOGA is a recently developed algorithmic tool to solve
MOPs. MOGAs are very attractive because they have the a-
bility to search partially ordered spaces for several alternative
trade-offs. Additionally, an MOGA can track several solutions
simultaneously via its population.

A. Design of LBVBP-MOGA

1) Representation of Chromosomes: A chromosome is a
possible solution of the LBVBP problem. Hence, when designing
the encoding scheme of chromosomes, we need to identify
dominators and dominatees in a chromosome and a Dominator
Partition in a chromosome as well. For convenience, the set of
neighboring dominators of each dominatee vs ∈ W is denoted
by D(vs) = {vr|vr ∈ B, (vr, vs) ∈ E}. In the proposed LBVBP-
MOGA, each node is mapped to a gene in the chromosome.
A gene value gi indicates whether the sensor represented by
this gene is a dominator or not. If the sensor is a dominator
(i.e., ∀vi ∈ B), the corresponding gene value is gi = 1.
Otherwise, the corresponding gene value is the two-tuples, which
represent the allocated dominator of the dominatee vi, and the
neighboring dominators set of the dominatee vi, respectively.
Hence, a generation of chromosomes with gene values is denoted
as: CG = {Cj | 1 ≤ j ≤ G,Cj = (g1, g2, · · · , gi, · · · , gn)},
where G is the number of chromosomes in each generation of
population, and for 1 ≤ i ≤ n,

gi =

{
1, ∀vi ∈ B.
< ∀vt ∈ D(vi) | D(vi) >,∀vi ∈ W.

Through the above description we know that, as long as
choosing a specific dominator from the neighboring dominator
set D(vi), ∀vi ∈ W, we can decide a specific Dominator
Partition. Additionally, all the nodes with gi = 1 form a VB
B = {vi | gi = 1, 1 ≤ i ≤ n}. We still use the probabilistic
WSN shown in Fig.1(b) to illustrate the encoding scheme. There
are 8 nodes and the VB is B = {v3, v6, v7}. Moreover, according
to the topology shown in Fig. 1(b), we can get D(vi), ∀vi ∈ W
easily. Thus, the Dominator Partition shown in Fig. 2(b)
can be encoded using 8 genes in a chromosome, i.e., C1 =
(v3 | {v3}, v3 | {v3}, 1, v6 | {v3, v6, v7}, v6 | {v6}, 1, 1, v7 | {v7})
(shown in Fig. 3). In conclusion, Cj records one possible VB
and one possible Dominator Partition associated with the VB,
while CG represents the G different solutions to the LBVBP
problem.

Fig. 3. A chromosome with meta-genes and genes.

2) Population Initialization: GAs differ from most optimiza-
tion techniques because of their global searching effectuated
by one population of solutions rather than from one single
solution. Hence, a GA search starts with the creation of the first
generation, i.e., a population with G chromosomes denoted by
P1. This step is called population initialization. A general method
to initialize the population is to explore the genetic diversity.
That is, for each chromosome, all dominators are randomly
generated. However, the dominators must form a VB. Therefore
we start to create the first chromosome C1 by running an existing
MCDS method, e.g., the latest MCDS construction algorithm

[14], [16], and then generate the population with G chromosomes
by modifying C1. We call the procedure, generating the whole
population by modifying one specific chromosome, Inheritance
Population Initialization (IPI) [12].

3) Fitness Function: Given a solution, its quality should be
accurately evaluated by the fitness score, which is determined by
the fitness function. In MOGAs, multiple conflict objectives need
to be achieved. Hence, in our algorithm, three different fitness
functions are defined as follows:

f1(Cj) = min{|B|};
f2(Cj) = min{|B|p};
f3(Cj) = min{|P|p}.

As we have mentioned, different from the relations of the
solutions in SOPs, the relations of the solutions of MOPs have
three possibilities. We use the following operator to summary
the relations.

Definition III.1. Fitter Operator

Fitter(Ci, Cj) =


1 F(Ci) ≼ F(Cj);

− 1 F(Cj) ≼ F(Ci);

0 non-dominated.
(1)

where the objective vector is F(Ck) =
(f1(Ck), f2(Ck), f3(Ck)), 1 ≤ k ≤ G.

(a) (b)
Fig. 4. Illustration of two different Dominator Partitions.

TABLE I
MULTIPLE OBJECTIVE FITNESS VALUES OF FIVE CHROMOSOMES

Chromosomes f1 f2 f3
C1 (Fig. 4(a)) 2

√
68.8

√
17.58

C2 (Fig. 4(b)) 2
√
68.8

√
3.59

C3 (Fig. 2(a)) 3
√
34.68

√
14.33

C4 (Fig. 2(b)) 3
√
34.68

√
1.99

C5 (Fig. 2(c)) 3
√
34.68

√
12.48

We will use the feasible solutions (encoded as chromosomes)
shown in Fig. 4 and Fig. 2 to illustrate the Fitter Operator. The
three fitness values of the five different chromosomes are listed
in Table I. To be more specific, we draw the five chromosomes
in the two-dimensional objective space (f2 vs. f3) in Fig.
5. From Fig. 5, we know C2 Pareto dominates C1 and C5

Pareto dominates C3. Moreover, C4 Pareto dominates all other
chromosomes, which means C4 is the best solution among these
5 chromosomes.

4) Selection Scheme and Replacement Policy: During the evo-
lutionary process, election plays an important role in improving
the average quality of the population by passing the high quality
chromosomes to the next generation. Therefore, in MOPS, the
selection operator needs to be more carefully formulated to
ensure that better chromosomes (the chromosomes closer to the
Pareto Optimal Set) of the population have a greater probability
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Fig. 5. Illustration of five chromosomes in the two-dimensional objective space.

of being selected for mating. We adopt Dominating Tree (DT)
[17] to select parent chromosomes. A DT is a binary tree, in
which each node has three fields: id, left-link, and right-link.
The left-link field links to its left sub-tree whose root node
is dominated by the node, and the right-link filed links to its
right sub-tree whose root node is non-dominated by the node.
A Sibling Chain of a DT is defined as a chain constituted by
its root and the root’s right-link nodes. A DT has some useful
features [17]:

• The sibling chain of a DT consists of and only consists of
all Pareto Optimal nodes in the DT.

• The root of a DT Pareto dominates all nodes in its left
sub-tree.

• The leftmost node in the DT can be regarded as the “worst”
node of the DT.

Fig. 6 demonstrates a DT consisting of the 5 encoded chro-
mosomes shown in Fig. 4 and Fig. 2. According to the above
features, we have:

• C2 and C4 (the sibling chain) are Pareto Optimal nodes in
the DT.

• C4 Pareto dominates C3 and C5 in the DT.
• C3 can be considered as the “worst” node in the DT.

Fig. 6. Illustration of a Dominating Tree.

Based on the above description, in each generation, we random
select parent chromosomes in the set of Pareto Optimal nodes
(i.e., from sibling chain). New-generated offsprings will be
inserted into the DT one by one and the “worst” (left-most)
individual will be deleted from the DT each time. This process
will be repeated until the stopping criterion (such as, a desired
number of total generation is reached) is satisfied.

5) Genetic Operations: The performance of a GA relies
heavily on two basic genetic operators, crossover and mutation.
Crossover exchanges parts of the the parent chromosomes in
order to find better ones. Mutation flips the values of genes,
which helps a GA keep away from local optimum. In the
LBVBP problem, we can adopt classical operations, however,
the new obtained solutions may not be valid (the dominator set
represented by the chromosome is not a CDS) after implementing
the crossover and mutation operations. Therefore, a correction

mechanism [12] needs to be preformed to guarantee the validity
of all the new generated offspring solutions.

The purpose of crossover operations is to produce more valid
VBs represented by the offspring chromosomes. At this stage,
we do not need to care about Dominator Partitions. Therefore,
when performing crossover operations, we can logically assume
all gene values of dominatees are 0. In the LBVBP-MOGA
algorithm, we adopt three crossover operators called single-
point crossover, two-point crossover, and uniform crossover
respectively. With a crossover probability pc, each time we
select two chromosomes from the set of Poreto Optimal nodes
as parents to perform one of the three crossover operators
randomly. As mentioned early, after crossover operation, the new
generated offsprings may not be a valid solution (the constructed
VB is not a CDS). Thus we need to perform the correction
mechanism. The mechanism starts with scanning each gene gi
on the offspring chromosome from the position of the crossover
point, till the end of the chromosome. If gi value is different
from the corresponding value of its parent, then the mechanism
corrects the value.

The population undergoes the gene mutation operation after
the crossover operation is performed. With a mutation probability
pm, we scan each gene gi on the offspring chromosomes. If
the mutation operation needs to be implemented, the value of
the gene flips, i.e. 0 becomes to 1, and 1 becomes to 0. The
same correction mechanism needs to be preformed if the mutated
chromosomes are not valid.

In order to increase the diversity of possible Dominator Parti-
tions, we propose an additional step called dominatee mutation in
LBVBP-MOGA to generate more feasible Dominator Partitions.

As known, as long as choosing a specific node from the neigh-
boring dominator set D(vi), ∀vi ∈ W, we can easily explore a
Dominator Partition. According to the observation, we design the
following dominatee mutation. The original population without
doing crossover and gene mutation operations will undergo the
Dominatee mutation operation. If the number of neighboring
dominators of a dominatee vi is greater than 1, i.e., |D(vi)| ≥ 2,
then randomly pick a node from the set D(vi). We use the VB
shown in Fig. 1(b) to illustrate the dominatee mutation. Accord-
ing to the topology, we get |D(v4)| = |{v3, v6, v7}| = 3 > 1,
which satisfies the condition to perform the dominatee mutation.
Therefore, we randomly pick one dominator from the set D(v4).
If v3 is selected from D(v4), it means dominatee v4 is allocated to
dominator v3. The corresponding Dominator Partition is shown
in Fig. 2(a). Similarly, if dominatee v4 is allocated to dominator
v6, or v4 is allocated to dominator v7, the Dominator Partitions
are shown in Fig. 2(b), and (c), respectively. In summary, the
process of dominatee mutation for v4 is shown in Fig. 7.

Fig. 7. Illustration of Dominatee Mutation.

IV. PERFORMANCE EVALUATION

Since there are no existing works studying the LBVB con-
struction problem for probabilistic WSNs currently, in the sim-



ulations, the results of LBVBP-MOGA (denoted by MOGA)
are compared with the recently published Minimum-sized CDS
construction algorithm [14] denoted by MCDS, and the LBCDS-
GA algorithm proposed in [12] denoted by GA. We compare the
three algorithms in terms of network lifetime, which is defined
as the time duration until the first dominator runs out of energy.

A. Simulation Environment

We build our own simulator where all the nodes have the same
transmission range and all the nodes are deployed uniformly
and randomly in a square area. For each specific setting, 100
instances are generated. The results are averaged over these
100 instances (all results are rounded to integers). Moreover,
a random value between [0.5, 0.98] is assigned to the Delivery
Ratio (γij) value associated to a pair of nodes (vi and vj)
inside the transmission range, otherwise, a random value between
(0, 0.5) is assigned to γij associated to a pair of nodes beyond
the transmission range. Moreover, we use the VB-based data
aggregation as the communication mode. The simulated energy
consumption model is that every node has the same initial
1000 units of energy. Receiving and transmitting a packet both
consume 1 unit of energy.

B. Simulation Results
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Fig. 8. Network Lifetime: the node transmission range is 20m, the number of
nodes is 100, and the side length of the deployed area changes from 100m to
150m

Fig. 8 shows the network lifetime of three methods (MOGA,
MCDS, GA)) under two different scenarios. From Fig. 8, we
know that the network lifetime increases for all the three al-
gorithms with the side length of the deployed area increasing.
It is obvious that the density of the network becomes more
thinner with the side length of the deployed area increasing.
As to a data aggregation, the thinner the network is, the less
number of neighbors of each dominator. In other words, the
aggregated data are less on each dominator when the network
becomes thinner. Hence, network lifetime is increasing for all
the three algorithms. Additionally, we can see both MOGA and
GA outperform MCDS. Furthermore, MOGA prolongs network
lifetime by 42% on average compared with MCDS, and by 20%
on average compared with GA. The results demonstrate that
load-balancedly allocating dominatees to dominators can im-
prove network lifetime significantly. On the other hand, MOGA
outperforms GA, since MOGA takes multiple objectives into
consideration simultaneously, which making the MOGA easier
to converge to a global optimum. Additionally, the local optimal

solution found by GA might not be the same as the global
optimal solution. Hence, the results shown in Fig. 8 indicate
our proposed MOGA can find a solution which is closer to the
optimal solution than GA.

V. CONCLUSION

In this paper, we address the problem of constructing a Load-
Balanced VB in a probabilistic WSN (LBVBP), which is a
Minimum-sized CDS with the minimum |B|p and |P|p values
in order to assure that the workload among each dominator
is balanced. We propose an effective Multi-Objective Genetic
Algorithm named LBVBP-MOGA to solve the problem. The
simulation results demonstrate that using an LBVB can extend
network lifetime significantly.
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