A Passive Technique for Fingerprinting Wireless
Devices with Wired-side Observations

A. Selcuk Uluagac*, Sakthi V. Radhakrishnan*, Cherita Corbett!, Antony Baca! and Raheem Beyah*

*GT CAP Group, School of ECE
Georgia Institute of Technology
Atlanta, GA 30332, USA
{seclcuk,sakthi03,rbeyah} @ gatech.edu

Abstract—In this paper, we introduce GTID, a technique that
passively fingerprints wireless devices and their types from the
wired backbone. GTID exploits the heterogeneity of devices,
which is a function of different device hardware compositions and
variations in devices’ clock skew. We use statistical techniques
to create unique, reproducible device and device type signatures
that represent time variant behavior in network traffic and use
artificial neural networks (ANNSs) to classify devices and device
types. We demonstrate the efficacy of our technique on both
an isolated testbed and a live campus network (during peak
hours) using a corpus of 27 devices representing a wide range
of device classes. We collected more than 100 GB of traffic
captures for ANN training and classification. We assert that for
any fingerprinting technique to be practical, it must be able to
detect previously unseen devices (i.e., devices for which no stored
signature is available) and must be able to withstand various
attacks. GTID is the first fingerprinting technique to detect
previously unseen devices and to illustrate its resilience under
various attacker models. We measure the performance of GTID
by considering accuracy, recall, and processing time and illustrate
how it can be used to complement existing authentication systems
and to detect counterfeit devices.

Index Terms—GTID, Device Fingerprinting, Wireless Device
Fingerprinting, Device Type Fingerprinting, Access Control

I. INTRODUCTION

Identifying devices connected to a network (i.e., device
fingerprinting) has become of critical importance to ensure,
among other security services, access control to the network.
In the same vein, there has also been a need to understand the
type of a device that is connected to a network (i.e., device
type fingerprinting). Device fingerprinting seeks to uniquely
identify devices on a network without considering existing
easily forgeable identifiers (e.g., Internet Protocol (IP) and
Medium Access Control (MAC) addresses). On the other hand,
device type fingerprinting can be used to determine if a device
belongs to a particular cohort.

In this paper, we present GTID: A Technique for Wireless
Fingerprinting using Wired-side Observations. Our technique
uses information leaked by the physical implementation of
a device through its network traffic to identify a device
and a device’s type. This is accomplished by exploiting the
heterogeneity of devices. This heterogeneity is a function of
the different hardware compositions (e.g., processor, DMA
controller, memory) of the devices as well as the device’s
clock skew. The former enables device type identification

fJohns Hopkins Applied Physics Lab
11100 Johns Hopkins Road
Laurel, Maryland 20723, USA
{cherita.corbett,antony.baca} @jhuapl.edu

and the latter enables device identification. We use statistical
techniques to capture time-variant behavior in traffic and to
create unique, reproducible device and device type signatures.
Unlike current wireless intrusion detection systems (WIDSs)
or wireless device fingerprinting techniques that monitor the
wireless spectrum, our technique allows for wireless device
and device type fingerprinting from the wired side of the
network (e.g., at a backbone switch). Thus, GTID alleviates
the need for costly spectrum analyzers and the need to be
within wireless range of a device to be fingerprinted.

In general, current fingerprinting techniques either identify
unique devices [1]-[6] or identify device types [7]-[12].
However, a technique that does both can prove very useful. For
example, because GTID’s device type fingerprinting capability
detects differences in devices internal composition, GTID can
be used as a non-destructive method for counterfeit device
detection (Figure 1(a))'. On the other hand, the device ID
capability provided by GTID can be used to augment existing
Network Access Control (NAC) systems that seek to control
access to the network by using software installed on the
node to pass the user’s credentials to a backend server (e.g.,
RADIUS server) for authorization. GTID can be used as
a standalone fingerprinting system; however when used in
conjunction with an exiting NAC, two limitations of current
NAC systems can be obviated. Given that NAC client soft-
ware passes the user’s credentials to a backend server for
authentication, the user is ultimately authorized, not the device.
Therefore, a user can simply transfer his or her credentials to
another device, which could be unauthorized, and access the
network legitimately. With GTID used in conjunction with
a NAC, the device can be authorized independent of the
user’s credentials (Figure 1(b)). A second limitation of current
NAC systems is that they support a limited range of devices
(e.g., Windows machines and Macs), and deem many other
devices (e.g., IP printers, IP theormostats, gaming systems) as
unmanageable. Since GTID uses information leaked from the
architectural composition of devices in the network traffic as
a signature and does not require a client on machines to be
fingerprinted, GTID allows accountability for devices that are
traditionally deemed unmanageable (Figure 1(c)). Note that as

Counterfeiting accounts for at least $7.5B in lost revenue for U.S.
semiconductor companies [13].

Network traffic

1: Legitimate 5: Legitimate
2: Counterfelt 6: Legitimate
3: Legitimate 7: Counterfeit
4: Legitimate 8: Counterfeit

credentials |

Device VJ
)

= W Device C
8

(@) (b)
(a) Counterfeit device detection; (b) Device and user authentication with NAC; (c) Authentication of unmanageable devices with NAC.

Fig. 1.

we approach the Internet of Things (IoTs), most devices will
be considered unmanageable and will not work with current
NAC solutions.

The contributions of GTID are as follows: It (1) is the first
technique to provide device and device type fingerprinting; (2)
is the first technique to illustrate resilience to various attacker
types; (3) is the first technique to detect previously seen and
unknown devices; (4) provides wired-side detection of wireless
devices and device types; (5) works for various protocols (e.g.,
TCP, UDP, ICMP) and operating systems; (6) does not require
deep packet inspection (e.g., to obtain timestamps or protocol
banners), thus it is scalable and privacy preserving; (7) works
on IP-level encrypted streams; (8) ensures that devices are
authorized, not just the device users (i.e., independent of user
credentials); (9) does not require 3rd party software and works
for devices that do not (or will not) have NAC clients although
it can complement such existing security mechanisms. In this
paper, we demonstrate the effectiveness and the practicality of
GTID on both an isolated testbed and a live campus network
using artificial neural networks. Using a collection of 27
devices with a diverse set of operating systems, we evaluate
the performance of GTID by considering accuracy, recall, and
processing time. We also consider various attack models and
the performance of a real-time implementation of GTID. GTID
is a very promising technique to complement existing security
systems and to detect counterfeit devices.

The primary weakness of this technique, as with most
works that rely on fine-grained packet timing, is that the
timing is lost as a result of buffering in switches and routers.
Therefore, this technique is not suited for identification across
the Internet. Rather, it is perfectly suitable for the significant
challenge of local network access control (and other local
network activities, e.g., counterfeit detection). Although the
testbed and components from a cost standpoint was significant
($40,000), the authors recognize that the performance of the
system using a cohort of 27 devices is likely not representative
of a network with 1000+ devices. However, given that most
business are small businesses, and therefore most networks
are small networks (87% of US companies have 19 or fewer
employees while .34% of US companies have 500 or more
employees) [14], GTID could be useful for a significant
segment of the deployed networks.

The remainder of this paper proceeds as follows. We first
discuss the related work in Section II. In Section III, we dis-
cuss the background and theory behind this technique. Threat
model and assumptions are articulated in Section IV. Sec-

GTID

[Radius server |
————

/7 N
Autorized
credentials

Unauthorized
device

.
e

\

| printer: Authorized

)| 1pcam: Authorized
‘ PlayStation: Unauthorized
/)

Printer
IPCam

@)))) ((“"ﬁ
Playstauong

(c)

tion V provides an overview of the technique. In Section VI,
we evaluate GTID while considering various attacker models
and then move on to discuss about a real-time implementation
of our technique. We conclude the paper and discuss future
work in Section VII.

II. RELATED WORK

The existing work in this area can be placed into two
categories.

The first category of work focuses on fingerprinting device
types. In [7], the authors fingerprint wireless AP types by
actively probing them with various regular and malformed
packets. This technique is limited to fingerprinting types of
wireless AP types, whereas our scheme can be extended to
any [P-enabled device (e.g., wired and wireless) and can
fingerprint devices as well as device types. In [8], we introduce
an active device fingerprinting technique that can detect the
type of wireless AP that a traffic stream passes through. It
relies on distinct patterns (from the hardware composition
of the device) that are generated in the network traffic as
a result of specially crafted data streams. In contrast to our
current work, our previous work requires specially crafted
data streams to trigger a signature. Further, the study was
limited to AP types whereas our current scheme works with
normal traffic across a wide range of device types, and can
be used to fingerprint devices as well as device types. The
authors of [9] propose a technique for device type behavioral
and temporal fingerprinting. They model a specific protocol
implementation (i.e., the Session Initiation Protocol - SIP)
and create a behavioral fingerprint using a Temporal Random
Parameterized Tree Extended Finite State Machine (TRFSM).
Their technique can learn distinctive timing patterns of the
transitions of the SIP protocol’s state machine. These timing
patterns for the state machine can be detected by observing
the difference between various outgoing and incoming SIP
messages of the device being fingerprinted. In their early work
[10], their technique required knowledge of the entire syntax
of the protocol. However, in [9] this requirement is relaxed
as they only need a corpus containing SIP sessions. The
authors of [9], [10] develop a real-time approach and discuss
deploying their techniques in [11]. However, all of their
proposed techniques are limited to a specific application layer
protocol - SIP, whereas our scheme works for ICMP, UDP, and
TCP protocols and for the applications that they transport (e.g.,
Skype). The authors in [12] use timing information between
commands and responses on the Universal Serial Bus (USB) to

distinguish between variations in model identifiers, OSs (and
sometimes OS version number), and whether a machine is
answering from a real or virtual environment. One limitation
of this work is that it requires one to be in physical possession
of the device.

Another body of work that is relevant to the proposed
work deals with fingerprinting specific hosts (i.e., device
fingerprinting). In [1], a method for fingerprinting a physical
device by exploiting the implementation of the TCP protocol
stack was proposed. The authors use the TCP timestamp
option of outgoing TCP packets to reveal information about
the sender’s internal clock. The authors’ technique exploits
microscopic deviations in the clock skews to derive a clock
cycle pattern as the identity for a device. In contrast to the
work in [1], our work is independent of protocol (i.e., it
works for TCP, UDP, and ICMP), does not require deep
packet inspection (e.g., timestamps), thus it is more positioned
for scalability and does not compromise privacy and works
on IP level encrypted streams. The authors of [2] take a
similar approach to that in [1] (i.e., using clock skew to
uniquely identify nodes), however the goal of [2] is to uniquely
fingerprint APs. Also, instead of getting the timestamp from
TCP packets, they obtain the timestamp from 802.11 beacon
frames. Another recent work in the same lines as [2] (AP
fingerprinting) was done by the authors of [3]. The major
improvement in [3] over [2] is that their technique is online
and does not carry the fingerprint of the fingerprinting device.
Since both the techniques make use of the 802.11 beacons,
they can be used only for AP fingerprinting and cannot be used
for general device fingerprinting. In [4] the authors evaluate the
use of traffic parameters such as transmission rate, frame size,
medium access time, transmission time and inter arrival of
packets to fingerprint 802.11 devices. However, these analysis
are made with direct wireless side captures and not with wire
side observations. Moreover, their proposed technique does
not identify traffic from unseen sources to be coming from
an unknown device. This is a major disadvantage compared
to our technique, because one cannot expect a system to
possess signatures of all possible devices that it may encounter.
There have also been physical layer approaches to fingerprint
wireless devices. Radio frequency (RF) emitter fingerprinting
uses the distinct electromagnetic (EM) characteristics that
arise from differences in circuit topology and manufacturing
tolerances. This approach has a history of use in cellular
systems and has more recently been applied to Wi-Fi [5]
and Bluetooth [6] emitters. The EM properties fingerprint
the unique transmitter of a signal and differ from emitter
to emitter. This technique requires expensive signal analyzer
hardware to be within RF range of the target. In contrast, our
approach only needs a network tap at a switch to capture traffic
on a wired segment that could be a hop downstream.

In general, our work is fundamentally different from the
previous studies in several ways. The existing studies (1)
fingerprint only either device types or devices, not both; (2)
do not detect unknown devices (devices which do not have
a signature); and (3) do not consider attackers who seek to

disrupt the classification process.

III. BACKGROUND DISCUSSION

Packet creation in a device is a complex process. It involves
many internal parts of the device working together. Before a
packet can be sent, the instruction set initiating the process
is extracted from the memory hierarchy (LI/L2 cache, main
memory, hard disk) and sent to the CPU for execution. The
OS then directs the CPU to create a buffer descriptor in the
main memory, which contains the starting memory address
and length of the packet to be sent. Multiple buffer descriptors
are created if the packet is located in multiple discontiguous
regions of memory. The OS then directs the CPU to write
information about the new buffer descriptors to a memory-
mapped register on the network interface card (NIC). These
data traverse the front side bus through the Northbridge to
the PCI bus. The NIC initiates one or more direct memory
access (DMA) transfer(s) to retrieve the descriptors. Then,
the NIC initiates one or more DMA transfer(s) to move the
actual packet data from the main memory into NIC’s transmit
buffer. These data again leave the front side bus, and travel to
the NIC through the Northbridge and the PCI bus. Finally,
the NIC informs the OS and CPU that the descriptor has
been processed. Then, the NIC sends the packet out onto the
network through its medium access control (MAC) unit [15].

Assuming that the effect of the OS can be abstracted, we
can see that the major components that affect the creation
of packets are: the CPU, L1/L2 cache, physical memory, the
direct memory access (DMA) controller, the front side bus, the
back side bus, the PCI bus, and the NIC. The opportunities
for diversity are both at the device level and at the component
level. At the device level, different vendors use different com-
ponents with different capabilities and algorithms (e.g., Dell
Latitude 2110 with Intel Atom N470 processor @ 1.83GHz vs.
Lenovo G570 with Intel Core 15-2430 processor @ 2.4GHz) to
create a device’s internal architecture. Accordingly, the packet
creation process varies across architectures. At the component
level, inherent variations in the clock skews between devices
[16] help make the packet creation process unique.

IV. THREAT MODEL & ASSUMPTIONS

As shown in Figure 2, in our setup, a wireless device
transmits data over the air to an AP. The AP forwards data
over its wired interface towards the final destination. GTID
passively collects timing traffic from captured packets on a
wired segment between the AP and the final destination to
identify the wireless devices that are transmitting?.

Since our technique is based on timing analysis (Section V),
8 different classes of attackers are considered. The first seven
attackers are novice attackers who have some knowledge of
the detection technique and are capable of controlling their
device’s network traffic. These attackers can (1) introduce
constant delays to packet stream; (2) inject random delays to
packets; (3) vary the packet size; (4) change the data rate; (5)

2Note that our technique can also be used to identify wired devices that
are connected to the wired network.

Wireless
Network

Wired Network

ae—u = destination

-

Overview of GTID

Fig. 2.

modify/change the operating system; (6) load the CPU with
intensive applications to over shadow normal behavior; (7)
tunnel packets through another protocol. The eighth attacker
is assumed to be highly skilled and knowledgable of the
technique. Hence, this attacker could try to emulate an au-
thorized device’s traffic in order to establish/maintain network
access. Analysis of these 8 skillful attackers and how GTID
is resilient against these different threats are further discussed
in Section VI-C.

V. OVERVIEW OF GTID

In this section, we introduce the major components of GTID
and discuss the machine learning based algorithm used to
identify devices and their types. Then, we articulate the metrics
in evaluating the overall performance of the technique.

A. Components of the Technique

GTID has four major stages: feature extraction, signature
generation, similarity measure and enroll.

Feature Extraction: As traffic is collected, the feature ex-
traction process measures traffic properties successively in
time. The resulting feature vector is a time series of values
passed to the signature generation process for time-series
analysis. When selecting a feature to measure, it should
preserve the information pertinent to the type of device and
capture discriminating properties for successful classification.
For our analysis, we use the packet inter-arrival time (IAT) as
our feature. IAT measures the delay (At) between successive
packets and characterizes the traffic rate. The IAT feature
vector is defined as:

f=(Ay, Aty Ats, ..., A L) (1)

where Ay, is the inter-arrival time between packet ¢ and ¢ — 1.

Signature Generation: The signature generation process
uses statistical analysis to reveal patterns embedded in the
traffic measurements. We adopted a time-domain method for
signature generation, which relies on the distribution of the
IAT feature vector. Distributions capture the frequency density
of events over discrete intervals of time. Due to the periodic
nature of network traffic, distributions are a useful tool for
traffic analysis. We define frequency count as a vector that
holds the number of IAT values falling within each of the
N equally spaced bins. The device signature is sensitive to
the bin width and different bin widths will reveal different
information about the feature vector. Smaller bin widths cause
fewer IAT values to occur within a particular bin, and what

Input Vector of Size N - Input Layer

)
‘ ; ; 7 Hidden Layer

di d2) ----dm
+ ' ¥

Output Vector of Size M - Output Layer
Fig. 3. Sample Neural Network

may appear to be meaningful information may really be due
to random variations in the traffic rate. Conversely, larger bin
widths may omit important information, aggregating informa-
tion into fewer bins that might otherwise help to discriminate
between two different devices. Based on our experiments, we
empirically determined /N = 300 to be an ideal choice for all
traffic types tested in this paper. We use this value of IV to
determine the binwidths for each traffic type’.

Similarity Measure: Once signatures are generated, it is
passed through trained neural networks that are present in the
master database. This yields closeness values between 0 and 1
for each device in the database (note that 1 denotes a perfect
match). These values of closeness or similarity measures
are used to compare an unknown signature to the master
signatures, which are essentially a collection of previously
seen signatures.

Enroll: Signatures generated in step one are used to train
Artificial Neural Networks (ANNs) which registers the pattern
and in essence enrolls that device or device type. ANNs
are basically computational models inspired from biological
neural networks and they imitate them both structurally and
functionally. An ANN consists of a group of interconnected
computational units called neurons. These neurons take in
inputs and transform them according to a specified activation
function to generate an output. We use ANNs that belong
to a class called feedforward networks, where there is only
a one-way connection from the input to the output layer.
ANNs belonging to this class require supervised training
and are commonly used for prediction, pattern recognition
and nonlinear function fitting. We configure our feedforward
ANN to use scaled conjugate gradient backpropagation as the
training function. We also note the use of sigmoid hidden and
output neurons which are ideal for pattern recognition. These
produce a value between 0 and 1, where 1 denotes a perfect
match in our case.

Figure 3 shows an example of an ANN that can be trained
to classify M different device or device types using signatures
having N bins. This is a multi-layer feedforward ANN which
consists of an input layer, a hidden layer and an output
layer. The input layer accepts a vector of size N (b; to by),
and produces an output vector of size M (d; to dps). The
elements of the input vector correspond to the values in the
probability distribution (signature) and the elements of the

3The start and end points of the histogram are selected to fit the peak. This
range is then split into 300 equal-sized bins.

output vector correspond to the similarity measure between
the input signature and the M device or device type signatures
that it was trained on. The number of hidden nodes P, that
provide optimum results was emperically determined to be 50.
Two neural networks of this kind are used for each traffic type
that we analyze. One is trained for device identification while
the other is trained for device type identification. Once trained,
the neural networks (©) are stored in a master database for
future use.

B. Identification of Devices and Their Types

As explained earlier, GTID compares a device in question
with previously collected master signatures and identifies the
device in question and/or its type. We refer to the successful
identification of an unknown device with one of the master
devices as Device Identification and the identification of the
unknown device’s type with one of the master device types
as Device Type Identification. For instance, GTID may have
a collection of master signatures for two identical Kindles.
In this case, there will be two master device IDs (Kindle#1
and Kindle#2) and one device type (Kindle). Hence, given
a set of master signatures, there would be three applicable
outcomes in identifying a device and its type. In the first
one, GTID successfully recognizes the unknown device and
its device type because the samples from the unknown device
match either one of the master signatures of a device or master
signatures of a device type in the signature database. In the
second one, GTID is not able to find a match for a given device
and device type in the signature database. Therefore, in this
case, the sample device is classified as an unknown device.
The third outcome represents a case between the first two
outcomes as the system is able to identify the device’s type,
but not the actual device associated with the tested device.

GTID’s core algorithm is shown in Algorithm 1. Based on
the type of traffic, the system extracts the neural networks
(©1D, Orype) and lists (Devyist, Typeiist) from the master
database (line 3). Masking vectors are then generated ac-

Algorithm 1 Device ID and Type Identification

1: Identify — ID — Type()

2: begin

3: Oip, @Typea Devi;st, Typeiist < MastersDB(Traffic Type)
4 Ap,)‘T;pe < MaskingVectors()

5: S« IAT_Sample()
6‘
7
8

Q <+ generate_signature(S)
Ol_l:t[D — A[p * sim(@;D, Q)
index, closeness < max(outrp

9: X + 10_percentile_T P(Dev{de)

10: if (closeness > X)

11: return Devlzi"sctlez, Corresponding Type
12: else . .

13: outType < AType * sim((?TypE,Q)

14: index, closeness < maz(outrype)

15: X « 10_percentile_TP(Typefzgez)
16: if (closeness > X)

17: return Unknown, Typeinde®
18: else

19: return Unknown, Unknown
20: end if

21: end

Devk1 TP
Devka TP
Categ

DevK1 TN
Devk2 TN

f” Device - True Negative
09

D
°

o 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.8 1
Similarity Measure

Fig. 4. CDF plot of closeness value for kindle fire - TCP traffic

cording to the subset of master signatures that is used for
comparison (line 4). The system then extracts the unknown
signature {2 from the unknown sample S (lines 5 — 6). Once
this is extracted, the system feeds it into the device ID neural
network (O;p). The masked output generated by the neural
network is then used to get the index and the corresponding
value of closeness (lines 7 — 8). The closeness values range
between O to 1, where 1 denotes a perfect match. If the value
of closeness fits the previously observed True-Positive (TP)
closeness values (X), the unknown signature is identified as
the device pointed by the index and its corresponding type
(lines 9 — 11). If not, similar steps are performed to get the
index and closeness value for device type using O (lines
12 — 14). If the device type closeness satisfies the condition
in line 16, the system identifies the unknown signature to
be from an Unknown device and a known category pointed
by the index, else the signature is identified to be from an
Unknown device and an Unknown type (lines 15 — 19).
Note that the TP values used to determine X come from a
database of TP values which was created using a separate
dataset. Thus, GTID checks to see if the closeness value fits
the previously seen TP distribution of the master signature in
order to determine whether a signature is classified as known
or unknown. An example distrubution of TP history for each
of the Kindle (device), and Kindle as a device type, along with
the cutoff TPs X, and X, is shown in Figure 4. From the
TP distributions in Figure 4, it can be observed that device TPs
(red line) are more often closer to 1, compared to the device
type TPs (green line). The clearly observed difference in the
distribution patterns of device TP, the device type TP and TN
from other devices (Figure 4) is in fact due to heterogeneity
of the different hardware composition (e.g., processor, DMA
controller, memory) of the devices as well as clock skew and
possibly the intrinsic variation in the chip fabrication process.
Therefore, a tested device is first expected to be closest to its
own signature, next to its type signature, then to other devices,
assuming the existence of a match for the signature of the
tested device.

C. Metrics for GTID’s Effectiveness

We evaluate the performance of GTID using accuracy and
recall as our metrics similar to [17]. Accuracy is defined as:
B TP+ TN
~ TP+TN+FP+ FN’

2

(67

where TP, TN, FP, and FN refer to True Positive, True
Negative, False Positive, and False Negative, respectively.
With accuracy, we measure the overall performance of our
system. Recall is the measure of identifying an actual device
and it is statistically defined as:

TP
T TP+ FN’

We use both accuracy and recall because the sole usage of
accuracy is misleading when analyzing certain types of test
cases (e.g., for test cases that do not allow the entire cohort to
contribute to all of the statistics). This is because accuracy, as
shown in Equation 2, requires statistics from the entire cohort
of devices (i.e., TNs). This information may not be available
for certain experiments (i.e., different protocols on one device).
Hence, recall makes the evaluation independent of the impact
of the other TNs and yields a realistic performance focused
only on TPs. Nonetheless, accuracy is still useful, for instance,
in analyzing the behavior across different traffic types of the
entire cohort. Thus, in the Performance Evaluation Section,
accuracy is only populated where appropriate in the results.

0l 3)

TABLE 1
DEVICES USED
Isolated Testbed Real Testbed

Device Type | Qty Device Type Qty
Nokia N900 5 | Lenovo G570 (Laptop) | 2
Dell Latitude) Asus EeeePC 1025C 5
2110 (Netbook) (Netbook)
iPhone3G 2 | Asus TF 101 (Tablet) 2
iPhone4G 2 | Google Nexus One 2
iPad 3 | Kindle Fire 1st Gen 2
Total 14 | Total 15

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of GTID across
four dimensions. First, we analyze our technique in an isolated
network environment (Figure 5(a)). Second, we measure the
performance of GTID in a live campus network (Figure
5(b)) during peak hours. Third, we evaluate the performance
of a prototype version of GTID. Finally, we analyze the
effectiveness of GTID under various attack scenarios in a live
network.

In GTID, two automated testbeds were assembled to trans-
mit and record traffic from the wireless devices to the wired
segment and vice versa. In the isolated testbed shown in
Figure 5(a), a control machine (not shown in the figure)
was used to send commands to the different devices in the
testbed for single and multiple hops scenarios. The device
under test was placed in an isolation box to reduce RF leakage
and interference. For the real network testbed (Figure 5(b)),
the AP and LAN destination were connected to a campus
backbone switch to test the device with real MAC and physical
layer interference from other wireless users in proximity,
during peak hours. A total of 27 different devices, with an
approximate total worth of $40,000 (14 in the isolated testbed,
15 in the real network testbed) were tested and the details
which are listed in Tables I.

Furthemore, two generic applications were used to generate
traffic in our testbeds. One was Iperf, which was used to
generate both TCP and UDP traffic at controlled rates, and the
other was Ping. In addition to these, we performed tests using
other applications such as secure copy (SCP) and Skype. TCP,
SCP and Skype were allowed to flow at their natural rate, while
Ping and UDP were controlled. In our experiments using Ping,
we set the the rate to 100 pings/second and tested payload sizes
of 64 Bytes and 1400 Bytes. For UDP analysis we used two
payload sizes, 64 Bytes and 1400 Bytes, and sending rates of
IMpbs and 8Mbps. We captured 1 hour of traffic for each of
these traffic types, and this was done over 27 devices. This
gave us a total of 319 hours (more than 100 gigabytes) of
traffic which was used to evaluate GTID. The first half of
each capture is used for training the ANN and the second half
is used for performance analysis. We empirically determined
the best sample sizes for a good overall performance of GTID
to be 2.5K.

As briefly mentioned in the previous section, GTID operates
in two modes: Known and Unknown. The known mode refers
to a case where GTID attempts to recognize a previously seen
device among other previously seen devices and therefore,
has a master signature associated with the device in question.
Hence, in this case, GTID either correctly identifies the device
and the device type (category) or mis-identifies them. In the
unknown mode of test, we exposed GTID to both devices it
has previously seen and devices that it has not previously seen.
Hence, in this case, GTID does not have the necessary master
signature associated with a sample device tested. As a result,
if GTID does not recognize a device, it then identifies it as
an unknown device, otherwise it identifies the type and/or
the device. Note that the existing studies do not seek to
detect unknown devices (devices where they do not have a
signature) as discussed in Section II. Indeed, this limitation of
the existing studies does not exist in GTID and its capability
to operate in both test modes (known and unknown) makes
it a comprehensive approach as the two different modes
work best for different scenarios. For example, in a benign
network, the known mode can be used for inventory control.
However, in a network where access control is a concern,
GTID can be employed in unknown mode. Using the accuracy
(o) and recall (y) metrics explained in Section V-C, we
analyze the overall effectiveness of our technique for these
different modes. Nonetheless, as noted earlier, to analyze the
performance specific to device IDs and device types, we only
focus on 7y because « is inflated superfluously by TNs. We
note that this is not needed for results per traffic type because
all traffic from devices and types are aggregated for each traffic
type; hence, we include results pertinent to both metrics.

A. Results from the Experiments on the Isolated Testbed

Initially, we tested the performance of GTID in an isolated
network environment (Figure 5(a)). Conducting experiments
in an isolated network allowed for fundamental and deeper
understanding of the overall technique. Specifically, we seek
to understand: (1) What is the overall accuracy and recall

RF Isolation Box RF Power
‘ Splitter and "
| WLAN Attenuator |
Test | ™\ A
Device

Data WLAN (RF Cable)
Data LAN (Ethernet) i
Control Line

Access

Point

Switch
RF Isolation Box
= ‘ Destination

=< Hop =1

IHop 2

Switch

LAN Sniffer
-

(a) Isolated Network
Fig. 5.

of this technique in an isolated environment? (2) Is there a
protocol/rate that works the best for this technique in the
testbed? (3) Are there devices that are more amenable to
this technique? (4) How does data rate affect this technique
overall? (5) How does queuing affect the technique overall?
For queuing, two scenarios were tested in our isolated network
testbed: Single-hop and multi-hop. To understand the effect of
queuing, we used the multi-hop configuration of the isolated
testbed. For the single hop case, as seen in Table II, the
device with the maximum + is Netbook #5 with 100% and
the average is 94% for the device identification analysis in the
known analysis mode. For the same devices, in the unknown
mode, the maximum and the average fall to 92% and 78%.
The maximum and the average recall values for both known
and unknown test modes for device types identification are
lower compared to that of device identification. Nonetheless,
we show through experiments in Section VI-B that recall of
device type identification can be significantly improved by
using samples from more devices of same type for training
(Figure 6(a)). As for the protocols and applications tested,
UDP at the rate of 1Mbps shows a recall of 98% (known)
and 80% (unknown) for device identification and 56Byte
Ping shows a recall of 92% (known) and 74% (unknown)
for device type identification. In comparison with UDP, a
slight performance penalty with SCP was observed that is
attributed to the reactive nature of TCP to round trip times
and congestion. We also tested GTID on a multi-hop isolated
scenario and found the average values of o and y to be similar
to the single-hop case*. This illustrates the feasibility of GTID
for limited multiple-hop scenarios.

B. Results from Experiments on the Campus Network

We conducted experiments in a live network to determine
the feasibility of the technique and provided bounds for
the performance of our technique in realistic deployments.
Therefore, in the real network, we were specifically interested
in answering the following question: What is the overall
accuracy () and recall (v) of this technique in a real network?
General results for the real network testbed are summarized
in Table III.

4Note that the results from multi-hop experiments are not presented in this
paper due to space constraints.

Backbone Network
Wireless -
Smffer

To other users

Backbone Network

Backbone Switch
Destination PC

B

B

To other users

Ethernet Tap,

= >
Wireless
Access Point "
- »
=2 .
- Devices Und g -
‘ m l! evucj?:s‘n er Ld/ .
e

Wireline Sniffer

(b) Campus Network

Setup of Campus and Isolated Network Testbeds

As seen in Table III, in the campus network testbed the
device with the maximum ~ is Kindle #2 with 93% and
the average is 74% for the device identification analysis
in the known operational mode. In the unknown mode of
these devices, the maximum and the average ~ fall to 88%
and 60%, respectively. Similar to what was observed in the
isolated experiments, the maximum and the average recall
values for both known and unknown test modes for device
type identification is lesser compared to device identification.

As mentioned in Section VI-A, the performance of device
type identification can be significantly improved by using more
training samples for each type of device. Figure 6(a) shows
the results of an experiment that we conducted to show if our
hypothesis was true. In this experiment, we start by training on
one representative device for each device type, and continue
to increase in steps of 1, the number of representative devices
used to train the Asus netbooks (device type). From the results
(Figure 6(a)), we clearly see the recall of the Asus netbook
(device type) increases as the number of training samples
increase. As for the applications and protocols, the maximum
~ and « different for device and device type identification tests.
Specifically, for the device identification tests, UDP with a rate
of 8Mbps and 1400B payload exhibits the maximum ~: 80%
while for the device type tests, the maximum is achieved by
Skype traffic with y: 96%. In the future, we plan to determine
why the recall values of these signatures are traffic and device
type dependent.

Comparing the real network to the isolated network exper-
iments, we see that the performance degrades across both «
and + in the real network. Across all the cases, we also observe

TABLE I
ISOLATED NETWORK TESTBED
Device ID Device Type
Known Unknown Known Unknown
Dev @ Y « ¥ Type @ Y « %
Max Netbook #5 - 1.00 - 0.92 iPhone4 - 0.99 - 0.78
Traffic Type Traffic Type
Max | UDP 56B IMbps | 1.00 | 0.98 | 0.97 | 0.80 Ping 56B 0.97 | 0.92 | 0.90 | 0.74
Avg 0.99 | 094] 097 | 0.78 0.87 | 0.67 | 0.83 | 0.54
TABLE III
CAMPUS NETWORK - WIRELESS
Device ID Device Type
Known Unknown Known Unknown
Device] ¥ o ¥ Device Type o 5 o v
Max | Kindle #2 - 0.93 - 0.88 | Asus Netbook - 0.99 - 0.99
Test Type Test Type
Max | UDP 1400B 8Mbps | 0.96 | 0.80 | 0.94 | 0.66 | Skype 0.96 | 0.96 | 0.85 | 0.86
Avg 0.95] 0.74 | 0.93 | 0.60 0.86 | 0.68 | 0.83 | 0.61

" |[==Tsolated Network
—=— Real Network
0.9 0.6|

Recall
-
>
Probability

0.5 —+— Asus Netbook
! ——Google Phone
0.4 Lenovo Laptop
Asus Tablet

03 ——Kindle eReader 0.1

0.4 iR —e—Known Analysis
—v—Unknown Analysis
- - -Chance

Overall Recall
o
@

1 2 3 4 0 02
No. of Devices Used to Train for a Device Type

04 0.
Similarity Measure

0.8 1 2 4 6 8
Number of Devices

(a) (b) (c)
Fig. 6. (a) Effect of Increasing Training Data; (b) Effect of MAC Contention; (c) Recall vs. Number of devices

that device identification results are better than the device
type identification. As illustrated in Figure 6, this situation
may possibly be increased with more devices to train for each
device type, which will be explored more exhaustively as part
of our future work.

We further analyzed the impact of physical and MAC layer
interference on the real network as presented in Figure 6(b).
Focusing on the similarity measures for these two testbeds,
we see that more than 50% of the similarity measures have
values close to 1 (which denotes a perfect match) in the
isolated testbed, while its less than 30% for the real testbed.
We attribute this difference to the uncontrolled characteristics
of the physical medium which make inter arrival patterns look
less similar in the real network. From these results, one can
anticipate the results obtained in a wired network to be closer
to the results obtained in the isolated testbed since there is
no MAC or physical layer interference on a switched wired
network. Finally, although the slight performance decrease
associated with the unknown test mode observed in all the test
scenarios is attributed to the nature of the identification algo-
rithm, our ANNSs-based identification technique shows strong
promise for the effectiveness of GTID (given its numerous
benefits described in Section I).

C. Analysis of Attacker Models

In this section, we seek to determine the effectiveness of
GTID under various attack scenarios. Assuming that attackers
are knowledgable about GTID and given that GTID is IAT-
based, 8 unique skillful attacker models were considered as
articulated in Section IV and analyzed in this sub-section.
Specifically, Figure 7(a) shows attackers that can vary their
packet sizes, change their data rate, tunnel their packets
through another protocol. Figure 7(b) presents attackers that
can introduce constant/random delays to packet stream and
load the CPU with intensive applications to over shadow
normal behavior. Figure 7(c) shows an attacker that can modi-
fy/change its operating system. GTID detects these attacks and
classifies all of these devices that generated attack traffic from
previously seen devices as unknown, which is a red flag to a
network administrator. The variation in the IAT distribution
patterns (from normal) observed in Figure 7 explains why
GTID was able to identify the attacker traffic.

Furthermore, a further skillful attacker could try to emulate
an authorized device in order to establish/maintain network

access. To do this, the attacker would need the distribution of
the difference in the IAT pattern of his device and the device
that she wants to emulate. Once she has this information, she
can feed it into a network emulation tool like netem (which is
available in linux kernels 2.6 and higher) to transmit packets
in accordance with the distribution. When such an attack
is perpetrated, one would expect the attacker’s device to be
classified as a known device. However, as seen in Figure 7(d)
this is not true. Figure 7(d) shows the IAT distribution when
the Lenovo laptop attempted to behave like a Kindle. Clearly,
the distribution of the emulated traffic is different from the
actual and the targeted device and GTID labels this traffic as
unknown. Also, the IATs are observed to be more distributed
when compared to the unaltered device. One of the primary
factors that prevent an accurate emulation is the fact that
the attacker’s device has to simultaneously spoof a signature
of a device and attempt to hide its innate signature. It is
important to note that the theory behind GTID is that different
devices essentially talk” differently (i.e., they have a different
cadence), so as illustrated above, it is difficult for even a more
powerful device to emulate the traffic distribution of a less
powerful device.

D. Scaleability

GTID is able to identify wireless devices and device types
by simply monitoring traffic generated by the wireless devices
on the wired side of the network. The numerous benefits of
such an approach are enumerated in Section I. However, as
with all techniques, GTID has limitations. Figure 6(c) shows
the average recall of GTID demonstrated on a live campus
network as the number of devices fingerprinted are increased.
The figure also illustrates the likelihood (without a system
like GTID) of detecting a device without expensive spectrum
analyzers covering the entire wireless network and without
client software installed on a node (i.e., chance). The figure
shows the recall drop off is fairly linear with the increase in
the number of nodes. Although GTID may not be a general
solution for every network, as discussed in Section I, GTID
could help secure 87% of the current networks.

E. Real-Time Implementation Discussion

A fingerprinting technique needs to be quick in order to
be of any practical use. To study the detection speed of this
technique, a prototype version of GTID was developed in

—Loaded System|
Random Delay
0.03 i ——Constant Delay
A -+~ Unmodified!
U d

——Change in Pkt Size
04 —— Change in Data Rate|
ICMP Tunneling
035 -~ Unmodifiedt
Unmodified 0.025

b
°

Probability

0.015]

Probability

0.01

0.005]

—Kindle
—Lenovo
0.05) Lenovo Emulating Kindle]

0.04

Probabilily
o
8

0.02

0.01
wd
g -

% 0005 001 0015 002 0025 003 0035 004
AT (s)

10 105 1

0 02 95
IAT (5) s

(a) (b) (©) @
Fig. 7. Distribution of IATs for Different Attacker Scenarios : (a) PDF of UDP IATs for Normal and Attacker Traffic (b) PDF of Ping Response IATs for

Normal and Attacker Traffic (c) O/S Attack (d) Laptop Emulates a Kindle

MATLAB and its performance was tested. The two most im-
portant factors that affect time associated with GTID’s decision
process are capture time and processing time. The capture
time depends on the data rate and number of packets needed
(i.e., sample size) while the processing time is dependent
on the algorithm and processing power. The time taken to
perform the packet capture increases linearly with an increase
in sample size. However the processing time increases at a
slower rate. For example, when considering a sample size of
1K packets, the capture time for an 8Mbps UDP flow is 1.18s
and the corresponding processing time is .0051s or 4.14% of
the capture time. If the capture size increases to SOK packets,
the corresponding processing time is 1.18s or 1.58% of the
capture time. The capture size used in this work was 2.5K
packets, which has a capture time of 3.95s and a corresponding
processing time of .12s or 2.95% of the capture time. Thus,
GTID is very lightweight (e.g., .12s to make a decision) as a
single-threaded application when the bottleneck is the capture
time. At higher data rates, the processing time will start to
become the performance bottleneck. To overcome this, we
implemented a multi-threaded version of GTID to process
arriving packets in parallel. For example, when the data rate is
8Mbps, for a sample size of 2.5K packets, the total processing
time jumps to 11.49s if GTID is single-threaded. But, if 8
threads are used the time is reduced to 6.67s, resulting in a
45% speed up by making GTID multi-threaded.

VII. CONCLUSION & FUTURE WORK

In this paper, we introduced GTID, a passive technique
for fingerprinting of wireless devices and their types. GTID
exploits the heterogeneity of devices, which is a function of
the different device hardware compositions and the inherent
variation in the chip fabrication process. We applied this
technique to the challenging problem of access control in
802.11 networks. We demonstrated the effectiveness and the
practicality of GTID on both an isolated testbed and a live
campus network using artificial neural networks. Further, we
showed, using a collection of 27 devices with a diverse set
of operating systems, that GTID had high accuracy and good
recall in identifying previously seen and unknown devices and
device types. We also addressed the efficacy of GTID under
various attack models and considered the performance of a
real-time implementation of GTID. We plan to understand the
efficacy of GTID when device and device type identification
is conducted over various access links (e.g., DSL, LTE).

Additionally, we plan to improve the robustness of GTID so
it can better handle congestion on a link and various levels
of load on a node. Further, we plan to extend the application
of GTID to the detection of counterfeit devices and remote
detection of resource utilization on a node.

VIII. ACKNOWLEDGMENTS

This work was partly supported by NSF-CAREER-CNS-
0545667 844144 and DARPA-N10AP20022.
REFERENCES

B. A. Kohno, Tadayoshi. and K. C. Claffy, “Remote physical device
fingerprinting,” in Proc. of the 2005 IEEE Symposium on Security and
Privacy, Washington, DC, USA, pp. 211-225.

S. Jana and S. K. Kasera, “On fast and accurate detection of unauthorized
wireless access points using clock skews,” in MobiCom ’08: Proc. of
the 14th ACM International Conf. on Mobile computing and networking,
pp.- 104-115.

F. Lanze, A. Panchenko, B. Braatz, and A. Zinnen, “Clock skew based
remote device fingerprinting demystified,” in Proc. of 55th International
IEEE Global Communication Conference (GLOBECOM), 2012.

C. Neumann, O. Heen, and S. Onno, “An empirical study of passive
802.11 device fingerprinting,” in Distributed Computing Systems Work-
shops (ICDCSW), 2012 32nd International Conference on, june 2012,
pp. 593 —602.

V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identifica-
tion with radiometric signatures,” in Proc. of the 14th ACM International
Conf. on Mobile Computing and Networking (MobiCom), 2008.

J. Hall, M. Barbeau, and E. Kranakis, “Rogue devices in bluetooth
networks using radio frequency fingerprinting,” in JASTED International
Conf. on Communications and Computer Networks (CCN), 2006.

S. Bratus, C. Cornelius, D. Kotz, and D. Peebles, “Active behavioral
fingerprinting of wireless devices,” in ACM WiSec "08: Proc. of the first
ACM conference on Wireless network security, pp. 56—61.

C. L. C. Ke Gao and R. A. Beyah, “A passive approach to wireless
device fingerprinting.” IEEE/IFIP, 2010.

J. Francois, H. Abdelnurt, R. State, and O. Festort, “Ptf: Passive temporal
fingerprinting.” IFIP/IEEE, 2011.

——, “Machine learning techniques for passive network inventory,”
vol. 7, 2010.

J. Francois, T. Engel, R. State, and O. Festort, “Enforcing security with
behavioral fingerprinting,” 2011.

L. Letaw, J. Pletcher, and K. Butler, “Host identification via usb
fingerprinting,” Systematic Approaches to Digital Forensic Engineering
(SADFE), 2011.

F. Koushanfar, S. Fazzari, C. McCants, W. Bryson, M. Sale, P. Song, and
M. Potkonjak, “Can eda combat the rise of electronic counterfeiting?” in
Proc. of 49th ACM/EDAC/IEEE Design Automation Conference, 2012.
“Census numbers,” http://www.census.gov/econ/smallbus.html.

H. Kim, V. Pai, and S. Rixner, “Exploiting task-level concurrency in
a programmable network interface,” in Proc. of Ninth ACM SIGPLAN
symposium on Principles and practice of parallel programming, 2003.
V. Paxson, “On calibrating measurements of packet transit times,” in In
Proceedings of ACM SIGMETRICS, 1998, pp. 11-21.

G. Kakavelakis, R. Beverly, and J. Young, “Auto-learning of smtp tcp
transport-layer features for spam and abusive message detection,” in
LISA, 2011, pp. 18-18.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]
(10]
(11]
[12]

[13]

[14]
[15]

[16]

(17]

